Abstract: The CRISPR-Cas9 technology has assumed a new front of genetic engineering and molecular biology. This is a powerful gene-editing system using a bacterial immune system that is incredibly accurate and efficient in DNA sequences manipulation. The paper considers the option of editing defective genes that have already been with CRISPR-Cas9. linked to a variety of hereditary diseases, including cystic fibrosis, Huntington disease, and sickle cell anaemia. It provides literature review of latest developments in detail, both the successes and the challenges of preclinical.......
[1].
Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., ... & Liu, D. R. (2019). Search-And-Replace Genome Editing Without Double-Strand Breaks Or Donor DNA. Nature, 576(7785), 149-157.
[2].
Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y. S., Grupp, S. A., Handgretinger, R., ... & Christ-Schmidt, H. (2021). CRISPR-Cas9 Gene Editing For Sickle Cell Disease And Β-Thalassemia. New England Journal Of Medicine, 384(3), 252-260.
[3].
Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable Base Editing Of A• T To G• C In Genomic DNA Without DNA Cleavage. Nature, 551(7681), 464-471.
[4].
Gillmore, J. D., Gane, E., Taubel, J., Kavita, V., Biyouki, M., Maitland, M. L., ... & Lebwohl, D. (2021). CRISPR-Cas9 In Vivo Gene Editing For Transthyretin Amyloidosis. New England Journal Of Medicine, 385(6), 493-502.
[5].
Hurlbut, J. B. (2019). Human Genome Editing: Ask Whether, Not How. Nature, 565(7738), 135-135.