Abstract: Cardiovascular disease (CVD) remains the leading cause of mortality globally, necessitating innovative
approaches for early detection and risk stratification. We conducted a comprehensive comparative analysis of
machine learning algorithms for predicting cardiovascular disease risk factors among US adults. Our
investigation encompassed traditional statistical models, ensemble methods, deep learning approaches, and
explainable artificial intelligence techniques........
Keywords –Cardiovascular disease, Machine learning, Risk prediction, Artificial intelligence, Health
disparities, Electronic health records
[1]. Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial Intelligence With Multi-Functional Machine Learning
Platform Development For Better Healthcare And Precision Medicine. Database, 2020, Baaa010.
Https://Doi.Org/10.1093/Database/Baaa010
[2]. Al-Zaiti, S. S., Besomi, L., Bouzid, Z., Faramand, Z., Frisch, S., Martin-Gill, C., Gregg, R., Saba, S., Callaway, C., & Sejdic, E.
(2020). Machine Learning-Based Prediction Of Acute Coronary Syndrome Using Only The Pre-Hospital 12-Lead
Electrocardiogram. Nature Communications, 11, 3966. Https://Doi.Org/10.1038/S41467-020-17804-2
[3]. Alghatani, K., Ammar, N., Rezgui, A., & Shaban, K. (2022). Predicting Intensive Care Unit Length Of Stay And Mortality Using
Patient Vital Signs: Machine Learning Model Development And Validation. JMIR Medical Informatics, 10(5), E32593.
Https://Doi.Org/10.2196/32593
[4]. Akinbode, A. K., Olinmah, F. I., Chima, O. K., Okare, B. P., &Adeloju, T. D. Using Business Intelligence Tools To Monitor
Chronic Disease Trends Across Demographics. International Journal Of Scientific Research In Computer Science, Engineering And
Information Technology. 2024a, 10(4), 739-776
[5]. Akinbode, A. K., Olinmah, F. I., Chima, O. K., Okare, B. P., &Adeloju, T. D. A KPI Optimization Framework For Institutional
Performance Using R And Business Intelligence Tools. Gyanshauryam, International Scientific Refereed Research Journal. 2023,
6(5), 274-308