Abstract: Recently, industry requires the use of static power converters for high voltages and high currents applications. So, it is necessary to use an inverter. Today inverters use high power switching transistors called IGBT's and MOSFETS. These inverters have problems in high power applications. A Stacked Multi-cell Converter (SMC) represents a new solution to the problem. A SMC is an inverter (DC-AC converter) for high voltage applications. Here the analysis of SMC at different levels which decreases the THD with increase in levels is discussed and shown. This topology called SMC (Stacked Multi-cell Converter) consists of a hybrid association of commutation cell making possible to share the voltage and current constraint on several switches and this converter is made up of by p cells and n stacks. This configuration allows to share the total voltage and current stresses among the switches and also to improve the output waveforms of the converter in terms of number of levels and switching frequency. PWM technique is used to control the rms voltage at the output. Then, it is possible to use conventional semiconductors to handle high output power. A closed loop control is proposed using MATLAB Fuzzy Logic Toolbox, to control the RMS voltage at the output.The application area for a SMC can be found in applications such as UPS, Switching Power Supplies, and motor drivers
Keywords: Stacked multi-cell converter, Fuzzy Logic, MATLAB, PWM
[1] M.Carpita, S. Tenconi (1991). A novel multicell structure for voltage source inverter.EPE'1991(Firenze) , Vol. 1, pp90-94.
[2] L. Delmas, G. Gateau, T. A. Meynard, H. Foch "Stacked Multicell converter (SMC): Control and Natural Balancing", Power Electronics Specialists Conference, PESC 02. IEEE 33rd Annual, Vol. 2, 23-27 June 2002, pp. 689 –694.
[3] P. Bhagwat, V.R. Stefanovic, "Generalized structure of a Multilevel PWM inverter", IEEE Industry Applications Society Annual Meeting, pp.761-76, 1980.
[4] Average-Current-Based Conduction Losses Model of Switched Capacitor Converters: Michael Evzelman, Student Member, IEEE, and Shmuel (Sam) Ben-Yaakov, FelloIEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 28, NO. 7, JULY 2013
[5] T. A. Meynard, H. Fosch, Francois Forest, "Multicell Converters: Derived Topologies", IEEE Trans. Ind. This article shows the advantages of the SMC circuit Electron.. Vol. 49, October 2002, pp. 978-987.
[6] G. Gateau, T. A. Meynard, H. Foch. "Stacked Multicell Converter Properties and Design", PESC'20001(Vancouver), Vol. 3, June 17-22, 2001. pp. 1583 –1588.
[7] Earl Cox, "Fuzzy Fundamentals", IEEE Spectrum, October 1992, pp. 58-61.
[8] Kevin Self "Designing With Fuzzy Logic" from IEEE SPECTRUM, November 1990, Volume 105 pp 42-44.
[9] Salvador Revelo Andrade, "Simulación de unConvertidorMultinivelApilableControlado con LógicaDifusa", Master Dissertation, Universidad de las Americas- Puebla, Primavera 2006.
[10] Timothy J. Ross "Fuzzy Logic with Engineering Applications",McGraw Hill, Inc., 1997.