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Abstract: We consider here the estimation of best possible running track events.  A logistic type curve is 

applied with a least squares estimator and applying the gradient descent method.  The facts seem to indicate a 

non-uniqueness of the best estimator and a rather slow convergence.  The initial data must be reasonably 

accurate to obtain convergence, and convergence can require thousands of iterations.  Since these are not 

production codes lengthy iterations are not significant, but there can be multiple convergence values depending 

on initial values.  The implication is that unlike other literature which offers up best times, we demonstrate there 

can be substantial variance is best estimates. Predicting world records involves combining human mechanics, 

training, psychology, diet, and coaching. Our focus, mathematical models, groups these as four parameter 

models.  
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I. Introduction 

The study of legged human locomotion is complex.  It involves muscles, oxygen, neural coordination, 

centers of gravity, stresses, strains, diet, and an assortment of metabolic processes.  The basic categories of 

physiology, mechanics, and neural commitment command a deep knowledge of a multiple of topics to devise 

the metrics of speed.  In this paper, we take a fundamentalist viewpoint of modeling speed in terms of best 

possible and other data of best records for common races.  Maximum running speeds have been estimated based 

on body mass (Hutchinson and Garcia, 2002), as well as rates at which energy can be consumed (Keller, 1973). 

Training methods have advanced into the realm of true science (McKlusky, 2014) in which few details are 

omitted.  

There is little disagreement that for a given species, there is a maximal speed or time for a given 

distance, with the exception of stochastic effects to be discussed later.  There is substantial controversy on how 

this maximum is approached.  Other approaches are available from phenomenology to statistics 

(Gembris,Taylor, Suter, 2007; Gembris, et.al., 2002), from extreme value theory (Denny, 2008) to analytical 

approaches (Nevill and Whyte, 2005). Thus, one basic question is the nature of how best running speeds 

approach their asymptotes?  In this paper, we take an analytic approach, applying several models of how this 

can occur.  It is based on logistic-type differential equations which differ in how the logistic driver meets or 

approaches the asymptotes.  

Extreme value theory examines the probability of a given extreme value is achieved during a given 

year. Based on the Fisher–Tippett–Gnedenko theorem which provides asymptotic estimates, it posits that 

extreme values in a specific event are independent identically distributed random variables (Gumbel, 2004, 

Gnedenko, 1943, Coles, 2001).For extreme events of weather, this is a reasonable assumption, but for race 

events, each new extreme value, such as the world or track record, does impact the corpus of participants in 

many ways, in the simplest notions of inspiring greater performance or discouraging future efforts.  The 

statistical approach applies statistical methods to demonstrate that records can improve in time even if athletic 

performance remains constant. This implies the presence of stochastic effects and systematic trends.  It also is 

impacted by sample size, importance, location, the number of competitions, track conditions, and other factors. 

(Gembris, 2007). Results are both significant and interesting.  

In the present paper, we examine several analytical models based generalized logistical curves and their 

associated differential equations, discuss qualitatively how they differ near the asymptotes, and compare 

predicted records into the future.  For example, the classical logistic curve converges much faster to the 

asymptotes than the arctangent method.  We note that final values for the optimization codes are highly 

dependent on initial conditions. As to phenomenology, we simply look at the progression of records and 

measure by how much they successively change and applied a weighted average to predict the next record. Such 

a program, we will see, provides results consistent with the more sophisticated models and with extreme value 

theory.  
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The upshot of the current approach is to demonstrate that no matter what models are developed, there 

must be inherent assumptions that can at best be considered reasonable, at worst suspicious, but rarely true or 

false. In section 2, we consider factors affecting records. In Section 3, the nature of logistic models. In Section 4, 

we outline the optimization method applied; in Section 5, testing the method is discussed; in Section 6, the 

nature of pre-predictions, or the steps required prior to making predictions. Finally, the predictions themselves 

are given in Section 7. 

 

II. Factors affecting world records 

 A natural question about the improvement of records is whether we are predicting records within the 

spectrum current conditions or against the future.  For example, suppose it is discovered that athletes breathing 

an odd combination of oxygen, nitrogen, and hydrogen gasses (completely legal) for 30 minutes prior to a race 

dramatically improve their performance. Can you imagine future track stars appearing on the field wearing 

scuba-like equipment? How can this be factored into any model?  So, we are confronted with the racing system 

as it is versus what it may be. Is it closed, or must it allow for new factors? For example, some models allow for 

the increase of population (Denny, 2008). 

 With this in mind, we consider the many factors impacting the world, national, Olympic, and most 

other track records.  The makes it important to classify just what are the factors involved.  We focus completely 

on the rate of change of records and the asymptotes.  Concerning the rate, it is safe to say that some of the 

factors change the rate to the extent that though there is a governing equation or differential equation, the rate 

can change.  Other affects the ultimate best possible records themselves.  In this section, we review these simply 

with an overview, giving some examples to support them. Most have been well documented in the literature. We 

have only room for a brief sketch of nine of the twelve main topics. See (McKlusky, 2013) for more 

information. Sports science is a highly technical topic contributing much to our knowledge of athletic 

performance. 

1. World population - A larger pool of athletes of athletes gives a greater number of persons trying to set new 

records and overall increasing the competition.  This is not as true today as in years past, but it is a factor.  

2. Genetic stock - When racers sampled from different geographical regions, special genetic proclivities 

appear.  As we will see, the number of Africans entering long distance races not only have improved world 

records but increase the rate they are achieved.  

3. Sports fashion - With records so difficult to achieve for so little gain, some of the most talented athletes will 

gravitate toward other venues, possibly more lucrative. This decreases the fraction of available athletes. 

Case-in-point: competitive walking, also called racewalking has a diminished fashion as an event.  

Relatively few compete.  

4. Equipment - Of course, we’ve heard of friction reducing swimming attire that has helped lower record 

swim times.  The same is true in most sports, including track.  The shoe and its weight stand out.  Most 

competitive track stars pay particular attention to their gear, particularly shoes. shoe for comfort and 

elasticity, traction, tunic for temperature control.  New advanced design shoes seem promising to be a 

component of new records in the longer distance races  

https://www.nytimes.com/2017/03/08/sports/nikes-vivid-shoes-and-the-gray-area-of-performance-

enhancement.html) 

5. Training methods - There was a time when the prospective elite athlete would be told (Ericsson, Krampe, 

Tesch-Romer (1993)) that to reach the highest level performance, thousands of hours of training was 

required.  Though not due to Ericsson, a number, at least 10,000 hours of training, became associated with 

this goal. This is time on task and became the prescription to achieve the elite level.  However, with too 

many counter-examples about, the amount of training is now regarded as dependent on age, sport, 

motivation, commitment, and other factors.It has now been determined that athletes, suitably selected, can 

be brought to elite levels in less than 18 months — sometimes.  

6. Focus on particular body types for the given event.  The advent of the discoveries mentioned above, 

including focusing on body type can be used to short-circuit this rule.  In particular, the English Olympic 

Committee developed a method of recruitment of women to their rowing team.  Criteria were previous high 

level of active in other sports, but tall and strong.  With intense coaching the rowing team thrived, 

producing elite rowers in only a few years, including at least one Olympic gold medal.  

7. Coaches and coaching methods. Who gets the best coaches? What are the rewards for good coaches? As 

well, the perfect fit of coach and athlete is not an easy match to make.  Under the aegis of coaching is the 

relatively modern use of videos for the athlete and coach to reflect on performance.   

8. Race preparation. Just as an example, warm–up rooms are now routinely operated by individual countries 

for athletes to tune-up just prior to big races.  This in addition to dietetic prescriptions clearly improve race 

performance.  

9. Random effects, aka black swan events.  Random effects are sometimes emphasized in lieu of training 
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methods as strongly affecting new records (Gembris, 2007).  These may be more significant than we now 

understand.  For suppose, the best time possible by the human in the 100-meter race has been achieved.  

This does not end the story.  Indeed, it is clearly possible that on a particular day, with particular 

circumstances, an elite athlete may exceed only slightly a given world record.  An example of this is with 

Florence Griffith-Joyner in the 100-meter women’s race, who set the current record in 1988 of almost 0.3 

seconds faster than the previous record.  It has remained unchanged. The best time since Joyner is still 0.15 

seconds slower than this now almost ancient record.  It is certainly an indicator than any record unchanged 

in 20-30 years may be very near the best possible - except for black swan (Taleb, 2010) events.  

 

In Table 1 we highlight how these events affect records and rates. In general, these same factors affect race 

performance at all levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. 

Factors affecting world records 

* Generally to improve the best record  

** To accelerate or decelerate time to achieve a new record  

*** Dependent on model weights 

 To supplement our discussion of population issues in the United States, consider Table 2 which shows 

American participation in the schools over the years 2003-2016.  As is evident, US schools have not really 

increased their participation rates by much over the last dozen or so years. 

 

School Year
Boys 

Participation

Girls 

Participation

Boys 

Participation 

PCT increase

Girls 

Participation 

PCT increase

2002/2003 498,027 415,602 1.36% 0.65%

2003/2004 504,801 418,322 2.36% 2.36%

2004/2005 516,703 428,198 3.34% 2.57%

2005/2006 533,985 439,200 1.91% 1.13%

2006/2007 544,180 444,181 0.85% 0.75%

2007/2008 548,821 447,520 1.67% 2.28%

2008/2009 558,007 457,732 2.53% 2.50%

2009/2010 572,123 469,177 1.25% 1.30%

2010/2011 579,302 475,265 -0.63% -1.37%

2011/2012 575,628 468,747 -0.20% -0.18%

2012/2013 574,451 467,897 1.02% 2.35%

2013/2014 580,321 478,885 -0.29% -0.03%

2014/2015 578,632 478,726 2.16% 1.51%

2015/2016 591,133 485,969

Average 554,008 455,387 1.33% 1.22%

Track and Field

 
Table 2. Participation in Track and Field in the US 

Category 
Affects record* ( ) 

Affects rate (c) 

Population 
  

Genetic stock 
 

 

Equipment 
  

Identification of physical types 
  

Training 
 

 

Sports fashion 
  

Diet, VO2, etc 
  

Coaching 
  

Race preparation 
 

 

Random factors 
 

 

Longevity of records*** 
  

Resources (e.g. government) 
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However, a deeper point needs mention.  The very top performers in these groups are not necessarily 

drawn into the group by encouraging greater participation. They are already there. Additionally, Table 2 

includes all sports events, with few of the top performers coming from track and field events.  To support the 

genetic stock or fashion arguments or simply fashion, consider the following tables (Track and Field News, 

2015).The first, Table 3, refers to the numbers of athletes ranked in the top ten by year since 1947 for the 100-

meter dash.  Overall, 40 countries placed athletes in the top ten over this period.  There is every reason to accept 

the true contenders for setting a world record are among the top ten - whatever the event.  It reveals the 

dominant athletes from the US dropped in percentage from about 46% to 32%.  Note that Jamaica, a tiny 

country, ranked second has moved up considerably.  Most other countries, aside from Great Britain and Trinidad 

are minor contributors. 

Note also that East Germany is listed, but combining East Germany with Germany, the numbers are the 

same. For the Marathon race, the picture is different.  In Table 4, we note the Kenyan contribution is first while 

the US, a major player prior to 1990 is now in the minor ranks. Kenya has become the dominant world leader in 

the Marathon race. 

Similar rankings and changes thereof for the 10,000-meter race also obtain.  Remarkably, Japan 

suffered the greatest percentage loss in the top ten rankings.  Ethiopia nearly tripled its percentage in rankings.  

Overall, about 83% of the modern era top ten Marathon athletes are citizens of Kenya, Ethiopia, and Morocco.  

In both tables, there is overlap in the counts of top-ten athletes, 1947-2015 and 1990-2015. The goal here is to 

recognize recent changes in the national demography within the top tiers.  Similar results hold for the other races 

— depending on the distance.  Another factor clearly evident in these lists is that some governments expend 

large resources on sports, notably the former Soviet Union and East Germany, and can enhance competition and 

affect performance.   

 

Country

Number 

since 1947

Number 

since 1990 PCT of all

PCT since 

1990 Rank Country

Number 

since 1947

Number 

since 1990 PCT of all

PCT since 

1990

US 316 51 45.8% 31.9% 11 Italy 11 0 1.6% 0.0%

Jamaica 67 43 9.7% 26.9% 12 Namibia 10 2 1.4% 1.3%

Great Britain 42 12 6.1% 7.5% 13 Poland 10 0 1.4% 0.0%

Trinidad 30 11 4.3% 6.9% 14 Australia 9 0 1.3% 0.0%

Cuba 27 0 3.9% 0.0% 15 St. Kitts 8 7 1.2% 4.4%

Canada 26 1 3.8% 0.6% 16 East Germany 8 0 1.2% 0.0%

Nigeria 23 7 3.3% 4.4% 17 Portugal 5 5 0.7% 3.1%

France 18 8 2.6% 5.0% 18 Ghana 5 4 0.7% 2.5%

West Germany 16 0 2.3% 0.0% 19 Panama 4 0 0.6% 0.0%

Soviet Union 13 0 1.9% 0.0% 20 Antigua 3 3 0.4% 1.9%  
Table 3 - International rankings for the 100-meter dash. 

 

Rank Country

Number 

since 

1947

Number 

since 

1990

PCT of 

all

PCT 

since 

1990 Rank Country

Number 

since 

1947

Number 

since 

1990

PCT of 

all

PCT 

since 

1990

1 Kenya 118 86 17.1% 53.8% 11 Belgium 16 0 2.3% 0.0%

2 Japan 97 3 14.1% 1.9% 12 Mexico 14 0 2.0% 0.0%

3 Great Britain 60 0 8.7% 0.0% 13 Tanzania 12 1 1.7% 0.6%

4 Ethiopia 55 34 8.0% 21.3% 14 New Zealand 12 0 1.7% 0.0%

5 US 41 3 5.9% 1.9% 15 Sweden 12 0 1.7% 0.0%

6 Finland 37 0 5.4% 0.0% 16 South Africa 11 6 1.6% 3.8%

7 Soviet Union 27 0 3.9% 0.0% 17 Portugal 11 1 1.6% 0.6%

8 Australia 24 0 3.5% 0.0% 18 East Germany 11 0 1.6% 0.0%

9 Italy 17 4 2.5% 2.5% 19 Czechoslovakia 11 0 1.6% 0.0%

10 Morocco 16 13 2.3% 8.1% 20 Spain 10 4 1.4% 2.5%  
Table 4 - International rankings for the Marathon. 

 

 There is not space in this short report to discuss all of the factors in Table 1.  However, the reader can 

gain great insight from the book by McClusky, 2014 and related literature. Notably, performance in sprint races 

supports the US dominance.  
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III. The Logistic Model 
 Consider for a moment what kind of model, or function, is needed to model ultimate world records.  

Assuming we have a fixed population, possibly growing in size, the first thing needed is two asymptotes, one for 

the distant past and one for the distant future, which is the ultimate record.  Obviously, the record time is 

decreasing; so, the function must be decreasing.  For example, fitting a quadratic model to extant data will give 

a minimum but not an asymptote. Moreover, with a quadratic model, the distant past must be ignored 

completely. The term "fitting" is important because of native irregularities of data.  Smooth is important, with 

the requirement at least two realms persist.  The first is that up to some point records are decreasing at an 

increasing rate as training methods and populations increase, and afterward where the record decreases at a 

decreasing rate tapering toward the ultimate record. This indicates the existence of at least one inflection point.  

Numerous factors, some discussed above, can affect the record bound, and these serve to complexify the model.  

Such are discussed later in the paper.  With our basic requirements in place, decreasing over time, with 

concavity negative to some point with concavity positive afterward, we posit general criteria. 

 

Generalized logistic growth. The steps in making a model are routine: make a model with undetermined 

parameters, apply the data to determine the parameters. This, rather general description applies to most 

modeling, from mathematical to statistical.  In this paper,the focus is on the mathematical models of the logistic 

type.  

 The notion of logistic growth or decay can be generalized with simple conditions: Given two values 

, a logistic function is monotone with these values as asymptotes as the independent variable (usually 

time) tends to either  We call it strictlylogistic if it has but one identifiable inflection point, implying it has 

the classical sigmoidal shape.  In Fig. 1a we show both increasing and decreasing strictly logistic forms.  In Fig. 

1b we show how the data fits to the logistic curve in the women’s mile race. To model record race times, we 

will use the decreasing form, with the higher/larger asymptote referring to the distant past, and the lower/smaller 

asymptote referring to the distant future, i.e. the best possible record time. In most growth models, particularly 

biological growth, time begins at 0, and often the logistic function value is zero as well.  

 

 
Figure 1a. Increasing and decreasing logistic forms  

 

 
Figure 1b. Data and fitted curve for the 

Women’s mile 

 

 To generate models for record race times with dates requires at least a four-parameter model, the two 

asymptotes referencing record times, past and future, and two other parameters,  and , pertaining to record 

dates.  In many cases  is related to the mean or median of record dates and  is related to the slope of the 

curve at the inflection point which in turn is inversely related to the standard deviation.  All dates are given in 

decimal years since 1900.  

 A note about the upper asymptote, , is that in the distant past (prior to 1900 in most cases) there were 

limited official races and timing methods, and even more limited participation in them, and still more relatively 

constant training methods (practice a lot) and equipment. Such conditions persisted for decades or centuries.  

Only in the modern era have these factors been carefully examined and improved, together with a very large 

increase in the population of competitors.  Thus, we conjecture  to be this past relative "best" time.  Below we 

discuss other factors and how they related to record times.  Similarly, the record best time is dependent on the 

model and is at it very best an estimate, which we will show is often in error.  To the racing community, it is a 
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greater event to modelers to record a time exceeding best estimates than to merely record a world record.  Any 

new record implies the models will be reapplied to re-compute a new best estimate.  

While not necessary, logistic growth is often associated with a separable initial value problem of the form 

 
 If , and if , if  and is bounded on , if  called the 

rate, is nonnegative and bounded for all , and if the solution exists for all , it exhibits the generalized logistic 

behavior. In this paper,we focus on autonomous or time-invariant types, namely those where the rate  is a 

constant. The value of x where the ''( ) 0y x   is the inflection point.  The change point of concavity figures 

into most of the literature on the subject. The function is called the logistic driver. If we are to consider 

population as a factor, then  truly depends on time. Consider a few examples, some of which may be familiar. 

 

Example 1. We can view the prediction problem as something of a boundary value problem about how the 

curve approaches the limits, top and bottom. Each presents its own advantages and problems.   For example, 

with the standard logistic driver  where  the curve approaches both 

asymptotes with positive finite slopes.  The solution to the differential equation is    

 
As is apparent  and  The inflection point occurs at The 

examples shown in Fig. 1 are in fact logistic curves of this type. This is the logistic equation as originally 

discussed by (Verhultst, 1838). 

Example 2. Using the logistic function
2

2 ( ) cosL y c y   the slopes are zero at the asymptotes, 
2


 . 

Consider
2

2 ( ) cos ( )L y c ry s   . Then  we have  and when  we have 

 This gives   and . So,  

 

 
 In any event, the slopes are zero at the asymptotes, implying the limiting behavior of the solution to 

2' ( )y L y  converges somewhat slower at the asymptotes that do that for 1' ( )y L y , and this means the 

function is somewhat flatter in between.  For  the ultimate solution to the logistic ODE involves the arc 

tangent function, namely  

 

This example is similar to  on , which is entirely similar to 

and this in turn is essentially a beta distribution.  One problem with using such a 

logistic driver is the difficulty with inverting the resulting integral  This and 

the previous example suggest that finite probability distributions play a significant role in the description of 

generalized logistic functions.  Many of these are discussed in the literature (Johnson, Kotz, Balakrishnan,1995). 

 

Example 3. With the logistic-driver function note the slopes are vertical at the endpoints, 

.  This translates with the usual asymptotes  to  

 



Modeling World Record Predictions in Track Events 

DOI: 10.9790/6737-05060622                                www.iosrjournals.org                                                 12 | Page 

This forces the trajectory to approach the asymptotes in a finite time. In fact, for , the resulting solution is 

a sinusoid and thus has meaning it’s valid over only one half period and is constant (rsp.  and ) outside of 

.  To solve, compute  

 

Solve for  to get . This gives the solution  

 

but only for  Beyond this range, the solution takes on the asymptotic values.  This implies 

the asymptotes are reached in finite time. Both models, 2 ( )L y  and , have no previous appearance in the 

literature. Nor does the next. 

 

Example 4. This is an example not directly related to a differential equation of the type reviewed above.  Based 

on the normal density, we apply its cumulative distribution function  where 

  to achieve the functional form  

 
It is sigmoidal in the desired shape and the minus sign on  makes  decreasing, as needed.  Here  is 

related to , where  is the standard deviation of the record date, and  is related to their mean or median. In 

this and all cases, these provide starting points for the optimization problem.   As can be easily checked, the 

appropriate differential equation that generates the normal density is  

 
 To achieve the error function, we need a second integration, which implies we can convert this to an 

appropriate second order differential equation for the erf.  What is interesting about this model is that it is 

phenomenological but based on the (normal-type) nature of data.  It is also interesting that this method can be 

fitted to the data with remarkably small residuals.  However, we can construct the differential equation with a 

rate function 

 

Of course, this  is bounded.  Solving gives 

 

 

Now we have the built-in initial condition,  It is easy to check for this  the two appropriate 

asymptotes are determined  and  

 

 So far, the slopes at the asymptotes have been anti-symmetric.  That is  This implies 

the same rate and functional mechanisms apply both in forward and backward in time. This may not be the case, 

though it is not discussed in the literature.  For example, in some unusual races such as the 50K walk, there may 
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be so few racers that not only are races difficult to find but racers to compete with are so very few.  This can 

retard the lowering of records, in contrast to when there are multiple racers and events.  We consider a few 

examples of such logistic drivers. Simply put, the race population can result in different asymptotic rates at . 

 

Example 5. A fourth logistic function, which is applied only in the interval  and  is 

 
This function is negative on  and has different slopes at  and  

 

 
This gives different slopes at the asymptotes  Assuming the initial condition places , the 

trajectories remain in  Yet, the trajectories approach the asymptotes at different rates. To solve the ODE 

in his case we integrate (from the ODE  

)

 

 
This is difficult to invert, and we don’t use it here. However, we could still use the optimization, done implicitly. 

A typical graph looks like for  (e.g.  is shown in Fig. 2.  
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Figure 2. A non-symmetric logistic driver 

 

So, the solution of the ODE remains in  and is decreasing. A special case of  is a specific form of the 

beta distribution (online at https://en.wikipedia.org/wiki/Beta_distribution) 

 

The asymptotes are  and   If the initial condition is between these values, it remains so.  If  

and  is even, the solution remains between them.  If  the solution increases and if  the solution 

decreases.  This model has been used with success in the case by (Richards, 1959)  in modeling somatic growth.   

 

Recasting for decreasing measures, or race records for example, the model takes the form  

 
with solution 
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with asymptotes  and rate  Usually In general, when  the inflection point, i.e. the 

point where  occurs at  

 
This somatic growth model, converted to race record decrease, may be a reasonable model, because when 

 the growth actually stops, and likewise the race records decrease.  This means the best record is 

actually achieved with the exception of stochastic and other special effects, as discussed above. Of course, this 

introduces a five-parameter model, providing we optimize on all.  

Many other sigmoidal curves are available.  The Gompertz (Gompertz, 1825). curve is among them.  Also called 

the double exponential (Allen, 2017), it has the form 

 
Normally,  and  are positive constants and usually,  is called the growth rate. Under these conditions, 

 It satisfies the differential equation of the form  We can reform it 

as a decreasing function of the type we need (with horizontal asymptotes  by recasting it as  

 
 

The general logistic driver. Suppose  is a generalized logistic function, continuously differentiable with 

 never zero, and with asymptotes   Thus  has a differentiable inverse with domain  

Define  

 
Then the differential equation  

 
has solution   Of course, an initial condition needs to be specified.  For the error function case 

discussed above, it is required to find the inverse error function, , which is unknown in closed form. 

However, the process is to invert  to obtain  

 
with domain It can be shown that the resulting  has finite (nonzero) slopes at the endpoints, 

implying this logistic function resembles that of Example 1 insofar at endpoints are concerned.  However, the 

best least squares fit for the quadratic version rises more slowly toward the asymptote to the right , while 

both behave similarly in a neighborhood of the common inflection point. (See MathworldWolfram or 

Wikipedia, online.) 

 In physical terms, the unique inflection point implies that prior to it, the record times are decreasing at 

an increasing rate, i.e. the record speeds are increasing, and from thence on the record speeds increase at a 

decreasing rate. Many, many other models of growth or decay, some of which are above may be found in a 

comprehensive paper (Sakanoue, 2007).   

 

IV. The basic method for optimization 
 The method employed here is to use extant data and then fit it to the equation by adjusting the 

parameters using the method of least squares. The most elementary method is to make a large sample of possible 

parameters and determine which set fits the best.  This brings us to the notion of "fit, or precisely "best fit."  

Having four parameters gives this nonlinear problem its first challenge.  

Determining the parameters.Begin by looking at some data , , where  is the year the 

record occurred, and  is the record time.  Naturally, the record times decrease, with corresponding record 

speeds increasing.  With the logistic equation and the data, we compute the residuals  
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where   are weights, and with the problem to minimize 

 
This is accomplished using the method of steepest descent or other optimization techniques.  To review, for a 

given set of parameters  compute the next set by the equation 

 
When using data of given world records , it is apparent the logistic curve is only an 

approximation.  So, our task is to estimate the parameters.  This is achieved using a  least squares estimator.  

Compute 

 

 
where  are weights, and with the problem to minimize 

 
This is accomplished using the method of steepest descent. For a given set of parameters  

compute the next set by the equation 

 
where  is the gradient of  

 
 evaluated at  and  is a small parameter multiplier of the gradient indicating how 

much distance to travel.  This is the most basic version of the gradient descent method.  Other versions seek to 

minimize the residuals in the given direction using a variety of methods.   For several reasons, such enhanced 

method seems not to work well.  What we do here is modify this method using an adaptive scheme.  That is, if 

after several iterations the residuals increase, we then decrease  ( ) and revert to the previous iteration. 

In this way, we continue the iteration until we achieve a stopping point defined by  

 
where  is preassigned, usually about  or until the relative residual error 

 
where  is also preassigned, usually about .  Still another criteria for stopping is that  

 
When the starting values are close to the optimal values, we use the Barzilai-Borwein criterion, namely  

 
where  Usually, this converges (or diverges) rapidly.  

 In addition, we stop all iterations after about  iterations, indicating the convergence is 

very, very slow. What is the case is that the iterations are very sensitive to changes in  One form of our 

adaptive methods is to gradually increase throughout the iterations to maintain maximal changes.    
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Weighting the Records.  The first question about weights is how data should be regarded as important.  We 

might agree that early records say those dating prior to 1920 should not count as much as more recent records. 

That is, for example, the weights should be increasing by date.  However, there seems no clear method for 

assigning such weights.  In fact, doing so effectively allows almost any desired outcomes in determining best 

possible records.  In our calculations, we take the possible weights to be identical, all ones.  This implies each 

record counts equally over the time span of all records — with one exception.    

 By this, we first note all records have a time duration. We might also agree that the duration of a record 

should have an effect.  This means that a recent record that has sustained for several years should have a 

proportionally greater effect.  The longer the most recent record has been in place, the stronger should be its 

effect on the ultimate record.   This means that a given record that survives for say 10 years should have a 

weight of 10.  Call these longevity weights. Pictorially, this looks as in Fig. 3, where the horizontal values are 

dates past 1900.  

 
Figure 3. Men’s 5000 data with weights 

 

Another issue is the "now."  That is, do we extrapolate the data as given or extrapolate from now, as in 

today. The consequence is the current record, which may have been in place for a number of years, should be so 

weighted. Such factors are built into our calculations, ultimately applying there can be really no unique fastest 

time.  

Numerically, it does not really matter what acceleration method is used.  What matters is to minimize 

in the context the residuals.  The smaller they are, the better. We use two acceleration methods.  First, after a 

number of steps, we increase the step size,  by a small amount.  This permits a faster convergence rate.  If it is 

too great, the main criteria requires it to decrease by a factor, usually of two. Second, we adjust the iterates 

according to the gradient rates relative to the iterate values.  A few more notes about results are appropriate.1. 

The iterations normally converge slowly unless starting values are reasonably close to the optimal values. 2. The 

inflection point engenders possibly several optimal solutions.  Moreover, it is not always clear where the 

inflection point is.  This is data dependent. 3. High precision computations seem to be needed, normally about 

16 digits.  

In Fig. 4 we show this curve for the Men’s 5000-meter race. Normally residuals are very small.  

However, note that a linear regression also generates small residuals. Naturally, the usual question is whether 

small residuals imply the correctness of the model. The answer is usually no.  Small residuals provide indicators 

only. For this reason, we test the method in a couple of ways.  

 

Phenomenology. Another way to predict is to use the predictions over multiple years to predict or to make a 

secondary prediction.  That is, we can make predictions based upon predictions.  Another method is more 

statistical.  Roughly, what is done is to collect all the times over some period, compute their mean and standard 

deviation.  Simply take two standard deviations from this mean.  This could be a reasonable approximation to 

the best possible time.  Although this seems reasonable, it does not seem to work well, partly because the data, a 

tail of all top times, is not normally distributed. 
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Figure 4. Men’s 5000-meter race 

 

V. Testing the Predictions 

 Suppose the race data were logistic of type .  How can we test for this? One test is to examine the 

data from the onset of records, year-by-year, up to the date of current record. If the best predicted time remains 

more-or-less constant for each successive period, this gives assurance of the logistic nature of the fit.  Such a test 

was executed on true generated logistic data and the results were affirmative.  Less than half the actual number 

of values used (with the same dates as real data), in fact, regenerated the four parameters of the logistic curve. 

However, using actual data, this was usually not the case.  We show for a typically well-behaved race, the 

10,000-meter women’s race, calculations are not exact, but estimates are reasonably consistent over time.  For 

other races, variation is wide, indicating the logistic premise may be inaccurate.   In Table 5 we see how the 

estimated final race times are computed using only partial information beginning from the onset of recorded 

records to the first year of estimation in about 1989.  The serial number,  gives the number of data points used 

in the calculation, .  The highest value, 37, is the total number recorded records. All times 

are given in minutes and dates in years.  The year of inflection is basically when at the modeled race date has 

value (i.e. time)  

 For the most part, the predicted best time for all was about 30-40 seconds from the projected best using 

all data. For example, using just the first 30 data point, the best projected time is 26.89 minutes, about 

seconds.  Currently, at this writing, the projected best time is about 10 seconds less 

than the current record.  It is interesting to note that visually, the inflection point was hardly noticeable 

throughout. Note also, the computations are rather consistent in its determination, and note as well the distant 

past asymptote is reasonably steady.  

 Processing this data a bit more, we observe the average decrease in projected best time over the past 

eleven new records, since 1989, is 5.2 seconds while the average decrease in the actual record is 5.1 seconds.  

This appears to confirm the model is "trying" to predict what is actually happening.  

 

Serial  Date

 Projected 

Best Time

 Current 

record

 Year of 

Inflection  Residuals

Upper 

Asymptote

27 1989.6 26.99 27.14 1954.5 0.651 30.76

28 1993.5 27.00 27.13 1954.4 0.652 30.76

29 1993.5 26.95 26.97 1954.6 0.665 30.78

30 1994.6 26.89 26.87 1954.9 0.694 30.8

31 1995.4 26.80 26.73 1955.2 0.759 30.85

32 1996.7 26.71 26.63 1955.6 0.836 30.89

33 1997.5 26.60 26.52 1955.9 0.938 30.95

34 1997.6 26.49 26.46 1956.3 1.040 31.02

35 1998.4 26.37 26.38 1956.7 1.153 31.1

36 2004.4 26.24 26.34 1956.9 1.204 31.2

37 2005.7 26.12 26.29 1957.1 1.243 31.3  
Table 5. Women’s 10,000-meter race projected best time 
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 Another method for testing the logistic nature of the data is to apply least squares to model the efficacy 

of actual differential equation. Call this the differential method. As above, we consider the original differential 

equation,  We have the data . Using the data, estimate the 

derivatives, called , and make the fit to minimize the residual for 

 

 overall variables, and  This should generate approximate asymptotes,  and the rate factor, 

.  In fact, when using true logistic data, this scheme does find the variables.  But in general, are the residuals 

small? Are the variables and  consistent with the full nonlinear optimization?  Again, if we use true 

logistic data, this method accurately, almost exactly reproduces these parameters.  For actual, race data, the 

results are not spectacular, but when this method works, the full nonlinear optimization works well. Applying 

this to the data for the 10,000 meter women’s race yields the quadratic 

 
which approximates the values to the output from the general nonlinear model given above.  Another method, 

call it the integral method, is similar in its nature.  We compute the residual 

 
 where the right-side integral is computed numerically using the data, and the left side integral simply 

takes a difference, .  Simply minimize the residual over the constants  and , as above.  For the 

3000 meter men’s race, this direct integration of the differential equation gives 

 
 with residual 0.04.  These asymptotes compare favorably with 8.9 and 7.25 which come from 

optimizing the logistic fit model. The approximation is not that good, but it does reveal a basic underlying 

logistic structure.  One problem with the differential and integral methods is that derivatives or integrals of must 

be approximated, and this can generate a substantial error. Two methods for computing the right-side were used, 

a Taylor expansion approximation and the quadratic interpolation of each successive triple of data values.  

Different asymptotes resulted, though both determined potential asymptotes.  For other data samples, the 

―asymptotes" became complex, indicating little or no logistic behavior.  

Normally, we use the first method over either the differential or integrals method, as it better smooths data, 

avoiding the difficulties of computing accurately derivatives over rather large -axis spans, and integral 

approximation errors.  As well, note none of the methods are affected by normalizing the data as we are 

computing with high precision 

 The principle point of these "tests" is that the data often does not reveal even a trace of a logistic 

nature.  Indeed, the data fits well in many cases to a linear model, from which no asymptotes are possible. 

Fitting the data to a quadratic model can reveal a lower asymptote, but there seems little more than a 

phenomenalistic motivation for so doing.    

 

VI. The Predictions. 
 We consider several races and give predictions based on the four models, plus the difference method.  

One important note is that times are given in seconds and minutes.  For these, most improvements are given in 

seconds even when the data is given in minutes. Only for the Marathon are basic units in hours, and for these 

improvements are given in minutes.  In all other cases, the record times are in minutes or seconds, but the gain is 

always reported in seconds.  In some cases, note the predicted value is negative. This means the predicted record 

was greater than the current record. Though rare, it does happen, and usually, implies data with a variance 

against the imposed logistic nature.  Overall, inflection points (the year) are relatively distant in the past.  

\NOTE: To obtain this data, go to Wikipedia and search xxx meter progressions or go to 

https://www.iaaf.org/records/toplists/sprints/100-metres/outdoor/men/senior 

 A few other points require note.  For the integral test, it is mentioned only whether the roots are real, 

indicating a logistic nature to the raw data, or complex, indicating a non-logistic nature to the data.  It is 

important to note, the logistic models, here and in other papers, use four parameters, and there is the best fit 

even for non-logistic data. Note also two rows pertain to the logistic method.  The first is the more pure form, 

where the optimization seeks all four parameters simultaneously. Here the results can appear wrong. Notice also 

for some methods the time to gain is negative.  This indicates the model predicts a ―best‖ time greater than the 

current record time.  It happens.  For the optimizations, the same starting values were used for all methods.  

https://www.iaaf.org/records/toplists/sprints/100-metres/outdoor/men/senior
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The first set of records, Table 6, is about the most renown of all races, the Marathon. For the men’s data, since 

the record dropped so precipitously in the early 20
th

 century, we have deleted the first ten records.  

 

Method Race n

Predicted 

Record

Current 

Record

Minutes 

to gain

Speed - 

Current 

(m/s)

Speed - 

Predicted 

(m/s)

Upper 

Asymptote Inflection Residuals

Logistic  Men's Marathon 37 2.064 2.049 -0.897 5.720 5.678 2.587 1953.0 0.000

Logit_alt 37 1.952 2.049 5.847 5.720 6.005 2.674 1955.0 0.001

Arctangent 37 1.973 2.049 4.572 5.720 5.941 2.645 1955.3 0.016

Sinusoid 37 2.043 2.049 0.360 5.720 5.737 2.561 1956.6 0.034

Errror fcn 37 2.039 2.049 0.587 5.720 5.747 2.566 1956.5 0.024

Men's Marathon --- Difference method prediction 2.0285.  Minutes to gain 1.239.  Integral test - real roots

Logistic Womens Marathon 37 2.087 2.257 10.23 5.193 5.617 22.530 1795.9 0.064

Logit_alt 37 2.178 2.257 4.74 5.193 5.382 3.803 1971.4 0.006

Arctangent 37 2.175 2.257 4.92 5.193 5.389 3.778 1971.3 0.110

Sinusoid 37 2.171 2.257 5.14 5.193 5.398 3.752 1971.7 0.239

Errror fcn 37 2.270 2.257 -0.75 5.193 5.165 3.638 1971.9 0.146

Women's Marathon --- Difference method prediction 2.2160. Minutes to gain 2.45.  Integral test - real roots  
Table 6 – Predictions for the Marathon 

 

 For the 100-meter race, results in Table 7 are mostly consistent, but for the 100-meter women’s sprint, 

the integral test fails.  Indeed, the data is terrible, almost linear, from a logistic viewpoint. However, almost all 

the predictions reveal there is very little to gain for all the methods. Clearly, the logistic method produces an 

outlier. 

 As in all the tables, important features to note are the residuals and the consistency of the inflection 

points.  It would be possible to average the gains, but difficult to interpret what it might mean.  For the 200-

meter race, Table 8 note the arctangent method simply gives completely unrealistic results for the men. The 

results for the women seem much more consistent among the methods.  For the 400-meter race, results seem to 

sustain a pattern, Table 9. When projecting with the full four parameter logistic model, odd results obtain.  

However, the two-stage optimization appears to give more consistent results. This is sustained in Table 10 for 

the 800-meter race. Table 11 shows the results for the 1500-meter race, which is akin to the mile race. These 

results are the most consistent across all methods, but note relatively wide variations in the ―second to gain‖ 

column. In Table 12, for the 10,000-meter race, reveals there is much time for improvement.  Finally, in Table 

13, in the 5,000-meter race, the results show that for men the integral test fails but passes for the women. In 

most cases, the date of inflection for men precedes that for the women, indicating men have been competitively 

somewhat longer than women. 

 It seems the longer distances yield more stable and consistent results. However, note that some races 

seem complete, in the sense that predictions are only slightly smaller than extant records, while the longer races 

give much more latitude, even considering percentages. As already indicated, when the inflection points vary, 

this is a signal that results may be unreliable. In sum, the model is the model.  Listening to what it informs us is 

important to reflect on the model itself. All models, viz-viz, how the logistic driver approaches the asymptotes 

have been considered, the classical logistic method with finite slopes, the arctangent model with zero slopes, and 

the sinusoid model with infinite slopes.  

Method Race n

Predicted 

Record

Current 

Record

Seconds 

to gain

Speed - 

Current 

(m/s)

Speed - 

Predicted 

(m/s)

Upper 

Asymptote Inflection Residuals

100 meter men --- Difference method prediction 9.4462 Seconds to gain 0.1338

logistic  100 meter men 78 9.5495 9.58 0.0305 10.438 10.472 12.5529 1881.7 0.0038

logit_alt 78 9.1023 9.58 0.4777 10.438 10.986 11.1318 1956.0 0.005

arctangent 78 9.3246 9.58 0.2554 10.438 10.724 10.9049 1955.8 0.3625

Sinusoid 78 9.4874 9.58 0.0926 10.438 10.540 10.7071 1958.4 0.3895

Errror fcn 78 9.4886 9.58 0.0914 10.438 10.539 10.7079 1958.3 0.3811

100 meter men --- Difference method prediction 9.4462 Seconds to gain 0.1338. Integral test - real roots

logistic  100 meter women 42 5.6603 10.49 4.8297 9.533 17.667 32.0942 1124.4 0.2569

logit_alt 42 9.975 10.49 0.515 9.533 10.025 14.2891 1929.5 0.0749

arctangent 42 10.2774 10.49 0.2126 9.533 9.730 13.9399 1930.0 2.594

Sinusoid 42 10.4068 10.49 0.0832 9.533 9.609 13.7222 1931.4 3.2221

Errror fcn 42 10.4179 10.49 0.0721 9.533 9.599 13.717 1931.5 3.0703

100 meter women --- Difference method prediction 10.2663 Seconds to gain 0.2237. Integral test - complex roots  
Table 7 – Predictions for the 100-meter race 
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Method Race n

Predicted 

Record

Current 

Record

Seconds 

to gain

Speed - 

Current 

(m/s)

Speed - 

Predicted 

(m/s)

Upper 

Asymptote Inflection Residuals

Logistic 200 meter women 19 20.4939 21.83 1.3361 9.162 9.759 22.8722 1899.8 0.051

Logit_alt 19 20.7385 21.83 1.0915 9.162 9.644 22.407 2067.5 0.0096

Arctangent 19 2230.759 21.83 -2208.929 9.162 0.090 -2187.6183 2066.8 0.1816

Sinusoid 19 21.7035 21.83 0.1265 9.162 9.215 -15603.026 -13509.8 0.3261

Error fcn 19 15.7509 21.83 6.0791 9.162 12.698 40.1405 -1184.8 0.1816

200 meter women --- Difference method prediction 21.7004. Seconds to gain 0.1296. Integral test: real roots.

Logistic 200 meter men 25 19.4512 19.19 -0.2612 10.422 10.282 20.728 1967.2 0.0188

Logit_alt 25 18.2501 19.19 0.9399 10.422 10.959 21.786 1975.3 0.0403

Arctangent 25 18.6231 19.19 0.5669 10.422 10.739 21.4278 1974.1 0.9143

Sinusoid 25 19.0644 19.19 0.1256 10.422 10.491 20.9414 1975.2 0.9727

Error fcn 25 19.0983 19.19 0.0917 10.422 10.472 20.9341 1974.0 0.8844

200 meter men --- Difference method prediction 18.9492. Seconds to gain 0.2408. Integral test: real roots.  
Table 8 – Predictions for the 200-meter race 

 

Method Race n

Predicted 

Record

Current 

Record

Seconds 

to gain

Speed - 

Current 

(m/s)

Speed - 

Predicted 

(m/s)

Upper 

Asymptote Inflection Residuals

Logistic 400 meter men 24 42.6117 43.03 0.4183 9.296 9.387 48.498 1950.7 0.096

Logit_alt 24 40.9115 43.03 2.1185 9.296 9.777 50.180 1951.1 0.121

Arctangent 24 41.1719 43.03 1.8581 9.296 9.715 49.907 1951.1 2.410

Sinusoid 24 42.6882 43.03 0.3418 9.296 9.370 48.224 1952.5 2.400

Error fcn 24 42.6335 43.03 0.3965 9.296 9.382 48.268 1952.6 2.301

400 meter men --- Difference method prediction 42.5385. Seconds to gain 0.4915. Integral test: real roots

Logistic 400 meter women 26 25.9144 47.6 21.6856 8.403 15.435 154.586 1829.7 1.320

Logit_alt 26 45.2233 47.6 2.3767 8.403 8.845 59.875 1966.2 0.605

Arctangent 26 43.9827 47.6 3.6173 8.403 9.095 61.242 1965.9 16.346

Sinusoid 26 47.1143 47.6 0.4857 8.403 8.490 57.612 1966.8 15.864

Error fcn 26 47.0837 47.6 0.5163 8.403 8.496 57.646 1966.8 16.253

400 meter women --- Difference method prediction 46.9541. Seconds to gain 0.6459. Integral test: complex roots  
Table 9 – Predictions for the 400-meter race 

 

Method Race n

Predicted 

Record

Current 

Record

Seconds 

to gain

Speed - 

Current 

(m/s)

Speed - 

Predicted 

(m/s)

Upper 

Asymptote Inflection Residuals

Logistic  800 meter women 24 1.1861 1.9583 46.3361 6.809 11.242 7.173 1534.6 0.0048

Logit_alt 24 1.8611 1.9583 5.8345 6.809 7.164 2.6349 1950.0 0.0013

Arctangent 24 1.7787 1.9583 10.7797 6.809 7.496 2.7287 1949.0 0.0326

Sinusoid 24 1.9392 1.9583 1.1468 6.809 6.876 2.5351 1952.3 0.0311

Error fcn 24 1.9364 1.9583 1.3176 6.809 6.886 2.5387 1951.9 0.0321

800-meter-women --- Difference method prediction 1.9261. Seconds to gain 1.9350. Integral test: Complex roots

Logistic  800 meter men 24 1.6718 1.6817 0.5942 7.929 7.976 1.9185 1944.9 0.0001

Logit_alt 24 1.5988 1.6817 4.9709 7.929 8.340 1.9588 1953.5 0.0002

Arctangent 24 1.6142 1.6817 4.0456 7.929 8.260 1.9421 1952.8 0.0031

Sinusoid 24 1.7064 1.6817 -1.4844 7.929 7.814 1.7896 1941.4 0.1560

Error fcn 24 1.6673 1.6817 0.8633 7.929 7.997 1.8838 1954.3 0.0031

800-meter-men --- Difference method prediction 1.6681. Seconds to gain 0.8124. Integral test: real roots  
Table 10 – Predictions for 800-meter race 
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Method Race n

Predicted 

Record

Current 

Record

Seconds 

to gain

Speed - 

Current 

(m/s)

Speed - 

Predicted 

(m/s)

Upper 

Asymptote Inflection Residuals

Logistic 1500 meter men 38 3.3730 3.4333 3.6225 7.282 7.412 4.0419 1950.2 0.0003

Logit_alt 38 3.2623 3.4333 10.2625 7.282 7.663 4.1267 1952.6 0.0004

Arctangent 38 3.2579 3.4333 10.5274 7.282 7.674 4.1312 1952.4 0.013

Sinusoid 38 3.4000 3.4333 1.9971 7.282 7.353 3.9697 1954.2 0.014

Error fcn 38 3.3995 3.4333 2.0325 7.282 7.354 3.9706 1954.0 0.0136

1500 meter race - men --- Difference method prediction 3.3894. Seconds to gain 2.6377. Integral test: real roots

Logistic 1500 meter women 27 3.6347 3.8345 11.9873 6.520 6.878 6.2907 1936.0 0.0088

Logit_alt 27 3.6456 3.8345 11.3347 6.520 6.858 5.5705 1950.5 0.0091

Arctangent 27 3.4526 3.8345 22.9143 6.520 7.241 5.7826 1950.2 0.2757

Sinusoid 27 3.7830 3.8345 3.0899 6.520 6.609 5.3723 1951.9 0.2214

Error fcn 27 3.7861 3.8345 2.9021 6.520 6.603 5.3692 1951.9 0.2422

1500 meter women --- Difference method prediction 3.7860. Seconds to gain 2.9115.  Integral test: real roots  
Table 11 – Predictions for the 1500-meter race 

 

Method Race n

Predicted 

Record

Current 

Record

Seconds 

to gain

Speed - 

Current 

(m/s)

Speed - 

Predicted 

(m/s)

Upper 

Asymptote Inflection Residuals

Logistic 10000 meter men 37 26.1348 26.2922 9.4421 6.339 6.377 31.2337 1957.5 0.0321

Logit_alt 37 24.9823 26.2922 78.591 6.339 6.671 32.5246 1956.5 0.0378

Arctangent 37 25.0404 26.2922 75.1063 6.339 6.656 32.4514 1956.3 1.1396

Sinusoid 37 26.0413 26.2922 15.0521 6.339 6.400 31.2814 1958.3 1.3714

Error fcn 37 26.0387 26.2922 15.2063 6.339 6.401 31.2856 1958.1 1.2472

10000 meter men --- Difference method prediction 26.0542. Seconds to gain 14.2782. Integral test: real roots.

Logistic 10000 meter women 37 26.1224 26.2922 10.1846 6.339 6.380 31.3007 1957.1 0.0336

Logit_alt 37 24.9836 26.2922 78.5145 6.339 6.671 32.5289 1956.7 0.0383

Arctangent 37 25.0278 26.2922 75.8628 6.339 6.659 32.4718 1956.4 1.1854

Sinusoid 37 26.0416 26.2922 15.0349 6.339 6.400 31.2867 1958.4 1.4152

Error fcn 37 26.0395 26.2922 15.1586 6.339 6.401 31.2904 1958.2 1.3024

10000 meter women --- Difference method prediction 26.0542 Seconds to gain 14.2782. Integral test: real roots  
Table 12 – Predictions for the 10,000-meter race 

 

Method Race n

Predicted 

Record

Current 

Record

Seconds 

to gain

Speed - 

Current 

(m/s)

Speed - 

Predicted 

(m/s)

Upper 

Asymptote Inflection Residuals

Logistic 5000 meter women 22 14.380 14.186 -11.652 5.874 5.795 16.144 1981.9 0.0124

Logit_alt 22 13.492 14.186 41.623 5.874 6.176 17.109 1982.4 0.0299

Arctangent 22 13.768 14.186 25.082 5.874 6.053 16.810 1982.1 0.4522

Sinusoid 22 14.091 14.186 5.689 5.874 5.914 16.433 1983.1 0.6253

Error fcn 22 14.102 14.186 5.049 5.874 5.910 16.431 1982.8 0.5218

5000 meter women --- Difference method prediction 14.0007. Seconds to gain 11.1092. Integral test: real roots

Logistic 5000 meter men 26 11.147 12.623 88.526 6.602 7.476 17.502 1917.6 0.0157

Logit_alt 26 11.992 12.623 37.818 6.602 6.949 14.548 1974.2 0.0068

Arctangent 26 11.835 12.623 47.249 6.602 7.041 14.712 1974.0 0.1823

Sinusoid 26 12.495 12.623 7.629 6.602 6.669 13.997 1975.2 0.1830

Error fcn 26 12.493 12.623 7.767 6.602 6.670 14.001 1975.0 0.1896

5000 meter men --- Difference method prediction 12.5025. Seconds to gain 7.1988. Integral test: complex roots  
Table 13 – Predictions for the 5000-meter race 

 

VII. Conclusions. 
In total, we have used seven methods to predict ultimate world records, the logistic, arctangent, 

sinusoid, and error function, plus the differential (not reported) and integrals methods, and finally, the simplistic 

different method. From the results and previous discussions, we see the prediction problem is rather difficult, 

and certainly not uniform.  Not only as to which model to use, the race and therefore predictions themselves 

have evolved.  In addition, the point plots of the data often do not even appear logistic, and many fail the logistic 

integral test, as well. Absent here is a collection of tables of record predictions using various weight schemes – 

to be reported later.  

If a new event was created, say the 300-meter sprint, we would see a very rapid decline in records until 

a near optimal level was reached and most subsequent results would range only slightly smaller in race time. 
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The might be an exponential decline, ala Bertanffly curve adjusted to decrease, and thus having no distant past 

asymptote (Bertanffly, 1957). This is because training methods and most other factors already mentioned have 

stabilized in the past decade or so.  The methods above may not work at all for predictions of best possible as 

there is no possibility of a logistic evolution of the records.  This suggests the difference method or even 

statistical methods may be better. 

Currently, the best we can give is a range of possible ultimate records are all viable, depending on 

methods used and of course the myriad of possible future-based effects.  Predicting a future with numerous 

unknowns is at best risky. 
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