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Abstract: The Sexually transmitted diseases are the major health problem along with other diseases like cancer 

and diabetes. The present study involves obtaining of the 44 molecular drug targets of the STD which have been 

predicted and launched at www.bioresearch asia.com. The targets in this site are mainly predicted by the 

comparative genomics method, where the genomes of the STD bacteria are compared with the human to obtain 

only the unique bacterial molecular targets relative to human. The main objective of the present study is to find 

the natural compound that shows high binding affinity to the drug targets of the Sexually transmitted diseases. 

The methodology includes creation of the library of the natural compounds collected from various literature 

sources.  The molecular targets of the STD organisms are docked with the natural compound to know the 

binding affinity of the ligand with their respective drug targets by using autodock vina and the admet-Tox 

properties of the compounds were also studied along with the antibiotic as a reference drug. The studies 

indicate certain compounds showing affinity to the targets of the STD: they include compounds such as 

hypericin, plantanoside, silybin, procyanidin, plumbagin, anonaine and withaferin A.  
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I. Introduction 
For several reasons such as the expensive dead ends, alarming increase in the rise of multiple 

resistances in the bacteria and costly time consuming experimental methods has shifted the drug discovery to the 

genomics approach. One of such approaches is the subtractive genomics that systematically identifies the drug 

targets by differential genomics [1].  The comparative genomic approach has also been applied to various 

organisms such as Helicobacter pylori) [2], Toxoplasma gondii [3], Vibrio cholera [4], Mycobacterium leprae 

[5], Borelia burdorferi [6] and many more studies are underway. Natural compounds of the drug targets of 

Ureaplasma urealyticum has been studied [7]. In the present study natural compounds for other bacteria causing 
the STD have be focused. The drug targets of the STD organisms are available from its source www.bioresearch 

asia.com [8]. The targets were used to find the natural compounds showing high binding affinity by virtual 

screening. 

 

1.1 Molecular drug targets:  

The identification of the molecular drug targets is the crucial steps in the drug discovery process. The 

molecular target should play a crucial role in the metabolic reactions. Other features of the targets are: it should 

be druggable, previously unknown and should show binding properties to the drug molecules. Upon binding to 

the drug molecules it should bring the positive clinical effect. The molecular targets are much larger when 

compared to the drug molecules and possess the binding site called the active site. Target should modify the 

disease state, physiology as well as the pathology of the disease. The modifications should ultimately result in 
the disappearance of the disease and its associated conditions. Other important properties of the targets are the 

availability of its PDB structure; assayability; widely distributed in the body; it should act as a target disease 

biomarker. Huge amount of money is spent by pharmaceutical industries to identify the drug targets. Studies 

indicate 483 drug targets [9] which were further reduced to 120 based on the lipinskis rule of five [10]. 6000 

drug targets are listed in the drug bank database which was narrowed down from the previous 14000 targets 

[11]. 218 drug targets mainly belonging to enzyme family, receptor family and the ion channel family were 

identified by Imming [12]. The therapeutic drug target database consists of the successful drug targets [13]. The 

important drug targets are the hydrolases, GPCRs, voltage gated ion channels.  

The pharmacophores of the catalytic site of the targets can be studied with an aim to find the drug 

molecules that bind to various other targets [14]. Several factors help in identification of the drug targets, one 

factor is the  homology between the target and the host proteins should be minimum or should be non- existent 

[15]. One of the important methods for identification of the drug targets are the biochemical methods, genetic 
interactions and computational interference.  The insilico methods primarily are based on the structure, ligand 

and the profile. The major portions of the human drug targets belong mainly to the receptors (GPCRs) and the 

data is available drug bank database [16]. The drug targets bind to either the natural compounds or the presently 

available therapeutics. The proteins having the protein folds have the affinity for the drug –like small molecules. 
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Localization studies indicate that 60% of the drug targets are membrane- bound and 92% of them share 

similarity with the PDB structures [17]. Interaction of the drug molecules to the binding site of the drug targets 

results in the dominos effect. The inter-molecular interactions involve primarily the non- covalent forces. The 
functional groups modify the electronic properties of the targets; as a result they have the potential to block the 

metabolic pathway or restraint the conformation. Different methods have been used to predict the drug targets 

interaction based on QSAR [18], reverse docking [19], [20], [21]. The interactions can also be interpreted by, 

side effect similarity, drug based similarity, and target based similarity, based on interpretation of the networks 

[22], [23]. 

 

1.2 Drug molecules: 

 The pharmaceutical drug is derived from the Greek word ‘pharmakeia’. This means making 

medications and vitamins. The drug molecule has the effector function to change the activity and the function of 

the drug targets. Modulatory functions include either enhancement or suppression of the activity of the protein. 

Pharmacophore constitutes the hydrophobic centre, H-bond acceptor and H-bond donor as a pharmacophoric 
points for better interaction with the targets.  

There are different ways in which the drug or the pharmaceutic drugs are classified. In 1970s 

classification of the drug was mainly focused on the primary elements, functional groups and the class of the 

organic substance. Recently the classification of the drug is focused on the chemical constitution and the 

structure. A number of databases are now available with an objective of creating a substance library and 

understand the molecular recognition. At present the system of classification of the drug is the ATC system, 

based on the organ or the system on which the drugs act [24]. Drugs may be classified based on whether they act 

on viruses, bacteria or the parasites. Drugs may also be classified based on the condition of the health and is 

named as antipretic, antimalarial, analgesics etc. Drugs are also classified based on the mechanism of action. 

The drug –like molecules have acceptable ADME and toxicity properties. The medicinal substance should be 

optimized for the drug-like properties [25]. Physiochemical properties such as absorption, lipophilicity, 

solubility, etc. are essential for determining the drug-like properties. Absorption efficiency of the drug depends 
on the permeability and lipophilicity. The distribution of the drug mainly depends on the activity of the 

transporter proteins [26]. The dosage regimen is primarily dependent on the binding affinity of the drug 

molecules to the plasma proteins and PPA is determined by the lipophilicity which is mainly based on the 

calculation of the logP. Several programs have been developed to predict the logP value of the drug molecules 

[27]. The oral absorption is determined mainly by the solubility of the drug [28]. Molecular size of the drug 

limits the oral obsorption and larger size molecules undergo biliary excretion and do not cross blood brain 

barrier. Databases are available to give information about the ligands such as the Therapeutic drug Target 

Database (TTD) [29]. Pubchem of the NCBI provides the comprehensive data regarding the properties of the 

natural as well as the synthetic drugs. The drug likeliness of the drug molecules can be assessed by the Lipinski 

rule of five where drug having good absorptive and permeability properties should have MW<500, H-bond 

donor<5, LogP <5 and H-Bond acceptor<10.The drug molecule causes the bactericidal activity mainly by 
inhibition of the cell-wall as may be observed in the β-lactams. Drugs like the fluoroquinolones exhibit anti-

bacterial activity due the inhibition of the nucleic acids [30]. Drugs like aminogylcosides, macrolides, ketolides, 

hiscosamides, streptogramins, oxazolidinones and glycylcyclines cause an inhibition of the protein synthesis. 

Drugs like daptomycin cause a change in the membrane potential and ultimately lead to the death of the bacteria 

[31]. 

Natural compounds are the best starting materials in the drug discovery process [32] and new drugs can 

be built from these molecules by using various computational techniques [33]. The other sources of the raw 

material includes microorganisms and marine invertebrates whose body constituents (metabolites) are tested for 

bioactivities. Many of the drugs that are now available are directly or indirectly derived from the natural 

compounds.  

 

1.3 Comparative genomics: 
 Pathogens differ from genome size and number which reflects the environment in which the organism 

is living in an ecological niche. The free living organisms are armed with the large genome size as they live in 

diverse environmental conditions. The obligate parasites on other hand have smaller genome size since most of 

the nutrients are taken from the host. Many interactions determine the virulence properties of the pathogen 

before the infection is rooted; these factors destroy the host tissues. Some factors help in persistence of the 

pathogen in the host environment. Currently many of the researchers are focusing on the finding of the 

pathogenicity islands in the bacteria and the factors that involve in signal transduction to outwit the immune 

system [34].  The pathogenicity island should be present in the pathogenic but absent in the non- pathogenic 

bacteria. Genome analysis can also provide clue regarding change in the surface antigens. The region of the 

bacterial chromosome showing high rate mutations called the contingency loci have been identified [35]. The 
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size of the contingency locus may range from 1Kbps to 8 Kbps. In its most basic sense comparative genomics 

can be performed by comparing the protein sequence with another in the database. The availability of the 

complete genomic sequence of various organism enable scientist to compare between the genomes for making 
the large scale observation and setting hypothesis. In 1995 the complete genomes of the, Haemophilus influenza 

and Mycoplasma genitalium were deciphered. The important requirements for the comparative genomics are the 

huge relevant data and the computational tools for implementing and analyzing the data stored. Comparative 

genomics between the pathogenic and the non-pathogenic once can reveal the region of the genome that is 

responsible for the pathogenesis. This in fact is true even when comparing between two organisms at the sub 

species level [36]. The cross genome similarities that arise from the comparative genomics are useful in the 

evolutionary studies and functional analysis of the proteins at a higher level. One of the best tools necessary for 

the functional analysis is the COGS. One of the best ways to use the functional information stored in the 

genome is to transfer the functional information from a well characterized genome to the less characterized 

which is enabled by the COGS. 

The drug discovery process is increasingly shifting from the conventional to the genomic approaches. 
Subtractive genomics is one such the differential comparative genomics approach that compares the genome of 

the pathogen with that of humans. The pathogens suitable for the subtractive genomics are those that are 

resistant to the antibiotics and for which the vaccines are not available or difficult to design. Organisms that are 

fastidious to grow and difficult to subject to experimental approaches are also suitable for the subtractive 

genomics approach. Availability of the complete genomes of the pathogens provides an opportunity for the data 

mining and derives useful data such as the drug targets.  One of the criteria for mining the new drug targets is to 

find the genes that are non- homologous to the human proteins. At the same time they are critical or essential for 

the survival of the bacteria. These are the various reasons why the scientific community needs to focus on the 

pathogenic bacteria. Resistance has been exhibited by many organisms such as Streptococcus [37], 

Enterococcus [38] and Pseudomonas [39]. Resistance lead to ineffectiveness of the antibiotic treatments and 

may have critical consequences in the ill patients. Almost all the bacteria shows resistance to most of the 

antibiotics, but of main concern is the bacteria being initially susceptible becomes resistant later. The mode of 
action of antibiotics is mainly centered on blockage of cell-wall synthesis, protein synthesis, nucleic acid 

synthesis and the metabolic pathway.  However, there are several mechanisms due to which the bacteria 

counteract the antibiotics. They include; production of the antibiotic degrading β-lactamase, presence of efflux 

pump to remove antibiotics, change in structure of cell-wall, genetic mutation that result in the lesser number of 

pores  in the outerlayer and  acquiring of the antibiotic-resistant genes.  The acquisition of the antibiotic-

resistance genes enhances the factors mentioned above in order to exhibit the resistance. Non-homology with 

the human protein provides the opportunity for further analysis and such proteins are good drug target 

candidates. Homologous sequence indicated by higher sequence identity shows common ancestry. While the 

low sequence identity indicates the occurrence of divergence long back [40]. Sequences of 20-30% identity is 

non- homology [41], [42] however sequences above 35% do not always predict homology. 

Essential genes are the one necessary for the basic function of the pathogens and mutations in such 
genes lead to the death of the bacteria. The essential genes are more conserved in the evolution and evolve 

slowly when compared to the non- essential genes [43]. Most of the essential genes are studied with an aim to 

find the drug targets. Since experimental methods are time consuming and costly, insilico methods are used for 

finding the drug targets. Now the experimental essential genes are stored in the database for comparison with 

the query sequence to predict the essential gene insilico [44]. Functions encoded by the essential genes are 

critical for all cells and some of the basic functions are same all the cellular life on earth [45]. 

Different proteins are situated in different location of the cell and knowledge of the subcellular 

localization of proteins provides clues regarding the function of the protein [46]. The membrane associated 

proteins trigger humoral branch of immune system. Therefore the membrane proteins are ideal vaccines drug 

targets. Triggering of the immune response of the surface proteins have been studied in various organism such 

as Staphylococcus [47], Plasmodium falciparum [48] and E. coli [49]. 

Finding the metabolic pathway of the essential genes is a step further in refining the approach involved 
in the mining of the drug targets among the huge amount of the data. The good drug targets will be involved in 

the unique pathway. Since the unique pathway is present only in the pathogen and not in human, such targets are 

less likely to cross react with the human proteins. 

The drug targets thus identified can be further be subjected to computational tools such as structure 

prediction and the identification of those natural compounds that show best binding affinity  to the predicted 

drug targets. 

 

1.4 Molecular recognition:   

Receptors contain active site that binds to the ligand through the intermolecular interactions. Docking 

forms the simulation process of the molecular recognition between the protein and ligand. Natural compounds 
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suitable for the docking can belong to two categories first one is the natural compounds selected based on the 

lipinski’s rule of five and the other is the one based on the literature search where the natural compound is 

known to have the anti-microbial activity. The binding of the protein to the ligand is analogous to the fitting of 
the key to the lock due to the complementary structure between the ligand and the active site of the protein. The 

other theory is the ‘induced fit’ where the proteins and the ligands make adjustment in their conformation to 

result in the best electronic fit [50]. Thus the optimized conformation between ligand and the targets (here 

proteins) results in the orientations between them, showing minimum energy. Screening has also been applied to 

the homology modeled protein and has proven to be a success in several cases [51], [52], [53].   

 

II. Methodology 
Putative drug targets of the STD pathogens by differential subtractive genomics have been reported. 

The 3-D structures of the putative drug targets were retrieved from ‘Sexually transmitted diseases putative drug 
target database’ (available at http://biomedresearchasia.org/ ) and saved as the .pdb files.  The drug targets files 

obtained are further used for the virtual screening. The 3-d structure of the protein was then analyzed to find the 

proportion of amino acids in the allowed and the additionally allowed regions. 

 

2.1 Natural compound library preparation: 

Data regarding 150 natural compounds are collected from various literature sources and these 

compounds are known to have the anti-microbial activity. The compounds are mainly of the plant sources. 

These compounds are the good lead compounds for the above targets since they exhibit antimicrobial activity.  

The three dimensional structures of the natural compounds were retrieved from the pubchem database, by using 

the unique chemical identifier of the natural compounds. All the Sdf files were converted to pdb files since 

softwares used further in this research require this format. The druglikeliness index of the compounds was also 
calculated from the DrugMint server.  

 

2.2 Energy minimization: 
Energy minimization of the natural compounds was performed in order to release the internal 

constraint of the compounds. Marvin sketch was used to generate the 10 conformers with the low energy values. 

The protein conformation with the lowest energy values was used for the further steps and format of the files 

was the pdb.  

 

2.3 Dock –based virtual screening:   

The prospective drug targets of the STD pathogens and the natural compound library were docked, to 

find the compound that binds to their respective targets with minimum energy. Autodock vina (PyRx) finds the 

active site of the targets and docks the compounds to give the dock score that reflects the molecular recognition 
between the target and compound [54].   
 

2.4 ADME-Tox properties:    
The important pharmacokinetic and pharmacodynamic properties of the top scoring compounds were 

calculated.  The logS were calculated, as solubility indicates the absorptive properties. The distribution, 

metabolism, excretion and toxicity were studied by the LD50 values. AdmetSAR is the cheminformatics tool 

used to predict the above properties [55]. ADME- Tox properties of the top scoring natural compounds of each 

of the targets and the reference antibiotic of the respective bacteria is predicted.  

 

III. Results And Discussion 
Virtual screening with the putative drug targets of Chlamydia trachomatis A/HAR-13 showed the top 

scoring compounds for each of the drug targets along with the drug likeliness index as given in Table 1 and 

Table 2. The compounds showing affinity to the drug targets are the hypericin, withaferin and robustaflavone. 

However keeping in view with the prioritization of the targets based on the percent of amino acids in the 

allowed and additionally allowed regions, N-acetylglucosaminyl transferase and its corresponding compound 

hypericin were selected for the Chlamydia trachomatis A/HAR-13. The natural compounds showing high drug 

likeliness index were also prioritized in each case. The two way prioritization yielded hypericin showed good 

binding affinity to the N-acetylglucosaminyl transferase. Fig 1 indicates N-acetylglucosaminyl transferase 

showing hydrogen bond interaction with the hypericin at the Aspargine 124 and the threonine 261. Hpericin is a 

secondary metabolite and an anti-inflammatory ingredient of the H.perforatum [56] and belongs to the 
compounds called the napthodianthrones. 

 

http://biomedresearchasia.org/
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Figure 1 : Drug target interaction showing Hydrogen bond formation between N-acetylglucosaminyl transferase 

of the Chlamydia trachomatis A/HAR-13 and  the hypericin. 

 
Table 1:  Ligands showing good binding affinity with the targets of Chlamydia trachomatis A/HAR-13. 

Lipid-A-disaccharide synthase  (YP 328228.1) 

Name of the compound Dock score Drug likeliness index 

Hypericin -9.6 0.46666369 

Amentoflavone -9.1 -0.60523173 

Robustaflavone -9.1 -0.60523173 

Hinokiflavone -8.9 -0.60014507 

Diosmin -8.8 0.084577358 

Hypothetical protein CTA_0677 (YP_328449.1) 

Withaferin A -12.6 0.89623109 

Amentoflavone -12.5 -0.60523173 

Lupeol -11.7 1.3117783 

Robustaflavone -11.7 -0.60523173 

Hesperidin -11.4 0.084577358 

Phospho-N-acetylmuramoyl-pentapeptide-transferase (YP 328585.1) 

Robustaflavone -6 -0.60523173 

Amentoflavone -5.7 -0.60523173 

Diosmin -5.7 0.084577358 

Hinokiflavone -5.7 -0.60014507 

Calotropin -5.5 1.1013567 

Hypothetical protein CTA_0830 (YP 328588.1) 

Robustaflavone -10 -0.60523173 

Amentoflavone -9.7 -0.60523173 

Hinokiflavone -9.3 -0.60014507 

Agathisflavone -9.1 -0.60523173 

Tiliroside -8.9 0.095186246 

N-acetylglucosaminyl transferase (YP 328589.1) 

robustaflavone -10.1 -0.60523173 

Hypericin -9.7 0.46666369 

agathisflavone -9.4 -0.60523173 

hinokiflavone -9.4 -0.60014507 

amentoflavone -9.2 -0.60523173 

 

Table 2: The ADMET-tox properties of the best fitting ligands for the targets of Chlamydia trachomatis 

A/HAR-13 and the reference drug rifampin. 
Ligand ID Aqueous solubility (logS) Caco-2Permeability (logPapp)   Rat Acute Toxicity (LD50) 

CID 5381226 

(rifampicin) -2.9021 0.5468 2.7003 

CID 5281051   -3.2198 0.8964 2.6122 

CID 265237 -4.2028 0.7051 3.5404 

CID 16142 -4.3298 0.2244 4.0114 

CID 5320686 -3.094 -0.9415 2.8825 

CID 5281051   -3.2198 0.8964 2.6122 

 
Virtual screening with the targets of Chlamydophila pneumoniae CWL029 showed three compounds 

having good binding affinity with their respective targets.  They are Fumigaclavin, silybin and hypercin binding 

to Phospho-N-acetylmuramoyl-pentapeptide-transferase, Cell division protein FtsW and lipid-A-disaccharide 

synthase respectively. Prioritization yielded hypericin and lipid-A-disaccharide synthase as good compound and 
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target respectively. Interaction between the hypericin and lipid-A-disaccharide synthase showed H-bond at 

LYS348. Most of the other targets showed the possible non-covalent interactions belonging to the non- 

hydrogen bond category. Fig 2 shows the interaction between hypericin and lipid-A-disaccharide synthase. 
Table 3 and Table 4 shows the dockscore of the compounds showing affinity to the drug targets of 

Chlamydophila pneumoniae CWL029 and the ADME-Tox properties of the top scoring compounds. 

 

 
Figure 2: Drug target interaction between Lipid-A-disaccharide synthase and hypericin in Chlamydia 

pneumonia CWL029. 

 

Table 3: The natural ligands showing binding affinity to the drug targets of Chlamydia pneumonia CWL029. 
Name of the compound Dock score Drug likeliness index 

Phospho-N-acetylmuramoyl-pentapeptide-transferase (NP 225095.1) 

Amentoflavone -7.5 -0.60523173 

Fumigaclavine -7.3 0.7465329 

Resveratrol -7.1 0.30787494 

Withaferine A -6.9 0.89623109 

Agathisflavone -6.9 -0.60523173 

Cell division protein FtsW (NP 225098.1) 

amentoflavone -7.1 -0.60523173 

silybin -6.6 0.32390607 

Hypericin -6.6 0.46666369 

Cynaroside -6.4 0.00852429 

apigetrin -6.3 0.008524294 

Lipid-A-disaccharide synthase (NP 225158.1) 

Hypericin -10.8 0.46666369 

hinokiflavone -10.6 -0.60014507 

withaferin A -10.5 0.89623109 

amentoflavone -10.4 -0.60523173 

robustaflavone -9.8 -0.60523173 

 

Table 4: ADMET-tox properties of the top scoring compounds along with reference drug Chlamydia 

pneumonia CWL029. 
Ligand ID Aqueous solubility (logS) Caco-2Permeability 

(logPapp)   

Rat Acute Toxicity (LD50) 

Moxyfloxaxine (ref) -3.0793 0.7706 2.3267 

CID 173878 -3.1964 1.5627 2.9466 

CID_31553 -2.6488 0.4354 2.2206 

CID_265237 -4.2028 0.7051 3.5404 

 
The target of the Haemophilus ducreyi 35000HP is the two sensor protein showing affinity to 

Dehydrosoyasaponin I. Two component systems aid the organism in sensing the surrounding environment. Two 
component system is the source of proteins that form the potential drug targets in the pathogens [57] 

Dehydrosoyasaponin I has the antibacterial activity and is the derivative of the saponins [58]. Fig 3 shows the 

interaction between the two component sensor protein and the dehydrosoyasaponin I showing interaction at 

ASN 364, THR 424 and LEU 427. Table 5 and Table 6 show the dockscore of the natural compounds and the 

ADME-Tox properties. 
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Figure 3: Figure showing the interaction between Two-component sensor protein with dehydrosaponin I in 

Haemophilus ducreyi 35000HP. 

 

Table 7: The natural ligands showing binding affinity to the drug targets of Haemophilus ducreyi 35000HP. 

  
Name of the compound Dock score Drug likeliness index 

Tetraacyldisaccharide 4'-kinase (NP 872818.1) 

Catechin -10 0.12117655 

Quercetin -10 -0.90181562 

Robustaflavone -10 -0.60523173 

Flavone -9.8 -0.78814486 

Gossypetin -9.8 -0.90181562 

Phospho-N-acetylmuramoyl-pentapeptide-transferase (NP 872841.1) 

Hypericin -7.5 0.46666369 

Amentoflavone -7.3 -0.60523173 

Chelidonine -6.7 0.15462575 

Silybin -6.7 0.32390607 

Agathisflavone -6.7 -0.60523173 

Cell division protein FtsW (NP 872843.1) 

Hypericin -5.9 0.46666369 

Amentoflavone -5.7 -0.60523173 

Hesperidin -5.6 0.084577358 

Agathisflavone -5.6 -0.60523173 

Hinokiflavone -5.5 -0.60014507 

Lipid A biosynthesis (KDO)2-(lauroyl)-lipid IVA acyltransferase (NP 872980.1) 

Hypericin -10.5 0.46666369 

Robustaflavone -10.5 -0.60523173 

Tiliroside -9.6 0.095186246 

Hinokiflavone -9.3 -0.60014507 

Withaferin a -9.1 0.89623109 

pH-dependent sodium/proton antiporter (NP 873268.1) 

Anonaine -8.5 0.13319882 

Baicalein -8.1 -0.90181562 

Galangin -8 -0.81772575 

Ellagic acid -7.9 -0.59069329 

Chrysin -7.8 -0.83382578 

Undecaprenyldiphospho-muramoylpentapeptide beta-N-acetylglucosaminyltransferase (NP_873332.1) 

Hypericin -11.2 0.46666369 

Robustaflavone -10.8 -0.60523173 

Hinokiflavone -10.5 -0.60014507 

Amentoflavone -10.3 -0.60523173 

Plumbagin -10.2 0.8813386 

Lipid A biosynthesis lauroyl acyltransferase (NP 873583. 1) 

hypericin -6.9 0.46666369 

amentoflavone -6.8 -0.60523173 

diosmin -6.7 0.084577358 

withaferin A -6.6 0.89623109 

Dehydrosoyasaponin I -6.6 0.45827078 

Protease EcfE (NP 873653.1) 

Robustaflavone -10.3 -0.60523173 

Plumbagin -10 0.8813386 

Hinokiflavone -9.6 -0.60014507 

Withaferin a -9.1 0.89623109 
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Diosmin -9.1 0.084577358 

Two-component sensor protein (NP 873883.1) 

Dehydrosoyasaponins -9 0.45827078 

Hinokiflavone -9 -0.60014507 

Agathisflavone -8.7 -0.60523173 

Robustaflavone -8.7 -0.60523173 

Plantanoside -8.5 0.21371555 

MviN virulence factor (NP 874315.1) 

Robustaflavone -12.6 -0.60523173 

Plantanoside -12.1 0.21371555 

Hypericin -12 0.46666369 

Hinokiflavone -12 -0.60014507 

Amentoflavone -11.7 -0.60523173 

 

Table 8: ADMET-Tox properties of the ligands showing good affinity with respective targets of Haemophilus 

ducreyi 35000HP. 
Ligand ID Aqueous solubility (logS) Caco-2Permeability (logPapp) Rat Acute Toxicity (LD50) 

CID447043 

(Azithromycin) 

-2.0602 0.2710 2.5423 

CID9 064 -3.1015 -0.5189 1.8700 

CID 5281051   -3.2198 0.8964 2.6122 

CID 160597 -2.4944 1.3197 2.7790 

CID 10205 -3.5106 1.5940 3.2704 

CID 656760 -4.0861 -0.3214 2.9436 

CID 6451113 -3.9468 0.0899 2.8906 

 

The post dock analysis of the targets of Mycoplasma genitalium G37 showed Chromosomal replication 
initiation protein and rosmarinic acid have good electronic fit and also the druglikeliness index. Chromosomal 

replication initiation protein is an attractive drug target due its critical nature of initiating DNA replication. 

Rosmarinic acid is a phenolic compound showing the anti-inflammatory properties and its anti-bacterial 

property have also been reported [59]. Fig 4 shows the interaction between the chromosomal replication 

initiation protein and the rosmarinic acid interacting at THR 148, HIS 149 and ARG 307. Table 7 and Table 8 

show the summary of the dockscore of the targets and the compounds showing high affinity and ADMETox 

properties respectively. 

 

 
Figure 4: Drug target interaction between Chromosomal replication initiation protein of Mycoplasma 

genitalium G37 and rosaminic acid. 

 
Table 7: The natural ligands showing binding affinity to the drug targets of Mycoplasma genitalium G37. 

Name of the compound Dock score Drug likeliness index 

Cell division protein FtsZ (NP 072890.1) 

Ellagic acid -7.4 -0.59069329 

Hopane -7.4 -0.86304953 

Curcumin -6.8 0.6758249 

Caffeoylquinic acid -6.7 0.29403503 

Capsaicin -6.4 0.56744161 

ATP-dependent protease La (NP 072905.1) 

Amentoflavone -9.3 -0.60523173 

Silybin -8.9 0.32390607 

Robustaflavone -8.9 -0.60523173 

Withaferin A -8.8 0.89623109 

Tiliroside -8.8 0.095186246 
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Elongation factor Tu (NP 073121.1) 

Robustaflavone -8.7 -0.60523173 

Procyanidin -8.6 0.090156427 

Hypericin -8.5 0.46666369 

Amentoflavone -8.5 -0.60523173 

Agathisflavone -8.4 -0.60523173 

Chromosomal replication initiation protein (NP 073140.1) 

Robustaflavone -10 -0.60523173 

Rosmarinic acid -9.5 0.40160978 

Naringin -9.5 0.030521709 

Hinokiflavone -9.2 -0.60014507 

Dehydrosoyasaponins -9.2 0.45827078 

 

Table 8: ADMET -Tox properties of the ligands showing binding affinity to the drug targets of Mycoplasma 

genitalium G37 
Ligand ID Aqueous solubility (logS) Caco-2Permeability 

(logPapp) 

Rat Acute Toxicity (LD50) 

CID447043 

(Azithromycin) 

-2.0602 0.2710 2.5423 

CID_969516 -3.3641 0.6485 2.5468 

CID_31553  -2.6488 0.4354 2.2206 

CID_107876 -3.4598 -0.9817 2.2049 

CID_5281792 -3.2050 -0.5513 2.3234 

 

Based upon the drug likeliness index and the 3-D structure of the protein Undecaprenyl pyrophosphate 

phosphatase and plantanoside were selected for the Neisseria gonorrhoeae FA 1090. Undecaprenyl 
pyrophosphate phosphatase plays an important role in peptidogylcan synthesis. Plantanoside is a flavanoid 

known for its antibacterial property [60]. No hydrogen bond interactions were noted therefore, involvement of 

other non-covalent forces is implicit. Fig 5 shows interaction of Undecaprenyl pyrophosphate phosphatase with 

plantanoside, The Table 9 and Table 10 shows the top scoring natural compounds and the ADMETox properties 

respectively. 

 

 
Figure 5 Drug target interaction between undecaprenyl pyrophosphate phosphatase and plantanoside in 

Neisseria gonorrhoeae FA 1090. 

 

Table 9: The natural ligands showing binding affinity to the drug targets of Neisseria gonorrhoeae FA 1090. 
Name of the compound Dock acore Drug likeliness index 

 Hypothetical protein NGO1534 (YP 208582.1) 

Hinokiflavone -6.9 -0.60014507 

Hypericin -6.8 0.46666369 

Amentoflavone -6.8 -0.60523173 

Glyceollin -6.6 0.61551873 

Agathisflavone -6.4 -0.60523173 

Phospho-N-acetylmuramoyl-pentapeptide-transferase (YP 208585.1) 

Hinokiflavone -6.5 -0.60014507 

Robustaflavone -6.2 -0.60523173 

Hypericin -6.2 0.46666369 

Agathisflavone -6 -0.60523173 

Amentoflavone -5.8 -0.60523173 

Undecaprenyl pyrophosphate phosphatase(YP_208595.1) 

Hinokiflavone -7.6 -0.60014507 

Amentoflavone -7.3 -0.60523173 
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Robustaflavone -7.3 -0.60523173 

Plantanoside -7.2 0.21371555 

Agathisflavone -7 -0.60523173 

Hypothetical protein NGO1718 (YP_208751.1) 

Agathisflavone -11.7 -0.60523173 

Robustaflavone -11 -0.60523173 

Withaferin A -10.8 0.89623109 

Amentoflavone -10.6 -0.60523173 

Fumigaclavine C -10.6 0.746533 

Hypothetical protein NGO1800 (YP_208830_1) 

Hinokiflavone -9.8 -0.60014507 

Robustaflavone -9.3 -0.60523173 

Silybin -9.2 0.32390607 

Glyceollin -9.2 0.61551873 

Agathisflavone -9.1 -0.60523173 

 

Table 10: ADME-Tox properties of the ligands showing binding affinity to the drug targets in Neisseria 

gonorrhoeae FA 1090. 

 
Ligand ID Aqueous solubility (logS) Caco-2Permeability 

(logPapp) 

Rat Acute Toxicity (LD50) 

CID 149096(ofloxacin) -3.5105 1.1297 2.1639 

CID 5281051 -3.2198 0.8964 2.6122 

CID 6451113 -3.2198 0.8964 2.6122 

CID 265237 -4.2028 0.7051 3.5404 

CID 31553 -2.6488  0.4354 2.2206 

 
In Streptococcus agalactiae 2603V/R Sensor hisdine kinases and narigin showed good interaction. 

Sensor hisdine kinases are the surface proteins that receive signals from the surrounding environment and 

tranduce the signal to activate the transcription factors. In the present study sensory box histidine kinase is 

known to be playing a role in two- component system by the biochemical annotation. Naringin is a secondary 

metabolite found in the grape fruit and has antibacterial activity [61]. Fig 6 shows interaction of Sensor hisdine 

kinases with naringin by three hydrogen bonds ARG246, ASN 300 and ARG 304. Table 11 represents the top 5 

compounds showing affinity with their respective targets and the Table 12 shows adme-Tox properties of the 

top scoring compounds with respect to the reference. 

 

 
Figure 6: Drug target interaction between Sensor histidine kinase (NP_687355.1) of Streptococcus agalactiae 

2603V/R  and naringin. 
 

Table 11: The natural ligands showing binding affinity to the drug targets of Streptococcus agalactiae 2603V/R. 
Name of the compound Dock score Drug likeliness index 

Sensor histidine kinase (NP 687160.1) 

Apigetrin -11.5 0.008524294 

Tiliroside -11.3 0.095186246 

Robustaflavone -10.9 -0.60523173 

Luteolin-7-glucoside -10.6 0.0085243 

Anonaine -10.6 0.13319882 

Undecaprenyl pyrophosphate phosphatase (NP 687174.1) 

Amentoflavone -7.4 -0.60523173 

Agathisflavone -6.9 -0.60523173 

Robustaflavone -6.9 -0.60523173 

Anonaine -6.9 0.13319882 

Fumigaclavine C -6.8 0.7465329 
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Penicillin-binding protein 2X (NP 687322.1) 

Astilbin -8.1 -0.003564923 

1-Caffeoylquinic acid -7.9 0.29403503 

Anonaine -7.9 0.13319882 

Luteolin-7-glucoside -7.8 0.0085243 

Protocatechuic acid -7.7 -0.9458831 

Phospho-N-acetylmuramoyl-pentapeptide-transferase (NP 687323.1) 

Hinokiflavone -9.2 -0.60014507 

Ursane -9.1 -0.76022747 

Amentoflavone -8.9 -0.60523173 

pisatin -8.9 -0.60523173 

Brassicasterol -8.8 0.24222149 

Sensor histidine kinase (NP_687355.1) 

Naringin -9.2 0.030521709 

Poncirin -9.1 0.014155298 

Amentoflavone -8.9 -0.60523173 

Hinokiflavone -8.9 -0.60014507 

Robustaflavone -8.8 -0.60523173 

Sensor histidine kinase (NP 687428.1) 

Hinokiflavone -9.3 -0.60014507 

Robustaflavone -9.3 -0.60523173 

Hypericin -9.2 0.46666369 

Amentoflavone -9.2 -0.60523173 

Dehydrosoyasaponin I -9.1 0.45827078 

Sensory box histidine kinase ( NP 687735.1) 

Amentoflavone -9.1 -0.60523173 

Robustaflavone -8.8 -0.60523173 

Plantanoside -8.6 0.21371555 

Hinokiflavone -8.4 -0.60014507 

Poncirin -8.4 0.014155298 

Cell cycle protein FtsW (NP 687776.1) 

Plantanoside -8.3 0.21371555 

Robustaflavone -8.2 -0.60523173 

Fumigaclavine C -8.2 0.7465329 

Xylopine -8.1 0.30326379 

Gamma-sitosterol -8 0.11099078 

Zinc metalloprotease (NP 688903.1) 

Naringenin -8.2 -0.59069329 

Eriodictyol -8.1 0.16994626 

Xylopine -7.7 0.30326379 

1-Caffeoylquinic acid -7.4 0.29403503 

Dihydrochalcone -7.4 0.053720466 

Sensor histidine kinaseb (NP 688947.1) 

Robustaflavone -10.7 -0.60523173 

Procyanidin -10.5 0.090156427 

Hypericin -10.5 0.46666369 

Hinokiflavone -10.2 -0.60014507 

Hesperidin -10.1 0.084577358 

Sensor histidine kinase (NP 689041.1) 

Plumbagin -11.1 0.8813386 

Amentoflavone -10.9 -0.60523173 

Hypericin -10.8 0.46666369 

Hinokiflavone -10.6 -0.60014507 

Robustaflavone -10.6 -0.60523173 

Sensor histidine kinase (NP_689108_1) 

Sanguinarine -8.5 0.30787494 

Hypericin -8.4 0.46666369 

Amentoflavone -8.4 -0.60523173 

Robustaflavone -8.4 -0.60523173 

Silybin -8.3 0.32390607 

 

Table 12: ADMET tox properties of the ligands showing binding affinity to the drug targets of Streptococcus 
agalactiae 2603V/R. 

Ligand ID Aqueous solubility 

(logS) 

Caco-2Permeability (logPapp) Rat Acute Toxicity (LD50) 

CID_6249 (ampicillin) -2.8487 0.0398 1.5620 

CID 5385553 -2.3316 -0.9232 2.3755 

CID 160597 -2.4944 1.3197 2.7790 

CID 6451212 -2.4572 -0.6124 2.5685 

CID 5281327 -4.6917 1.6384 2.6528 
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CID 442428 -4.3443 0.2440 2.9313 

CID 5281051 -3.2198 0.8964 2.6122 

 CID 6451113                          -3.9468       0.0899  2.8906 

CID 440735                         -3.4456                         0.0595  3.3340 

CID 107876 -3.4598 -0.9817 2.2049 

CID 10205                        -3.5106  1.5940 3.2704 

CID 5154                         -3.233  1.2338 2.3612 

 

The putative drug target of the Treponema pallidum subsp. pallidum SS14 the cell division protein is 

annotated to be involved in the cell-cycle caulobacter. The cell cycle caulobacter is a complex transcription 
regulation system that regulates the cell division. It showed best binding interaction with lupeol, a triterpene 

known to have the antibacterial activity [62]. Lupeol is the natural compound isolated from fruits and the 

vegetables. Fig 7 depicts the molecular interaction between the cell division protein and the lupeol. The 

summary of the dockscore and the ADMETox properties is given in Table 13 and Table 14 respectively. 

 

 
Figure 7: Drug target interaction between cell division protein of Treponema pallidum subsp. pallidum SS14 

and lupeol. 
 

Table 13: The natural ligands showing binding affinity to the drug targets of Treponema pallidum subsp. 

pallidum SS14. 
Name of the compound Dock score Drug likeliness index 

Cell division protein (YP 001933392.1) 

Lupeol -6.3 1.3117783 

Dehydrosoyasaponin I -6.3 0.45827078 

Amentoflavone -6.3 -0.60523173 

Robustaflavone -6.3 -0.60523173 

Agathisflavone  -6.2 -0.60523173 

 Virulence factor (YP 001933518.1) 

Plantanoside -12.1 0.21371555 

Amentoflavone -11.9 -0.60523173 

Tiliroside -11.9 0.095186246 

Robustaflavone -11.5 -0.60523173 

Withaferin a -11.4 0.89623109 

Dicarboxylate transporter (YP 001933953.1) 

robustaflavone -7.5 -0.60523173 

Hypericin -7.3 0.46666369 

hinokiflavone -7.3 -0.60014507 

amentoflavone -7.2 -0.60523173 

diosmin -7.2 0.084577358 

 

Table 36: ADMET-Tox properties of the ligands showing binding affinity to the drug targets of Treponema 

pallidum subsp. pallidum SS14. 
Ligand ID Aqueous solubility (logS) Caco-2Permeability 

(logPapp) 

Rat Acute Toxicity (LD50) 

CID447043 (Azithromycin) -2.0602 0.2710 2.5423 

CID 259846            -4.4139  1.6517 3.3838 

CID 6451113 -3.9468 0.0899  2.8906 

CID 5281051            -3.2198  0.8964 2.6122 

 

IV. Conclusion 
Natural compounds are good source of the therapeutic agents for various diseases. The drug targets as 

well as the natural compounds can be used in various experimental designs to pave way for the experimental 

process. The targets and the therapeutic agents provide a raw material for the experiments to validate their 

critical nature in survival and pathogenicity. The computational techniques and tools reduce the time required 
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for the identification of the therapeutic compounds to avoid huge amount of time required to test toxicities and 

other cul-de-sacs in the drug discovery process. Protein belonging to both the structural and the non- structural 

type, the non-structural type is ideal to be studied as a drug targets due to its functional role. The insilico 
approaches of target identification can also be used for other disease classifications for which no vaccines have 

been developed and for which the vaccines are inffective. Similar algorithms can also be applied to other targets 

to find the natural therapeutic agents by virtual screening. Active regions of the target called the epitopes can 

also be identified leading to use of epitope mapping approaches. Knowledge of the epitopes can also aid in 

development of the subunit vaccines such as the peptide vaccines that are specific and easy to develop. 

Therapeutic natural compounds themselves can be used to derive the analogous compounds by structural 

changes. Such compounds can act as potential therapeutic drugs against the known diseases. 
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