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Abstract:  With the intention to achieve the best therapeutic outcomes, dose adaptation underpins the clinical 

practice by tailoring dose and time in order to maximize efficacy while minimizing toxicity. Depending on the 

drug properties and the clinical context, three successive levels of dose adaptation can be considered, i.e., 

approaches based on population, group and individual. To make a rational choice for the dose adaptation level 

and determine the best drug regimens, we here propose a modeling and simulation strategy based on the 

platform provided by the population pharmacokinetic/pharmacodynamic methodology at population and group 

levels. In order to compare the performance of different dose and time schedules, we introduced probabilistic 

conceptualized time- and concentration-based therapeutic indicators. Using carbamazepine as a drug model 

and a recently reported population pharmacokinetic (Pop-PK) model for the group of patients of 60 years and 

older, we were able to quantitatively study the performance of different group-dosing regimens in order to find 

the best ones. As indicated by our results, TID regimen was clearly favored among others, confirming thus 

suggestions in several clinical reports. Moreover, different time schedules that can reach the same therapeutic 

target for this group were identified through our methodology, giving thus a wider choice for the clinical 

practice. 

Keywords: Dose Adaptation, Dose Individualization, Mathematical Modeling, Population Pharmacokinetics, 

Therapeutic Drug Monitoring. 

 

I. Introduction 
Tailoring the drug dose and time schedule to a patient’s therapeutic need is an integral part of 

Therapeutic Drug Monitoring (TDM) and dose adaptation. The intention is to target the best therapeutic 

outcomes for an individual or a specific population by maximizing the desired therapeutic effect and minimizing 

toxicity [1]. 

TDM is applied for a variety of drugs, such as antibiotics [2], anti-epileptics [3], immunosuppressants 

[4], etc, and involves the measurement and interpretation of drug concentrations in biological fluids rather than 

using clinical endpoints [5]. For anticancer drugs, it is even crucial since they generally have narrow therapeutic 

indices, i.e., toxicity occurs at doses close to those required for the therapeutic effect, and are associated with 

high inter-individual variability. To achieve a therapeutic optimization, dose adaptation based on drug plasma 

concentrations is considered the most effective method [1]. Indeed, therapeutic outcomes are generally reported 

to be more correlated with certain pharmacokinetic surrogates, such as the area under the concentration-time 

curve, maximum concentration, or duration of plasma concentration above a threshold, rather than the dose 

itself. Depending on the drug properties and clinical context, three dose adaptation approaches can successively 

be envisaged (referred to as dose individualization in [6]). The first, known as the population dosing method, 

relies on the assumption of a uniform population clearance to establish a same dose for all patients [6]. The 

second, referred to as group dosing method, is based on the fact that patients belong to a same covariate group, 

in which they share similar pharmacological characteristics and a same group dose can thus be applied. 

However, when a specific clinical situation arises, a completely individual-based approach becomes the ultimate 

third choice, subsequent to the group dosing strategy [7, 8]. 

The population pharmacokinetic/pharmacodynamics approach (Pop–PK/PD), which is able to 

quantitatively describe the dose-concentration-effect-toxicity relationships for a population, is a convenient 

platform for the determination of the appropriate dose adaptation approach. The decision process can be 

undertaken by setting up objective criteria for the expected trade-off between therapeutic benefit and acceptance 

of risk. Three consecutive steps can be involved: first, the general population can be tested for the therapeutic 

outcomes using common dose and time schedules. If the therapeutic outcomes exhibit a statistically significant 

nonuniformity, a covariate analysis can then be performed to identify patient groups and try to determine a 

suitable drug regimen for each. However, it could occur that this covariate grouping step is still not sufficient 

with some patients being out of therapeutic scope. In this case, we have to recourse to an individual-based 

approach to estimate the specific individual parameters. It is clear that the latter procedure presents obvious 
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therapeutic advantages but with potential inconvenience for the patient and health system, which explains its use 

only as a means of last resort [9]. This individual-based step is out of the scope of the current work. 

In this paper, based on the above philosophy, we present a rational strategy for the determination of the 

best drug regimen in the context of group-dosing method for dose adaptation. The methodology that we propose 

herein to compare the efficacy and toxicity of the considered drug regimens is in fact inspired by the idea to find 

those models parameters that maximize the likelihood of a specific event. For this, we introduced in 

probabilistic terms a set of therapeutic indicators (TI). More precisely, two types of TI, time- and concentration-

based indicators, are defined in reference to the relationship of the time-concentration curves generated by a 

dosing regimen with the Therapeutic Window (TW) [10, 11]. 

As a pre-requirement of our methodology, we need to use a Pop-PK model of the studied drug and 

population. To illustrate our approach, the Pop-PK model of carbamazepine [12], a widely used drug for partial 

onset seizures, is taken as an example. 

This paper is organized as follows. In the Materials and Methods Section, we detailed our methodology 

and introduced several TIs with their use in the evaluation of the performance of dosing regimens. In the Results 

Section, several graphical and numerical diagnostics of the performance are presented. Additional issues related 

to the applicability of our methodology are included in the Discussion Section. 

 

II. Materials And Methods 
2.1 Regimen design in terms of dose and time 

A dosing regimen will be defined on a daily basis with the following notations: 

 

                                                                          Regimen = ( , )                                                                          (1) 

where 

                  
                             

 Each pair (     )        , represents a dose and its corresponding dosing time; k is the number of 

drug administrations per day. 

Thus, the total daily dose (TDD) is: 

 

                                                                                    ∑  

 

   

                                                                                            ( ) 

 

2.2 Therapeutic indicators and regimens performance 

The performance of a particular dosing regimen will be evaluated through its associated PK profiles in 

reference to TW = [TWmin, TWmax], where TWmin is the minimum effective concentration and TWmax is the 

minimum toxic concentration. TW is known to correlate with toxic and therapeutic effects [13, 14]. Two types 

of TI are proposed in the following two subsections. 

 

2.2.1 Time-based therapeutic indicators 

The first time-based TI is the effective time TIEff, which can be defined as the daily time spent by a 

steady-state drug concentration-time curve (PK profile) within TW. For an individual PK profile Ci(t), it is given 

by: 

 

                                       (  )                   ( )          ∫    
     

(  ( ))                                ( ) 

 

where    (  ( ))    if the value of Ci(t) is within TW, and    (  ( ))   , otherwise. 

Since various PK profiles can be associated to a given drug regimen due to the inherent population 

variability, we can evaluate the performance of a regimen by averaging the TIEff of N simulated PK profiles of 

this regimen. This can be expressed as: 

                                                                                (       )  
 

 
∑      
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The second time-based TI refers to the toxicity of a PK profile and is defined as the daily time that drug 

concentration spent over TWmax. For an individual PK profile Ci(t), this toxic time TITox is given by: 
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where           )(  ( ))    if Ci(t) is over TWmax, and           )(  ( ))     otherwise. 

Analogously to Eq.4, we can also define: 
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2.2.2 Concentration-based therapeutic indicators 

TIs can also be concentration-based. For their definition, three therapeutic zones delimited by TW are 

used. We refer to these zones as non-effective, effective, or toxic, whenever they are below, within, or beyond 

TW, respectively (Fig.1). Using these zones, six categories, denoted CAT, of individual PK profiles can be 

defined through their trajectories across these different zones. Thus, an individual PK profile is said to belong to 

the category of non-responders (NR), responders (R), or adverse-responders (A) if it is completely located in the 

non-effective, effective, or toxic zone, respectively. Moreover, the hybrid category of non-responders/ 

responders (NR/R), responders/adverse-responders (R/A), or non-responders/responders/adverse-responders 

(NR/R/A) can be defined for those concentration-time curves that pass through more than two corresponding 

zones. This partition is illustrated in Fig.1. 

 

 
Fig. 1: PK profiles corresponding to the six therapeutic categories: non-responders (NR), responders (R), 

adverse-responders (A), and hybrid non-responders/responders (NR/R), responders/adverse-responders (R/A), 

or non-responders/responders/adverse-responders (NR/R/A). Comb = (R/A) A (NR/R/A) 

 

 Considering all PK profiles associated to a given drug regimen, we can evaluate the proportion of these 

PK profiles that belong to one of the above six categories. In other terms, we can use these proportions to define 

the probability of a given dosing regimen with respect to a category: 

 

                                                                  
 

 
                                                                     ( ) 

 

where N is the total number of the simulated PK profiles for this regimen, and CAT can be one of NR, R, A, 

NR/R, R/A, or NR/R/A. To account for the trade-off between efficacy and toxicity, we define two 

concentration-based TIs. The first, named responders TI, is: 

 

                                                                           (       )             ( )                                                               ( ) 

 

 The second, named combined TI, is 

 

                                                   ( )             (   )             (      )                            ( ) 

 

where Comb is the combination of categories A, R/A and NR/R/A. 
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2.2.3 Selection of the best regimen 

Based on the quantitative evaluation of a dosing regimen described above, we can exhaustively go 

through a set, which is a Cartesian product of all combinations of time step (using an interval of time) and a 

dose step (using a minimum dose unit), of potential drug regimens in order to find those that maximize or 

minimize the above TIs. Each TI can be considered as a kind of probability of an expected event given a 

regimen. In fact, our idea is inspired from the principle of maximum likelihood, where regimens play the role of 

model parameters in the traditional objective function optimization. 

The best regimen will be selected as follows. A mono-objective approach would be to target a 

particular TI with the goal of determining the regimen that maximizes (or minimizes) this TI, by testing all 

possible fractionated doses and dosing times. However, a multi-objective approach considering a combination of 

TIs with associated weights would be preferable to allow a trade-off between efficacy and toxicity. For this, 

using a set of potential dosing regimens, we will calculate the corresponding TIs values, as well as their 

maximum and minimum. Then the performance of each dosing regimen can be evaluated by: 

 

                        (       )  ∑  

{
 
 

 
 
    (   ( ))    (       )

    (   ( ))     (   ( ))
                

  (       )      (   ( ))

    (   ( ))     (   ( ))
                

                              (  )

   

 

 

where max(TIi( )) (min(TIi( ))) is the maximum (minimum) of TIi for all dosing regimens within the considered 

set. Moreover, i = {Eff, Tox, R, Comb} and wi are weights to ensure favoring or penalizing one of the TIs, with 

 

∑  

   

   

 

The normalization with the ranges of TIs is necessary here for the units uniformity such that the comparison can 

be reasonable. 

 

2.2.4 Software and implementation 

Data analysis and graphical outputs are performed using MATLAB (R2008, MathWorks, Inc.). The 

Pop-PK model of the studied drug is implemented and simulated using NONMEM (version VII, Icon 

Development Solutions, Ellicott City, MD). We have also developed a wrapper function based script in 

MATLAB to call NONMEM. This process is depicted in Fig.2. 

 

 
Fig. 2: Overview of the algorithm. In the initial step, the number of patients, TDD, TW and unit doses are 

defined. Then a set of potential dosing regimens is set up and transferred to NONMEM to simulate the 

associated steady-state drug concentrations.  The results are sent back to MATLAB for the estimation of TIs and 

evaluation of dosing regimen performance 
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2.3 The case study of carbamazepine 

To exemplify our developed methodology, the case study of carbamazepine (CBZ) was chosen. 

 

2.3.1 Pop-PK model of carbamazepine 

One reported Pop-PK model of CBZ, an anticonvulsant and mood-stabilizing drug used primarily in 

the treatment of epilepsy and bipolar disorder, as well as trigeminal neuralgia, was used. This is a mono 

compartmental model with first-order absorption and elimination [12], developed for the sub-population of 

patients of 60 years and older. The log-normal and proportional error models are reported for the inter-

individual and residual variability, respectively. The model parameters are reported in Table 1. This sub-

population will serve here to exemplify our developed strategy at the group level. 

 

Table 1: Pop-PK parameters of carbamazepine. F: bioavailability, CV: coefficient of variation. CL: clearance, 

V: apparent volume of distribution, Ka: absorption rate constant 
PK parameters Typical value Variability (CV%) 

CL/F (L/h) 3.59 18.1 

V/F (L) 102 74 
Ka (h-1) 0.197 - 

Residual error - 25.1 

 

 2.3.2 Therapeutic Window of carbamazepine 

In order to evaluate the dosing regimens, we will refer to the TW of CBZ, which typically ranges 

between 4 to 12 µg/mL in a monotherapy context [15, 16]. Nevertheless this was reported as inappropriate for 

patients of 60 years and older who may present toxicity within the middle to upper therapeutic range [17]. 

Hence we use here a more restricted range between 4 and 8 µg/mL [18]. 

 

2.3.3 Set of tested dosing regimens for the selection procedure 

Considering the most widely used dosing regimens, namely QD, BID, TID, and QID, we choose a 

TDD of 600 mg of CBZ as reported in [19]. For the last three regimens, all possibilities of fragmented doses that 

are multiples of a predetermined unit dose (100 mg here), with hourly-based dosing times, were tested. 

 

III. Results 
In the following, numerical results as well as graphical representations are used to illustrate the 

performance of the best regimens in terms of the introduced TIs. 

 

3.1 Numerical evaluation of regimen performance 

It would be interesting to compare our results with the findings in a previous work [19] where the 

authors highlighted the adjustment of doses following adverse effects. For this, we here choose the following set 

of weights wTox = 40%, wComb = 40%, wEff = 10%, and wR = 10%, to be associated to TITox, TIComb, TIEff, and TIR, 

respectively, to put more emphasis on toxicity. 

Table 2 reports numerical results for the best performing regimens based on Eq.10. The QD has a lower 

performance for each TI compared to BID, TID and QID. For example, TIR of QD is 18.4% compared to 41.1%, 

46.9% and 46.4% for BID, TID, and QID, respectively. 

For time-based TIs, TIEff and TITox, the BID regimen has a better performance compared to both TID 

and QID. Indeed, (TIEff, TITox) of BID is (12.9%, 8.7%), compared to (12.5%, 9.1%) and (12.7%, 9%) for TID, 

and QID, respectively. 

For concentration-based TI, TIR and TIComb, the TID regimen has a better performance compared to 

both BID and QID. Indeed (TIR, TIComb) of TID is (46.9%, 40.2%) compared to (41.1%, 41.4%) and (46.4%, 

40.4%) for BID, and QID, respectively. The overall performance of regimens, calculated for all TIs using Eq. 

10, enables to select the best one for BID, TID and QID. For example, when assessing the performance within 

the subset of all BID regimens, the one with 300q12 has an overall performance of 99.682% and is then ranked 

the first. A similar assessment can be done within the subsets of TID and QID regimens, resulting in an overall 

performance of 98.790% and 94.095%, respectively for the best ones. However, this (global) overall 

performance cannot be simply used to compare these three regimens together because their choice using Eq.10 

is in fact based on their own subsets of BID, TID, or QID taken separately. A subtler comparison will be given 

below in Section 3.3. 

 

 

 

 

 



A Computational Strategy for Dose Adaptation at the Population and Group Levels 

DOI: 10.9790/3008-10315263                                    www.iosrjournals.org                                              57 | Page 

Table 2: Best regimens for BID, TID and QID with their corresponding TIs values 
  QD BID TID QID 

Regimen dose (mg) 600 300, 300 200, 200, 200 100, 200, 100, 200 

time (hour) 0 0, 12 0, 8, 16 0, 5, 12, 17 

Time-based TI 

(hours) 

effective time 11 12.9 12.5 12.7 

toxic time 9.5 8.7 9.1 9 

Concentration-based TI (%) responders (R) 18.4 41.1 46.9 46.4 

combined (Comb) 56.7 41.4 40.2 40.4 

Performance (Eq. 10) (%) - 99.682 98.790 94.095 

 

 

3.2 Graphical representation of regimen performance 

Two sets of graphical representations are presented here. 

The first includes Figs.3-6, in which the left panels depict the steady state concentration-time curve 

associated to QD, BID, TID and QID, while the right panels depict the probabilities of these regimens with 

respect to six categories, respectively. 

For example, in the left panel of Fig.3, we show the distributions of all steady-state concentration-time 

curves. Based on their density, we were able to calculate and draw their 10 to 90 percentiles lines, using a step 

of 10 as indicated in the figure. Moreover, we observe that around 50% of these PK profiles are located in TW, 

as a result of the large PK variability. However, the median curve traverses the TWmax line and enters the toxic 

zone. This raises concern about the toxic risk of QD regimen. For multiple dosing (BID, TID or QID), the 

median lines of the best regimen can always remain within TW, which indicates that a frequent administration 

may be preferred if toxicity is the predominant concern as illustrated in the left panels of Figs.4, 5 and 6, for 

BID, TID and QID, respectively. 

 

 
Fig. 3: Left: Concentration-time curves at steady state during a 24 hours for the best QD with dose of 600 mg. 

The middle dotted line represents the median. TWmin = 4µg/mL and TWmax = 8µg/mL; Right: Probabilities of 

QD with respect to six categories 

 

 
Fig. 4: Left: Concentration-time curves at steady state during a 24 hours for the best BID with dose of 600 mg. 

The middle dotted line represents the median. TWmin = 4µg/mL and TWmax = 8µg/mL; Right: Probabilities of 

BID with respect to six categories 
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Fig. 5: Left: Concentration-time curves at steady state during a 24 hours for the best TID with dose of 600 mg. 

The middle dotted line represents the median. TWmin = 4µg/mL and TWmax = 8µg/mL; Right: Probabilities of 

TID with respect to six categories 

 

 
Fig. 6: Left: Concentration-time curves at steady state during a 24 hours for the best QID with dose of 600 mg. 

The middle dotted line represents the median. TWmin = 4µg/mL and TWmax = 8µg/mL; Right: Probabilities of 

QID with respect to six categories 

 

In the right panels of Fig.3 and Fig.4, we have TIR= 18% and TIComb= TIA+ TIR/A +TINR/R/A = 21%+ 

23%+ 12% = 56% for QD, compared to TIR = 41% and TIComb= 41% for BID. This indicates an improvement in 

the probability of both benefit and toxicity when the frequency of administration is increased. Similar results can 

be observed for TID and QID (Figs.5 and 6). 

To further characterize the regimen performance, a second set of graphical representations is proposed 

here based on concentration-based TIs. Figs.7-10 depict the performance of QD, BID, TID and QID, 

respectively. The upper panels show the evolution over 24 hours of percentages of concentrations below (cyan), 

within (green), and beyond (red) TW, after the first daily dose, for all PK profiles in each category, namely NR, 

NR/R, R, R/A, A, and NR/R/A. In the lower panels, the distribution of effective times, i.e., time where drug 

concentrations are within TW, of all PK profiles in each of the upper panel category are reported. We also note 

that presentations in the first, third, and fifth figures of the upper and lower panels, included in Fig.7, are, in fact, 

trivial since they represent the PK profiles entirely below, within and beyond the TW, respectively. They are 

included for the sake of illustration only for QD regimen, and dropped from Figs.8-10. 

To illustrate the utility of these graphical representations, we will take Fig.7 as an example. In fact, 

each part of the upper panels can help identifying critical time zones for PK profiles in each category. If 80% is 

the threshold over which the regimen leads to toxicity, then, referring to the upper panel of Fig.7, we can see 

that 0 to 24 hours, 3 to 13 hours, and 4 to 8.5 hours can present toxicity for the categories A, R/A and NR/R/A, 

respectively. Combining these results with the information of their associated probabilities gives rise to a 

probability of 56% to be in the toxic zone during the time interval 4 to 8.5 hours, and of 44% to be toxic during 

the periods of 3 to 4 hours and 8.5 to 13 hours, and of 21% for the remaining daily time, approximately. 
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Fig. 7: Upper panel: Partition of percentages of concentrations (PPC) of QD vs time, below (cyan), within 

(green) and beyond (red) TW; Lower panel: histograms and their associated smooth fitting probability 

distributions of effective times of the upper therapeutic categories: NR, NR/R, R, R/A, A and NR/R/A, from left 

to right. In the NR and A categories, all effective times are zero, while in R category, all effective time are 24 h. 

Each of these three is thus represented by a vertical line 

 

 
Fig. 8: Partition of percentages of concentrations (PPC) of BID vs time, below (cyan), within (green) and 

beyond (red) TW; Lower panel: histograms and their associated smooth fitting probability distributions of 

effective times of the upper therapeutic categories: NR/R, R, R/A, and NR/R/A, from left to right 
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Fig. 9: Partition of percentages of concentrations (PPC) of TID in time, below (cyan), within (green) and 

beyond (red) TW; Lower panel: histograms and their associated smooth fitting probability distributions of 

effective times of the upper therapeutic categories: NR/R and R/A, from left to right 

 

 
Fig. 10: Partition in time of percentages of concentrations (PPC) of QID vs time, below (cyan), within (green) 

and beyond (red) TW; Lower panel: histograms and their associated smooth fitting probability distributions of 

effective times of the upper therapeutic categories: NR/R and R/A, from left to right 

 

This toxicity information could be a significant factor to be taken into account in drug monitoring practice. 

 

3.3 Optimal choice of regimens 

In the following, we discuss how to choose an optimal regimen among the four best regimens that we 

have determined above for QD, BID, TID and QID. This should be based on each TI value additional with 

common sense and pharmacological considerations. 

For this end, we summarize in Fig.11 the four TI values of the best QD, BID, TID and QID regimens 

that were reported in Table 2. First, it is clear that, compared to the other regimens, QD has to be excluded since 

it presents the highest TIComb and the lowest TIR, while TIEff and TITox are almost similar for all regimens. Then, 

BID has similar TI values to TID and QID but clearly has a smaller TIR, thus can also be refuted. Finally, TID 

and QID have almost the same TI values and hence TID should be preferred for its convenience. 
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Fig. 11: TI values vs. best regimens. Time-based TIs (TIEff, TITox) values are in hours whereas concentration-

based TIs (TIR, TIComb) values are in percentage 

 

Remark: So far, different TIs have been discussed for a given dosing regimen. Our methodology can also help 

to find a set of suitable dosing regimens for a target therapeutic indicator value. For example, a group of QID 

regimens has been identified for a target of TIComb less than 40%, as illustrated in Table 3. 

 

Table 3: Regimens satisfying TIComb ≤ 40% 
Regimen Dose (mg) Time (h) TIComb (%) 

QID 100 200 100 200 0 6 12 18 39.8 
QID 200 100 100 200 0 6 9 16 39.8 

QID 200 100 100 200 0 7 9 16 39.8 

QID 200 100 100 200 0 6 10 16 39.8 
QID 200 100 100 200 0 5 12 17 39.8 

QID 200 100 200 100 0 6 12 18 39.8 

QID 100 200 100 200 0 5 11 17 40.0 

 

IV. Discussion 
Individualization of therapy is crucial for the optimization of therapeutic outcomes. However, its 

practical implementation continues to present challenges for the clinical community. Modeling and simulation 

approaches have proved to be an effective means that greatly contribute to this aspect [20]. However, these 

modeling based methods should be dictated by the contextual clinical needs. Indeed, while individual-based 

strategies can still be gold-standard in many therapeutic contexts [21, 22, 7], a high level of individualization, 

which generally involves in situ individual blood sampling, is always considered a burden to the health system. 

In the current paper, we discuss how the dose adaptation process can capitalize on the potential of Pop-

PK approaches, with additional therapeutic considerations. This was realized through the introduction of TIs 

that account for the probabilistic aspects of Pop-PK models but are in line with the classical metrics of therapy. 

To illustrate our approach in determining optimal drug regimens, carbamazepine was used as a drug model, with 

its Pop-PK model previously published in [12]. In fact, this Pop-PK model which was designed with a sub 

population of patients of 60 years and older, places our results within the group dosing category. While the TIs 

discussed here are defined in reference to TW, other therapeutic target concentrations can be used, as proposed 

by Holford [23, 24]. This is however beyond the context of the current work. In our analysis, when compared to 

the reported results for a TW range between 8 and 12 µg/mL, 20% more of elderly patients are exposed to 

toxicity all the time (          (A) = 33.9% vs 9.5% for the reference TW) and 30% more during certain times 

for the TW ranging from 4 to 8 µg/mL (TIComb = 40.2% vs 10.9% for the reference TW). This is supported by 
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the suggestion of Rowan et al [19] who defined a dose reduction in 31.3% of patients because of side effects, 

which justifies our choice of a relative narrow TW for which the estimated toxicity increases by 30%.  

Our predictions indicate significant changes for concentration-based TIs with increasing dosing 

frequency, though the results over all regimens, with the exception of QD, remain relatively close (Table 2 or 

Fig.11). For BID, 41.1% for TIR and 41.4% for TIComb. Similar results are obtained for TID and QID, which are 

around 47% for TIR and around 40% for TIComb. Moreover, both QD and BID regimens exhibit a high 

probability to belong to the hybrid categories NR/R, and R/A than TID and QID. TID has been found to be the 

best choice for the studied sub-population especially in terms of efficacy, with 200 mg   , at 0h, 8h and 16h 

(Table 2). This is in agreement with the findings by Rowan et al [19]. 

It is not surprising that the effective time of CBZ is not frequently mentioned in the literature, since it 

does not really inform the drug regimens performance, as illustrated in Fig.11. However, this concept is 

especially important for time dependent antimicrobials, where the time duration of concentrations exceeding the 

minimum inhibitory concentration or the minimum bactericidal concentration is the major determinant of 

bacteriologic efficacy of beta-lactam antibiotics. For example, 50% and 90% of the maximal bacterial kill rate 

were observed when ceftriaxone levels exceeded the minimum bactericidal concentration for only 50% and 60% 

of dosing intervals, respectively [25]. A future natural application of our approach would be to study constraints 

using a specific threshold that is to consider responders as patients who remain within the TW 80% of the time. 

Additional to the problem of dose adaptation, our methodology can also be used to address question 

whether the same amount of dose, when partitioned differently, can always give rise to the same therapeutic 

effect. Our results showed that this commonly held assumption should be revised because equally dividing a 

fixed amount of daily dose and administering them at different times does not guarantee the same effect. Indeed, 

for a TDD of 600 mg, QD has an average TIEff of 11.1 hours compared to that for BID of 12.9 hours (Table 2). 

This difference is even more pronounced for their TIR, with 18.4% and 41.1% for QD and BID, respectively 

(Table 2). This issue has previously been addressed in [26] for both time-dependent and concentration-

dependent classes of antibiotics. However, this is the first time that this equivalent dose concept is introduced 

within a Pop-PK framework. 

 

V. Conclusion 
In this paper, a dose adaptation methodology, with the underlying possibility of a uniform dosing for a 

general population or certain sub-groups, has been proposed and developed. Based on the concept of TW, 

several therapeutic indices have been revisited and updated in the context of the Pop-PK approach to evaluate 

the performance of dosing regimens. This allowed us to determine the optimal regimen in terms of doses and 

dosing times. Moreover, we have shown the great potential of our method to identify flexible dosing regimens 

that can reach a given therapeutic target. 
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List of abbreviations 

A: adverse responders 

BID: twice a day, bis in die 

CAT: category 

CBZ: carbamazepine 

D: dose 

NR: non-responders 

NR/R: non-responders and responders, partially 

NR/R/A: non-responders, responders and adverse responders, partially 

PD: pharmacodynamics 

PK: pharmacokinetics 

Pop-PK/PD: population pharmacokinetic/pharmacodynamics 

QD: once daily, quaque die 

QID: four times a day, quater in die 

R: responders 

R/A responders and adverse responders, partially 

 : dosing time 

TDD: total daily dose 

TDM: therapeutic drug monitoring 

TI: therapeutic indicator 
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TIEff : effective time 

TITox: toxic time 

TIR: responders 

TIComb: comb 

TID: three times a day, ter in die 

TW: therapeutic window 

TWmax: maximum of the therapeutic window range or minimum toxic concentration 

TWmin: minimum of the therapeutic window range or minimum effective concentration 
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