A study to assess the impact of glycemic profile on quality of life among type II diabetic mellitus patients in outpatient department of selected hospital, Kolkata, West Bengal

Swaramita Ghosh¹, Ratna Biswas²

¹(Nursing Officer, Howrah District Hospital, Howrah, India) ²(Principal, Apollo Gleneagles Nursing College, Kolkata, India)

Abstract:

Background: Diabetes mellitus is a chronic multisystem condition characterised by hyperglycaemia combined with abnormal development of insulin, decreased use of insulin, or both. Now a days, India plays a unique role in the diabetes picture of the world. The aim of the study was assessing the impact of glycemic profile on quality of life among type II Diabetes Mellitus patients attending out patient department of Apollo Gleneagles Hospital, Kolkata.

Materials and Methods: Quantitative approach was adopted with descriptive survey design for this study. The number of participants were 200 type II diabetes mellitus patients selected by nonprobability sampling technique. Data regarding background information was collected from semi-structured questionnaire and value of HbA1c, FBS and PPBS were collected from medical record. Quality of life was assessed using Likert scale on quality of life.

Results: The data were analysed by using descriptive and inferential statistics. Result of the study showed that majority of participants had HbA1c more than 6.5. The mean score of FBS and PPBS were 143.58±49.94 and 212.83.58±83.58 respectively. There was association between quality of life and glycaemic profile. The study also showed that association between quality of life and some selected demographic variables i.e., age and occupation.

Conclusion: The present study can be concluded on the basis of the result that the majority of the diabetic patients showed an average quality of life. In this research, the glycaemic profile, age, and occupation were all found to be associated with quality of life. It can be concluded that the better controlled glycaemic profile showed better quality of life.

Key Word: Glycemic Profile, Quality of life, Impact, Diabetes mellitus patients

Date of Submission: 18-01-2023

Date of Acceptance: 02-02-2023

I. Introduction

Diabetes mellitus is a chronic, progressive disease that causes hyperglycaemia due to the body's inability to metabolize carbohydrates, fats, and proteins. Diabetes mellitus is sometimes referred to as "high sugars" by both clients and health care providers. The idea of associating glucose with diabetes mellitus is appropriate because of passaging of large amounts of urine laced with glucose is specificities of poorly controlled diabetes mellitus. In homeostasis, glycemia is one of the most critical parameters, as glucose is needed to provide the metabolic energy required for many cell functions. The life of every diabetic patient is special, and they feel mentally exhausted by the various laws that the illness imposes upon them. Therefore, assessing patients 'quality of life (QoL) is important because each person has his or her own individualized view of their physical, emotional, and social well-being, which includes satisfaction with the cognitive dimension as well as emotional component happiness. [1] Attention to patients' Quality of Life is growing today, rather than the survival of the patient. Therefore, the quality of life of patients with diabetes should be protected as it can aggravate metabolic disorders. There is a growing knowledge that patient satisfaction with Quality of Life and care has been increased despite good glycaemic control. Type 2 DM patient blood sugar levels need to be tested to achieve a better quality of life. Another glycemic parameter that is frequently used as a diagnostic test for long-term glycemic regulation is haemoglobin glycated. Glycated hemoglobin is a longterm indicator of glycaemic profile. Several studies have shown that patients with type 2 diabetes who receive regular treatment and maintain glycemic control have a higher quality of life. [2]

II. Material And Methods

Thisdescriptive survey study was carried out among 200 type II diabetes mellitus patients attending outpatient Endocrinology and Diabetology department of Apollo Gleneagles Hospitals, Kolkata to assess impact of glycemic profile on quality of life.

Study Design: Descriptive survey research design

Study Location: Endocrinology and Diabetology outpatient department of Apollo Gleneagles Hospitals, Kolkata

Study Duration:4th January, 2021 to 30th January, 2021

Sample size: 200 type II diabetes mellitus patients

Subjects & selection method:

The subjects were patients with type II diabetic mellitus who attended endocrinology and diabetology outpatient department of Apollo Gleneagles hospitals, Kolkata. A nonprobability purposive sampling technique was used for selection of participants who met the inclusion and exclusion criteria.

Inclusion criteria:

- Both adult male and female patients with type II diabetes mellitus.
- Patients with type II diabetes mellitus whose Fasting Blood Sugar and Post Prandial Blood Sugar report were within 1 month back from the day of data collection.
- Patients with type II diabetes mellitus whose glycosylated haemoglobin (HbA1c) report were within 3 months back from the day of data collection.
- Patients, who were diagnosed type II Diabetes Mellitus more than 6months.
- Patients with type II diabetic mellitus, who could read and write Bengali/English/Hindi.

Exclusion criteria:

- Patients with type II diabetes mellitus, who were illiterate.
- Patients with type II diabetes mellitus, who were on steroids.
- Patients with chronic liver disease.
- Patients with type II diabetes mellitus, who were physically challenged.

Procedure methodology

Prior the final data collection, clearance from Institutional Ethics Committee, Apollo Gleneagles Hospital, Kolkata, was taken.Self-introduction was given to the patient and the study purpose was explained.Written informed consents were obtained from the participants.Participants were informed and explained regarding data collection tools.Each day the duration of data collection was 8 hours. The background information of the sample was collected by using questionnaire on background information by paper-pencil method. It consisted of two parts. Glycemic profile value was collected by record analysis and quality of life was assessed by using self-reporting Likert scale on quality of life. Code no was given for each participant to maintain anonymity.

Statistical analysis

Data was analysed using SPSS version 26. Frequency and percentage distribution was done of type II diabetic mellitus in terms of glycaemic profile. Chi square test was performed to test association and their significances existing between the glycaemic profile and quality of life. Frequency and percentage distribution was done of type II diabetic mellitus patients based on quality of life score. Chi square test was performed to test association and their significance existing between the quality of life and some selected demographic variables. The level P < 0.05 was considered as the significance.

III. Result

The table no 1 represented the data obtained through semi structured questionnaire. The table indicated that majority of participants (50%) belonged to age group 55-69 years and only 10% belonged to age \geq 70 years and majority of participants (55.5%) were male and the remaining were female. Most of the participants (47%) belonged to nuclear family, majority of the participants (88%) were married and only 3% were single. About 58.5% of the participants lived in urban area. 38.5% of the participants were graduate and only 7.5% had primary education.

Table 1:Frequency and percentage distribution of demographic profile of type II diabetes mellituspatientsn=200

Variable	s	Frequency (f)	Percentage (%)
Age			
•	25-39	21	10.5
•	40-54	59	29.5
•	55-69	100	50
•	≥70	20	10
Gender			
•	Male	111	55.5
•	Female	89	44.5
Family t	ype		
•	Nuclear	94	47
•	Joint	75	37.5
•	Extended	31	15.5
Marital s	status		
•	Married	176	88
•	Single	6	3
•	Widowed	18	9
Area of l	iving		
•	Urban	117	58.5
•	Semi urban	45	22.5
•	Rural	38	19
Level of	education		
•	Primary	15	7.5
•	Secondary	52	26
•	Higher secondary	26	13
•	Graduate	77	38.5
•	Post graduate and above	30	15

Data presented in Table 2 that about 34.5% of the female participants were homemaker and 20.5% male participants were businessman. Most of the participants' (25.5%) family monthly income belongs to 40,000-59,000. Majority of participants (70%) have health insurance scheme, among them 37.5% have govt. health scheme.

Table 2:Frequency and percentage distribution of demographic profile of type II diabetes mellitus patients n=200

Variables	Frequen	cy (f)	Percent	age (%)
Occupation		Female	Male	Female
 Homemaker Private employee Govt. employee Retired Businessman Teacher 	- 10 10 40 41 10	69 2 2 4 1	5 5 20 20.5 5	34.5 1 1 2 0.05 5.5
Family Monthly Income • 20,000-39,000 • 40,000-59,000 • 60,000-79,000 • 80,000-99,000 • ≥1,00,000	38 51 46 20 45		19 25.5 23 10 22.5	
Health Insurance Scheme No Yes Govt. Health Insurance Scheme Private Health Insurance Scheme Govt. Health Insurance Scheme Govt. Health Insurance Scheme and Private Health Insurance Scheme	60 140 75 53 12		30 70 37.5 26.5 6	

Table no 3 depicted that among the study population, 51.5% participants have no family history of diabetes and 76% never smoked. 30 % participants were smoking for 25-30 years. Only 6.5% consumed alcohol, among them 38.46% were consuming alcohol for 6-10 years. 29.5 % of the participants were living with type 2 Diabetes mellitus for 5 years 1 day to 10 years.

Table 3: Frequency and Percentage distribution of diabetes mellitus health related profile of type II diabetesmellitus patientsn=200

Variables	Frequency (f)	Percentage (%)
History of diabetes in family		
• Yes	97	48.5
• No	103	51.5
Smoking history		
 Never smoker 	152	76
 Former smoker 	33	16.5
 Current smoker 	15	7.5
Duration of smoking (in years)		
• 5-9	2	13.3
• 10-14	2	13.3
• 15-19	3	20
• 20-24	2	13.3
• 25-30	6	40
Consume alcohol		
 Never 	170	85
 Former 	17	8.5
 Current 	13	6.5
Duration of consuming alcohol (in years)		
• 1-5	3	23.07
• 6-10	5	38.46
• 11-15	2	15.38
• 16-20	3	23.07
Diagnosed as Diabetes mellitus		
6months 1day-1year	21	10.5
• 1year 1day -5years	38	19
• 5years 1day-10 years	59	29.5
10year 1day-15 years	43	21.5
• >15years	39	19.5

Data represented in Table no 4 showed that about 38% participants do self-monitoring of blood glucose level and most of participants (75%) were on oral hypoglycaemic agent. Nearly 27.5 % participants walked for life style modification and only 11% participants were on walking, exercise and dietary modification. Majority of the participants (57.5%) had no complication, 18% participants had blurring of vision.

Table 4: Frequency and Percentage distribution of diabetes mellitus health related profile of type II diabetes mellitus patients n=200

Variables	Frequency (f)	Percentage (%)
Self-monitoring of blood glucose level		
• Yes	76	38
• No	124	62
Treatment		
 Oral hypoglycaemic agent 	150	75
Insulin therapy	17	8.5
 Oral hypoglycaemic agent and Insulin 	33	16.5
Life style modification for diabetes		
 Walking 	55	27.5
 Exercise 	20	10
 Dietary modification 	37	18
 Exercise and dietary modification 	27	13.5
 Walking and dietary modification 	24	12
 Walking, exercise and dietary modification 	22	11
Walking and exercise	15	7.5
Complications		
No complication	115	57.5
Heart disease	9	4.5
 Kidney disease 	8	4
Delayed wound healing	1	0.5
 Tingling sensation in lower limb 	12	6
Blurring of vision	36	18
 Delayed wound healing, tingling sensation and vision 	2	1
Delayed wound healing and vision	1	0.5
Heart disease and vision	4	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$
Tingling sensation and vision	6	-
Heart disease, kidney disease, foot ulcer and vision	1	0.5
Kidney disease and tingling sensation	1	0.5
There of disease and displing sensation	1	0.5

Variables	Frequency (f)	Percentage (%)
 Heart disease, kidney disease and tingling sensation 		
Kidney disease and vision	2	1
Heart disease and tingling sensation	1	0.5

Data presented in Table 5 showed that most of the participants' (58.5%) HbA1c level was more than 6.5 was, 41.5% participants had HbA1c level less than equal 6.5. Majority of the participants (59.5%) had fasting blood sugar more than 126. About 56.5% participants had post prandial blood sugar level less than or equal 200.

Table 5: Frequency and Percentage of glycosylated haemoglobin values, fasting blood sugar and post prandial blood sugar n=200

Variables	Frequency(f)	Percentage (%)
Glycosylated haemoglobin	11equency (1)	1 or contage (70)
HbA1c ≤6.5	83	41.5
HbA1c >6.5	117	58.5
Fasting blood sugar		
Less than or equal 126	81	40.5
More than 126	119	59.5
Post prandial blood sugar		
Less than equal 200	113	56.5
More than 200	87	43.5

Data presented in Table 6showed that mean and standard deviation of fasting blood sugar are 143.58 and 49.94 and also showed that mean and standard deviation of post prandial blood sugar are 212.43 and 83.58.

Table 6:Mean and standard deviation of fasting blood sugar and post prandial blood sugar level

n=200

Variables	Mean	Standard deviation
Fasting blood sugar	143.58	49.94
Post prandial blood sugar	212.43	83.58

This table 7 showed that mean and standard deviation of diet, sleep and rest, mobility and energy, therapeutic compliance, emotional well-being, social well-being, total quality of life score were (16.97 ± 3.29) , (11.14 ± 2.51) , (13.63 ± 3.55) , (31.28 ± 3.98) , (18.32 ± 3.66) , (16.51 ± 3.23) , (107.80 ± 11.287) respectively. Mean percentage was higher in therapeutic compliance (78.2).

Table 7:Mean, range mean percentage and standard deviation of each domain of Quality of life score n=200

Variables (Domain)	Range	Mean	Mean percentage	Standard deviation
Diet	16(8-24)	16.97	67.88	3.29
Sleep and rest	12(3-15)	11.14	74.26	2.51
Mobility and energy	16(4-20)	13.63	68.15	3.55
Therapeutic compliance	19(21-40)	31.28	78.2	3.98
Emotional well-being	17(8-25)	18.32	73.28	3.66
Social well-being	19(6-25)	16.51	66.04	3.23
Total quality of life score	61(79-140)	107.80	71.86	11.287

According to Table 8, most of type II diabetic patients (74%) had average quality of life.

Table 8:Frequency and Percentage distribution of quality of life score

n=200

Variables	Frequency(f)	Percentage (%)
Good quality of life	31	15.5
Average	148	74
Belowaverage	21	10.5

From the table 9, Chi-square value (6.683) was computed. Hence, computed Chi-square (6.683) was more than the table value at 0.05 level of significance. So, it was significant. Hence, there was association between the glycosylated haemoglobin value and quality of life of patients with type II diabetic mellitus patients.

Table 9: Chi square test of association between quality of life score and glycosylated haemoglobin value

	11-20	·			
Variable glycosylated haemoglobin value	Quality of life s	core	Calculated χ ²	df	
	Good quality of life	Average quality of life	Below average quality of life		
HbA1c≤6.5	17	62	4	C (92 n	
HbA1c >6.5	14	86	17	6.683*	2

 χ 2 value at df (2) = 5.99, p<0.05 *Significant

From thetable 10, Chi-square value (13.558) was computed. Hence computed Chi-square (13.558) was more than the table value at 0.05 level of significance. So, it was significant. Hence, there was association between the fasting blood sugar and quality of life of patients with type II diabetic mellitus patients.

From the table 10, Chi-square value (9.946) was computed. Hence computed Chi-square (9.946) was more than the table value at 0.05 level of significance. So, it was significant. Hence, there was association between post prandial blood sugar and quality of life of patients with type II diabetic mellitus patients.

Table 10: Chi square test of association between quality of life score and fasting blood sugar and post prandial blood sugar

			11-200
Quality of life score	e	Calculated χ ²	df
≤Median (108)	>Median (108)		
31 77	50 42	13.558*	1
50 58	63 29	9.946*	1
	≤Median (108) 31 77 50	31 50 77 42	SMedian (108) >Median (108) 31 77 42 13.558* 50 63

 χ 2 value at df (1) = 3.84, p<0.05 *Significant

Based on the above study finding, hypothesis derived as-

 H_1 = There is a significant association between quality of life and glycosylated hemoglobin value at 0.05 level of significance.

 H_2 = There is a significant association between quality of life and fasting blood sugar at 0.05 level of significance.

 H_3 = There is a significant association between quality of life and postprandial blood sugar at 0.05 level of significance.

From the above table 11, in case of age Chi-square value (9.962) was computed. Hence computed Chi-square (9.962) was more than the Table value at 0.05 level of significance. So, it was significant. Hence, there was association between age and quality of life of patients with type II diabetic mellitus patients.

From the above table 11, in case of occupation Chi-square value (14.369) was computed. Hence computed Chi-square (14.369) was more than the Table value at 0.05 level of significance. So, it was significant. Hence, there was association between occupation and quality of life of patients with type II diabetic mellitus patients.

 Table 11: Chi square test of association between quality of life and selected demographic variables

n=200

Variables	Quality of life sco	ore	G.1. 1.4. 12	df
	≤Median (108)	>Median (108)	Calculated χ ²	aı
Age				
25-39	11	10	9.962*	3
40-54	36	23		
55-69	45	55		
≥70	16	4		
Gender	55	56		
Male	53	36	1.989	1
Female	33	30	1.909	1

DOI: 10.9790/1959- 1201035562 www.iosrjournals.org 60 | Page

Family type				
Nuclear				
Joint	51	43	0.516	2
	42	33	0.510	_
Extended	15	16		
Marital status				
Married	95	81		
Single	3	3	0.168	2
Widowed	10	8		
A	10	0		
Area of living Urban	58	59		
0.10.111	25	20		
Semi urban	25	13	3.093	2
Rural	23	13		
Level of education				
Primary	11	4		
Secondary	30	22		
Higher secondary	11	15	5.362	4
Graduate	43	34	3.302	4
Post graduate and above	13	17		
Occupation				
Homemaker	41	28		
Private employee	8	4		
Govt. employee	1	11	14.369*	5
Retired	20	24		
Businessman	26	16		
Teacher	12	9		

 χ 2 value at df (3) = 7.82, χ 2 value at df (5) =11.07, p<0.05 *Significant

Based on the above study finding, hypothesis derived as-

 H_4 = There is a significant association between quality of life and age and occupation at 0.05 level of significance.

IV.Discussion

In this present study showed that 41.5% type II diabetes mellitus patients who were on treatment had HbA1c level less than equal 6.5 and 58.5% type II diabetes mellitus patients had HbA1c level more than 6.5. This was supported by a study which was conducted by WH WF, Juni MH, Salmiah MS, Azuhairi AA, Zairina AR. among 324 type 2 diabetes mellitus patients where 33.6% patients had HbA1c level more than 6.5 and 66.4% patients had HbA1c more than equal 6.5. [3]

In this study mean and standard deviation of fasting blood sugar of type II diabetes mellitus patients are 143.58 and 49.94. These findings were supported by a study done by George M, Joseph L, Koshy LV. where they showed that mean of fasting blood sugar was 157.74 and standard deviation of fasting blood sugar was 55.35. [4] These findings also were supported by Niaz F, Basir F, Shams N, Shaikh Z, Ahmed I. in their research article where mean and standard deviation of fasting blood sugar were 156 and 50 respectively. [5]

In this study mean and standard deviation of post prandial blood sugar of type II diabetes mellitus patients are 212.43 and 83.58. These findings also were supported by Jain V, Shivkumar S, Gupta O. In their research article they had shown mean and standard deviation of post prandial blood sugar were 242.5 and 84.37 respectively. [6]

The study result showed that mean and standard deviation of quality of life were 107.80 and 11.287 respectively among type II diabetes mellitus patients. Findings of the study supported by a study conducted by George M, Joseph L, Koshy LV., the study result showed that mean of quality of life is 108.4 and standard deviation is 20.74. [4]

In the present study, the data showed that 15.5% type II diabetes mellitus patients had good quality of life, 74% had average quality of life and 10.5% had below average quality of life. These findings were supported by the findings of the study conducted by Kumar P, Agarwal N, Singh CM, Pandey S, Ranjan A, Kumar D. In this study majority of the participants (56.5%) had average quality of life, 32.9% had good quality of life and 10.6% participants had bad quality of life. [7]

Findings of this study showed that there was a statistically significant association between quality of life score and glycosylated haemoglobin value, at 0.05 level of significance. This finding was supported by a study conducted by PrasannaKumar HR, Mahesh MG, Menon VB, Srinath KM, Shashidhara KC, Ashok P. among 200 type 2 diabetes mellitus patients. [8]

In this study result, there was a statistically significant association between quality of life and fasting blood sugar at 0.05 level of significance. Finding of this study supported by a article presented by Kumar R,

Krishan, Jhajj R. where they had shown that quality of life was significantly associated with fasting blood sugar.

In this study result, there was a statistically significant association between quality of life and age and occupation at 0.05 level of significance. This result was supported by a study conducted by Prasannakumar HR, Mahesh MG, Menon VB, Srinath KM, Shashidhara KC, Ashok P among 200 type 2 diabetes mellitus patients. [8]

V. Conclusion

The present study can be concluded on the basis of the result that the majority of the diabetic patients showed an average quality of life. In this research, the glycaemic profile, age, and occupation were all found to be associated with quality of life. It can be concluded that the better controlled glycaemic profile showed better quality of life.

References

- [1]. Luscombe FA. Health-related quality of life measurement intype 2 diabetes. Value in Health [Internet]. 2000 Nov-Dec [cited 2020 Jul 28];3(1): S15-28. Available from: https://www.sciencedirect.com/science/article/pii/S109830151170016X [Google scholar]
- [2]. Amelia R, Lelo A, Lindarto D, Mutiara E. Quality of life and glycemic profile of type 2 diabetes mellitus patients of Indonesian: A descriptive study. IOP Conf Ser Earth Environ Sci. 2018 [cited 2020 Jan 24];125(1):0–5. Available from: https://www.researchgate.net/publication/323951154_Quality_of_life_and_glycemic_profile_of_type_2_diabetes_mellitus_patients_of_Indonesian_a_descriptive_study [Google Scholar]
- [3]. WH WF, Juni MH, Salmiah MS, Azuhairi AA, Zairina AR. FACTORS ASSOCIATED WITH GLYCAEMIC CONTROL AMONG TYPE 2 DIABETES MELLITUS PATIENTS. International Journal of Public Health and Clinical Sciences [Internet]. 2016 May-Jun 21[cited 2020 Mar 19] ;3(3):89-102. Available from: https://www.researchgate.net/publication/310952771_Factors_Associated_with_Glycaemic_Control_among_Type_2_Diabetes_Me llitus_Patients [Research gate]
- [4]. George M, Joseph L, Koshy LV. A Study on Quality of Life Assessment among Patients with Type 2 Diabetes Mellitus in a Tertiary Care Hospital in Southern Kerala. Ijppr.Human [Internet]. 2016 July 25 [cited 2020 Dec 25]; 6 (4): 601-39. Available from: https://www.ijppr.humanjournals.com/wp-content/uploads/2016/08/43.Mathew-George-Prof.-Dr.-Lincy-Joseph-Linu-V.-Koshy.pdf.
- [5]. Niaz F, Bashir F, Shams N, Shaikh Z, Ahmed I. Cutaneous manifestations of diabetes mellitus type 2: prevalence and association with glycemic control. Journal of Pakistan Association of Dermatology [Internet]. 2016 Nov 18 [cited 2021 Apr 4];26(1):4-11. Available from: http://www.jpad.com.pk/index.php/jpad/article/view/67 [Google Scholar]
- [6]. Jain V, Shivkumar S, Gupta O. Health-Related Quality of Life (Hr-Qol) in Patients with Type 2 Diabetes Mellitus. N Am J Med Sci [Internet]. 2014 Feb [cited 2021 Apr 4]; 6 (2): 96-101. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3968572/ DOI: https://dx.doi.org/10.4103%2F1947-2714.127752 [Google Scholar] [PubMed]
- [7]. Kumar P, Agarwal N, Singh CM, Pandey S, Ranjan A, Kumar D. Diabetes and quality of life-a pilot study. Int J Med Sci Public Health [Internet]. 2016 [cited 2021 April 4];5(6):1143-47. Available from: https://www.bibliomed.org/?mno=202186 . DOI: 10.5455/ijmsph.2016.18092015155 [Google Scholar]
- [8]. PrasannaKumar HR, Mahesh MG, Menon VB, Srinath KM, Shashidhara KC, Ashok P. Patient Self-reported quality of life assessment in Type 2 diabetes mellitus: A pilot study. Niger J Clin Pract [Internet]. 2018 Mar 9[cited 2020 Mar 30];21(3):343-49. Available from: https://www.njcponline.com/article.asp?issn=1119-3077;year=2018;volume=21;issue=3;spage=343;epage=349;aulast=PrasannaKumar . DOI: 10.4103/njcp.njcp_433_16 [Google Scholar]
- [9]. Kumar R, Krishan, JhajjR.Health-related quality of life and factors affecting it in type-2 diabetic nephropathy patients: a cross sectional observational study. Int J Res Med Sci. [Internet]. 2016 May [cited 2021 Apr 6];4(5): 1511-17 Available from: https://www.msjonline.org/index.php/ijrms/article/view/750 . DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20161220

Swaramita Ghosh, et. al. "A study to assess the impact of glycemic profile on quality of life among type II diabetic mellitus patients in outpatient department of selected hospital, Kolkata, West Bengal." *IOSR Journal of Nursing and Health Science (IOSR-JNHS)*, 12(1), 2023, pp. 55-62.