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Abstract: It has been widely recognized that the performance of a multi-agent system (MAS) is highly affected 

by its organization. A large scale MAS may have billions of possible ways of organization, depending on the 

number of agents, the roles, and the relationships among these agents. These characteristics make it impractical 

to find an optimal choice of organization using exhaustive search methods. In this report, we propose a genetic 

algorithm aided optimization scheme for designing hierarchical structures of multi-agent systems. We introduce 

a novel algorithm, called the hierarchical genetic algorithm, in which hierarchical crossover with a repair 

strategy and mutation of small perturbation are used. The phenotypic hierarchical structure space is translated 

to the genome-like array representation space, which makes the algorithm genetic-operator-literate. A case 

study with 10 scenarios of a hierarchical information retrieval model is provided. Our experiments have shown 

that competitive baseline structures which lead to the optimal organization in terms of utility can be found by 

the proposed algorithm during the evolutionary search. Compared with the traditional genetic operators, the 
newly introduced operators produced better organizations of higher utility more consistently in a variety of test 

cases. The proposed algorithm extends the search processes of the state-of-the-art multi-agent organization 

design methodologies, and is more computationally efficient in a large search space. 

Keywords: genetic algorithm, hierarchical crossover, information retrieval, multi-agent systems, organization 

design, optimization, representation, tree structures. 

 

I. Introduction 
The research on the organization of a multi-agent system (MAS) has attracted much interest in recent 

years. An organization provides a framework for activities and interactions in a MAS through the definition of 

agent roles, groups, tasks, behavioral expectations and authority relationships such that all the agents in the 

MAS can cooperate systematically and contribute to the common good of the overall system. More specifically, 

the organization defines which resources an agent is able to acquire, what roles/functions it takes, with which 
other agents it is allowed to exchange information, etc. 

A proper organization for a MAS can ensure the behavior of the agents to be externally observable and 

make up for the major drawback of the traditional agent centered MAS in which the patterns and the outcomes 

of the interactions are inherently unpredictable because of the high likelihood of emergent (and unwanted) 

behavior [4]. Particularly, in large scale systems, to form and evolve an organization makes it possible for the 

system to exploit collective efficiencies and to manage emerging situations [12]. So far, a number of 

organization designs have been proposed for multi-agent systems [9]. Experiments and simulations have shown 

that various organizations employed by a system with the same set of agents may have different impacts on its 

performance [8][15][5][10][17][21]. 

Among all kinds of organizations, the hierarchical structure is one of the most common structures 

observed in multi-agent systems. Like human organizations, primate societies, and insect colonies, many multi-

agent systems can be abstracted as hierarchical, tree-like structures or sets of parallel hierarchical structures, 
where agents are categorized in different levels in the hierarchies [11]. Often, the level of an agent indicates its 

capabilities and roles. In other words, a specific level in the system consists of equally capable agents, 

performing similar roles. Agents at the bottom level may execute the routine tasks under the orders given by 

their higher-level authorities, whereas agents at the top level may assign the task, collect and assemble the 

returned information from their subordinates, as seen in the distributed information retrieval (IR) system 

described in [10].  

For a large hierarchical MAS, there exist a great variety of possible ways to organize the system, which 

induces different agent behaviors and system characteristics. Due to the difference in the depth and the width of 

the hierarchy, the number of organization instances increases exponentially with the number of agents, which 

poses a great challenge for us to construct the most suitable organization for a given system. Although many 

methodologies for organization modeling have been proposed, few of them present an effective way to search 
for an optimal organization instance. 
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In order to solve the problem, this report proposes a genetic algorithm (GA) approach as an alternative to the 

conventional enumeration methods for optimizing hierarchical multi-agent systems. Inspired by biological 

evolution processes such as selection, reproduction, and mutation, GAs are known to be robust global search 
algorithms for optimization and machine learning [7][2][3]. The heuristic nature of GA helps it to locate the 

global optimum in a vast search space. We design novel crossover and mutation operators to make the algorithm 

suitable for organization evolution and thereby ensure competitive performance. We tested the algorithm in an 

example of the IR model [10] which exhibits numerous possible organizational variants and verify its capability 

through simulations in different scenarios.  

The rest of the report is structured as follows. Section 2 discusses the related work. In Section 3, we 

introduce the representation of organization employed in our algorithm, followed by the newly proposed 

crossover and mutation operators in Section 4. Section 5 proceeds with description of the IR model in our case 

study, with implementation details and experimental setup. And in Section 6, the simulation results are 

presented with the number of databases varying from 12 to 30. We analyze the results by comparing the 

different test cases which show the impact of environment variables on the best organizations obtained. The 
proposed algorithm is compared with the standard genetic algorithm (SGA) with one-point crossover and two-

point crossover in terms of its search accuracy and stability. In Section 7, we further compare our algorithm with 

the search process of the state-of-the-art multi-agent organization design methodologies. In the last section, we 

conclude the report and discuss promising future research directions in this topic. 

 

II. Related Work 
The design of a multi-agent system organization has been investigated by many researchers. Early 

methodologies such as Gaia [19] and OMNI [18] aim to assist the manual design process of agent organizations. 

In these models the roles that agents have to play within the MAS and the interaction protocols are identified. 
Instead of relying heavily on the expertise of human designers, it is desirable to automate the process of 

producing multi-agent organization designs. In this case, a quantitative measurement of a set of metrics is 

essentially needed for us to rapidly and precisely predict the performance of the MAS. With these metrics we 

can evaluate a number of organization instances, rank them, and select the best organization without having to 

introduce heavy cost by actually implementing the organization designs. 

In [10], the utility value was defined as the quantitative measurement of the performance of a distributed sensor 

network and an information retrieval system. An organizational design modeling language (ODML) was 

proposed and a template was constructed for each domain. Several approaches, including the exploitation of 

hard constraints and equivalence classes, parallel search, and the use of abstraction, have been studied in order 

to reduce the complexity of searching for a valid optimal organization. 

Another organization designer, KB-ORG, which also incorporates quantitative utility as a user 

evaluation criterion, was proposed for multi-agent systems in [17]. It uses both application-level and 
coordination-level organization design knowledge to explore the combinatorial search space of candidate 

organizations selectively. This approach significantly reduces the exploration effort required to produce 

effective designs as compared to modeling and evaluation-based approaches that do not incorporate designer 

expertise. 

Nonetheless, similar to ODML, KB-ORG aims at pruning the search space. However, the design 

knowledge alone is inadequate for the identification of an optimal design when the possible varieties of the 

organization structure become large. 

Evolutionary based search mechanisms have been used to help the design of MAS organizations on a 

few occasions. For example, in [20], a GA-based algorithm is proposed for coalition structure formation which 

aims at achieving the goals of high performance, scalability, and fast convergence rate simultaneously. And in 

[13], a heuristic search method, called evolutionary organizational search (EOS), which is based on genetic 
programming (GP), was introduced. A review of evolutionary methodologies, mostly involving co-evolution, 

for the engineering of multi-agent market mechanisms, can also be found in [16]. These techniques show a 

promising direction to deal with the organization search in hierarchical multi-agent systems, as exhaustive 
methods, such as breadth-first search and depth-first search, become inefficient and impractical in a large search 

space. 

 

III. Representation of Organizations 
Generally speaking, the organization of a  hierarchical MAS consists of a number of tree structures. It 

can either be a single tree, where the root node is the sole leader of the organization, or a set of trees, where 
there are several equally important leaders that communicate with each other and share the decision-making 

power. The intermediate nodes in a tree have the responsibility to assign tasks to their subordinates, as well as 

reporting the results of the accomplished tasks back to their higher-level authorities. Information exchange is 

only allowed in the vertical directions between higher and lower levels, and there is no interaction of agents 
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horizontally, or among different hierarchies. The leaf nodes are the bottom of the structure and they complete 

the most basic tasks. 

Optimization in such a search space can be handled by evolutionary algorithms [3], especially genetic 
programming, which supports populations of model structures of varying length and complexity. It has also 

been shown from previous studies that some well-structured trees (e.g. binary trees), with a certain number of 

levels and a fixed number of subordinates per node, can be represented by arrays [14][1]. Transformations are 

feasible as a result of their regular structures, which thereby allow the traditional crossover and mutation 

operators of other evolutionary algorithms, such as genetic algorithms, to take effect. 

We propose an array representation of hierarchical MAS organizations which is applicable to a much 

broader range of hierarchical structures than just binary trees. It converts s set of hierarchical trees into a fixed-

length array with integer components, which resemble gene sequences. The representation is not limited to 

describe a single tree, and the number of subordinates of each node need not be a constant. Unbalanced trees, in 

which leaf nodes are not on the same hierarchical level, can also be depicted using this representation. 

 

3.1 Translating Organizations into Genomes 

We assume that the hierarchical MAS considered here have the following properties. We assume that 

the number of leaf node agents is fixed before the search. We also assume that the maximum possible number of 

levels is determined. Thus, the total number of agents in the organization is bounded. Based on these 

assumptions, we can make use of the partition concept to convert the organization from tree structures to arrays. 

Let N be the total number of leaf nodes or end nodes, so that the they can be numbered as 1, 2, …, N 

respectively from left to right. Let M be the maximum tree depth (i.e. maximum height of the structure). The 

reason for limiting the height is that very tall structures can be slow or irresponsive, as the long path length from 

root to leaf increases message latency among the agents. The organization of a hierarchical MAS can be 

outlined by Representation 1: 

a1a2a3…aN–1 

where ai is an integer between 1 and M, denoting the level number where leaf nodes i and i+1 start to 
separate. 

An example with seven leaf nodes (N=7) is illustrated in Figure 1. It consists of two trees. On Level 1, the four 

leaf nodes on the left and the three leaf nodes on the right separate into two trees. In other words, there is one 

separation between the leaf nodes 4 and 5, so a4=1. On Level 2, there are two leaf nodes and one intermediate 

node (three nodes altogether) under the left tree root, corresponding to the “2 2” (two partition numbers) to the 

left of the “1” in the array. The one leaf node and one intermediate node (two nodes altogether) under the right 

tree root give the “2” (one partition number) to the right. Both intermediate nodes on Level 2 have two leaf 

nodes as their subordinates (leaf nodes 3 and 4, leaf nodes 6 and 7), which are separated on Level 3, resulting in 

the two 3‟s in the 3rd and 6th places in the array. Therefore, the array “2 2 3 1 2 3” fully specifies the 
organization. 

Conversely, we can also obtain an organization by interpreting the representation array. For instance, if 

we want to determine which level node 4 in Figure 1 sits on, we need to examine both the node's left and right 

neighbor. The third and forth digits in the array are “3” and “1”. It means that node 3 and node 4 are separated 

on Level 3. Node 4 and node 5 are separated on Level 1. As a result, we can place node 4 on Level 3 (larger 

number between 3 and 1). Similarly, because the fifth digit is “2”, i.e. node 5 and node 6 are separated on level 2, 

node 5 can be put on level 2 (larger number between 2 and 1). 

 

 

 

 

2 2 3 1 2 3 

Figure 1:  A sample organization and its array representation. Agent 

nodes are displayed as circles in the figure, and leaf nodes are numbered. 
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Theorem:  

The above representation has the following properties. 

(1) For every hierarchical organization instance which satisfies our assumptions in the beginning of 
Section 3.1, the array representation that can be generated is unique. 

(2) For every representation of the above mentioned form, there is an organization instance corresponding 

to it. 

Proof: 

(1) We firstly prove the existence of an array representation for every hierarchical organization instance. 

The way of generating an array representation of an arbitrary hierarchical organization instance can be 

expressed as follows. If there are N leaf nodes, we prepare N–1 slots. Firstly, organize the structure well so that 

the root nodes, intermediate nodes, and leaf nodes are on their proper levels. Secondly, we examine the 

separation pattern between adjacent leaf nodes one by one from left to right. Fill the slots with the level number 

where the adjacent leaf nodes start to separate. See Figure 1 for an example. The first two leaf nodes on the left 

are direct subordinates of the first tree root, i.e. on the root level (Level 1) they do not separate. However, on 

Level 2, they separate into different nodes. So the first number is 2. The second slot should also be filled with 

number 2 because the second and third leaf nodes on the left separate on Level 2. The third leaf node belongs to 
an intermediate node on Level 2 different from the second leaf node. And as the third and fourth leaf nodes are 

direct subordinates of an intermediate node on Level 2, they start to separate on Level 3. Number 3 should be 

the third number in the array representation. And so on, we can get the values, which are the level numbers, for 

all the slots. Together they form the required representation. 

We then prove the uniqueness of the generated array representation. If array representations 

a1a2a3…aN–1 and b1b2b3…bN–1 which are derived from the same organization instance are different, there exits an 

i{1, 2, …, N} such that ai≠bi. This shows that the leaf nodes i and i+1 separate at different levels in the two 

corresponding organization structures, which means the organization structures are not identical. 

 (2) Given an array representation with positive integers of length L, we would like to construct an 

organization instance containing L+1 leaf nodes as follows. Find all the digit “1”s in the representation (if there 

are any). Calculate the number of digits (greater than 1) between adjacent 1‟s one by one from left to right, and 
denote them as n1, n2, n3, …, nk+1, where k is the number of 1‟s. If there are no 1‟s, then k=0 and n1=L. The 

corresponding organization has k+1 root nodes with n1+1, n2+1, n3+1, …, nk+1+1 leaf nodes, respectively, from 

left to right. So far we have completed the root level (Level 1) of the organization. For instance, with array [2 2 

3 1 2 3], n1=3, n2=2, i.e. there are two root nodes with 4 and 3 leaf nodes respectively. For Level 2, we take 

segments with 1‟s and 2‟s as separators. These segments should only contain digits greater than 2 (if any). Like 

what is done for Level 1, the number of digits between adjacent separators are recorded as r1, r2, r3, …, rt+1, 

where t is the number of 1‟s and 2‟s. If ri=0, it corresponds to a leaf node; otherwise, it corresponds to an 

intermediate node on Level 2. After that, take segments with 1‟s, 2‟s, and 3‟s as separators, and repeat the steps 

until the greatest numbers in the representation are examined. In this way we can obtain the full organization 

instance. 

Note that the organization instance is non-unique. Figure 2(a) illustrates an extreme case where all 

three leaf nodes separate on Level 2, so the representation is [2 2]. It has the same representation as the 
organization in Figure 2(b). When such circumstances arise, we should examine all the possible organization 

instances that correspond to a representation and use the best one. In the following section we explain that in the 

IR model, the sub-organizations having nodes with only one subordinate are uneconomical and should be 

simplified to achieve higher utility. Therefore, we only need to focus on the most simplified organization 

instance. 

So far, we have established a surjective mapping from the set of all valid structure instances containing 

N leaf nodes with maximum height M, denoted as A, to the set of all arrays containing N–1 integer elements 

 

(a)                         (b) 

Figure 2:  Organizations with the same representation. 
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ranging from 1 to M, denoted as B. Furthermore, the representation is compatible with genetic operators such as 

one-point, two-point or uniform crossover, i.e. the offspring generated after the crossover of individuals from set 

B still belong to set B. Bit-wise mutation can also be applied here, so that every bit of the genome ai is mutated 
to a randomly picked different value from {1, 2, …, M}\{ai} according to the user defined mutation probability. 

 

3.2 Simplifying Organizations 

The above representation can be applied to a general hierarchical MAS organization. For specific 

organization search problems, we may find it beneficial to simplify the representation in order to prune the 

search space and avoid unnecessary candidate evaluations of the algorithm. The simplification steps should be 

determined by the designer depending on the problems. Trimming, combining, and reducing of branches are 

easy to achieve using the proposed representation. We will give an example of how to remove redundant 

intermediate nodes of the IR system in Section 5.2.  

 

3.3 Variations of Representations 
In Section 3.1, we have assumed that the leaf nodes are homogeneous. In such circumstances, a 1×N–1 

array is enough to represent a hierarchical organization of a MAS. Nonetheless, in view of the circumstances 

where each leaf node must be treated uniquely, a second row can be added to the array representation to address 

the distinction resulting from permutations. This will make the representation to be in the form of a 2×N–1 array 

(Representation 2): 














1321

1321

N

N

pppp

aaaa





 
where {ai} are still integers between 1 and M, denoting the level of the partition between leaf nodes i and i+1, 

and p1, p2, …, pN–1 are a permutation of 1 to N with the last number discarded. Still using the example in Figure 
1, now we use numbers 1, 2, …, 7 to distinguish the mutually different leaf nodes. If in the organization they are 

5, 3, 2, 1, 4, 7, 6, respectively, then the representation is: 










741235

321322

. 

One may also want to design an organization in which the number of leaf node agents is not fixed beforehand. 

To account for varied number of leaf node agents, we may use the following Representation 3: 


s0')(

1321

12

1
000

NN

Naaaa



 

where N1 is the actual number of leaf nodes of the representation, N2 is the maximum number of leaf nodes 
allowed in the organization, and the remaining positions are filled with zeros. 

These variants of representations will function in the same manner as the Representation 1 when taken to go 

through genetic operators which are introduced next. 

 

IV. Crossover and Mutation Operators 
The traditional one-point crossover chooses a random slicing position along the chromosomes of both 

parents. All data beyond that point in either solution is swapped between the two parents. The resulting 

chromosomes are two offspring. Though commonly used in genetic algorithms, this crossover method only 

influences the structure near the crossover point, as shown in Figure 3(a,b). It may not be enough to generate 
new offspring in large-scale systems. To speed up the evolution and increase the chance of getting a desired 

structure with higher utility, new crossover operators are needed. In this report, we propose a novel crossover 

operator - hierarchical crossover - specially designed for optimization of tree-structured organizations. 
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The proposed hierarchical crossover operator based on the previously described Representation 1 

contains swapping of sub-organizations and a repair strategy to keep the number of total leaf nodes constant. It 

is implemented as follows. 

First of all, we compare the number of structure levels of two randomly selected organization solutions from the 

population. Denote the organization with more levels as the first individual and the number of levels as T. 

Denote the organization with fewer levels as the second individual. (In the case of a tie, the order can be 

arbitrarily assigned.) After that, we choose a node randomly from all nodes whose level number is between 1 

and T–1 from the first solution and denote the level number of the chosen node as S. Thirdly, we choose a node 

randomly at Level S, or the penultimate level, whichever is smaller, from the second solution, and exchange the 
sub-structures between the two solutions below the chosen nodes. If any of the solution candidates have only 

 

(a)  Array representation 

 

(b)  One-point crossover 

 

(c)  Hierarchical crossover 

Figure 3:  Illustration of one-point crossover and hierarchical crossover using 

array representation and organization structures. 
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one level, we generate two random individuals of maximum tree depth instead. The exchange ensures that the 

two newly formed organization structures do not exceed the maximum height of their parent structures. 

However, the exchanged sub-structures do not necessarily contain equal number of leaf nodes. Thus, we 
propose the following repair strategy. 

Find the solution with longer representation and randomly pick out one digit from it and insert this digit 

into a random slot in the other solution. Continue until the two solutions have equal length. This will guarantee 

the validity of the two solutions, as shown in Figure 3(a,c). Illustrated in both the array representation and the 

organization structures, Figure 3 displays the difference between the proposed hierarchical crossover and one-

point crossover. The pseudo code of hierarchical crossover is given in Figure 4. 

To apply hierarchical crossover to Representation 2, all we need is to bundle each column and move 

the second row together with the first row. As for organizations in Representation 3, the repair strategy is 

implemented with the digits randomly picked out from non-zero locations only and until each selected 

organizations have the same number of leaf nodes as before. 

 

As seen in Figure 3, a branch of the tree is corresponding to a piece of gene fragment. By swapping the two 

selected gene segments in the parents, we get two new organization instances with exchanged sub-organizations. 

This step is similar to two-point crossover, in which the segments between the two randomly selected crossover 
points of both parents are swapped to form the offspring. However, like one-point crossover, two-point 

Let parent1 and parent 2 be the array representations of two selected parents.  
 
if max(parent1)<max(parent2) 
    Exchange parent1 and parent2; 
end 
T = max(parent1); 
if T==1 or max(parent2)==1 
    Randomly generate offspring1 and offspring2 of maximum tree depth; 
    return 
end 
 
For parent1: 
List all possible crossover nodes of parent1 from Level 1 till T-1; 
Randomly select a node from the above list as cp1; 
Record the level number of cp1 as S; 
Get the segments of the array representation of the sub-structure below cp1 as portion_c1; 
Get the segments of the array representation to the left of the sub-structure below cp1 as portion_l1; 
Get the segments of the array representation to the right of the sub-structure below cp1 as portion_r1; 
 
For parent2: 
Randomly select a node cp2 from parent2 at the level number min(S, max(parent2)-1));  
Get the segments of the array representation of the sub-structure below cp2 as portion_c2; 
Get the segments of the array representation to the left of the sub-structure below cp2 as portion_l2; 
Get the segments of the array representation to the right of the sub-structure below cp2 as portion_r2; 
offspring1 = [portion_l1 portion_c2 portion_r1]; 
offspring2 = [portion_l2 portion_c1 portion_r2]; 
  
Repair strategy: 
if length(offspring1)>length(parent1) 
    exnum = length(offspring1)-length(parent1); 
    for j=1:exnum, 
        Randomly select an integer p1 between 1 and length(offspring1); 
        Randomly select an integer p2 between 1 and length(offspring2)+1; 
        offspring2 = [offspring2(1:p2-1) offspring1(p1) offspring2(p2:end)]; 
        offspring1 = [offspring1(1:p1-1) offspring1(p1+1:end)]; 
    end 
elseif length(offspring2)>length(parent2) 
    exnum = length(offspring2)- length(parent2); 
    for j=1:exnum, 
        Randomly select an integer p2 between 1 and length(offspring2); 
        Randomly select an integer p1 between 1 and length(offspring1)+1; 
        offspring1 = [offspring1(1:p1-1) offspring2(p2) offspring1(p1:end)]; 
        offspring2 = [offspring2(1:p2-1) offspring2(p2+1:end)]; 
    end 
end 

Figure 4:  Pseudo code for hierarchical crossover. 
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crossover also does not concern whether the selected gene segments correspond to the whole tree branches or 

not. And as long as the two crossover points are determined, the segments are fixed and the locations of them in 

the arrays do not change. Hierarchical crossover is different from two-point crossover in that it focuses on the 
branches of the tree structures and only change the gene segments that refer to whole branches. Moreover, the 

locations of the two gene segments of the parents may differ from each other, and the repair strategy promotes 

population update. 

In addition to the crossover method mentioned above, we use the mutation of small perturbation. It is 

different from bit-wise mutation in that the digit can only increase by 1 or decrease by 1 with equal probability. 

In the cases of the boundaries, if the perturbed digit is out of bounds, the original value is restored. The pseudo 

code of the mutation operator based on Representation 1 is displayed in Figure 5. 

 

V. The Information Retrieval Model 
In this report we will examine the algorithm in the information retrieval system [10]. A structured, 

hierarchical organization composed of nodes as mediators, aggregators, and databases is used to model the IR 

system. An agent is assigned for each node to take the corresponding functions. The information recall and the 

query response time are combined to form a metric to determine the utility of the organization. We will 

summarize the derivation of the utility function in the following section. Detailed procedures to calculate the 

utility can be found in [10]. In the template of the IR system shown in Figure 6, directed edges with a solid 

arrow represent has-a relations, and the corresponding label indicates the magnitude of that relation, and 

hollow-arrow edges represent is-a relations. 

At the top level of each hierarchy is a mediator. The user sends a query, which a randomly assigned 

mediator is responsible to handle. It uses the collection signatures of all the mediators to compare data sources, 

then routes the query to those mediators that seem appropriate. After the query has been directed through the 

aggregators and processed by all the databases under the selected mediators, the responsible mediator finally 

collects and delivers the resulting data. 

 

5.1 The Utility of the IR Model 

 

 
According to [10], every mediator has got a rank according to its perceived response size. The one with the 

largest perceived response size receives rank No. 1, and the same rank is given to mediators with equal 

Let offspring be the array representation of an offspring created by the 

crossover operator, numVar be the length of the representation, 

mutOps be the mutation probability, and maxTreeDepth be the 

maximum tree depth. 

rN = rand(size(offspring,1),numVar)<mutOps; 

offspring = offspring+rN.*((rand(size(offspring,1),numVar)>0.5)*2-

1); 

offspring(offspring==0) = 1; 

offspring(offspring==maxTreeDepth+1) = maxTreeDepth; 

Figure 5:  Mutation of small perturbation. 

 
Figure 5:  Organization template of the information retrieval system. [10] 
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perceived response sizes. Mediators are chosen to be sent queries based on their ranks, resulting in the query 

probability P(m) (m=1, 2, …, num_mediators). This is used to calculate the response recall of the organization, 

which is given by the following equation:  

sizetopicenv

msizeresponseactualmP

recallresponse

mediatorsnum

m

__

)(__)(

_

_

1








                    (1) 

where the expectation of the system‟s actual response size regarding all the mediators is divided by the 

environmental topic size to form the value of the response recall. 

The IR model assumes that queries have a Poisson arrival distribution with mean rate query rate, and each node 

follows the FIFO processing principle. Each database has a process service rate, defining how quickly it can 

process queries. Likewise, each aggregator and mediator has a response service rate, and must wait for the 
slowest information source before sending responds. The probability density function (pdf) and cumulative 

density function (cdf) of the waiting time in a database node are given as: 

 
x

M exf  ),(                                           (2) 
x

M exF  1),(                                     (3) 

where x≥0 is the waiting time and =service_rate–arrival_rate. The query rate of the mediator m equals 
query_rate×P(m), and all nodes under a particular mediator inherit the query rate of that mediator. The service 

rate of a database is simply its process service rate, whereas aggregators and mediators have service rate as 

response_service_rate/num_sources. 

The pdf and cdf of the maximum service time of a node‟s all sources can be generated by the following 

equations: 
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 where fi and Fi represent the pdf and cdf of the ith source respectively. 

The mediator and aggregator must process and aggregate the resulting data, leading to a total service time 

combining these two activities. The pdf and cdf of the total service time can then be determined by the 

convolution of the corresponding local and source distribution functions, which have the forms: 
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                      (7) 
where x=0, 1, 2, …, dist_range/dist_step, with dist_range representing the upper bound on the sampled points 

and dist_step the stride length between points. fs is the aggregate information source pdf, and fl and Fl are the pdf 

and cdf of the waiting time for the local queuing process. 

By incorporating the result propagation process and the cumulative overhead latency incurred by the message 

transits we can predict the expected response time of the system as a whole. And finally the utility of 

organization is computed by combining the aspects of response recall and response time with appropriate 

weights of each term as follows: 
10/_1000_ timeresponserecallresponseutility                  (8) 

 
5.2  Simplifying the Organization Representation with Regard to the IR Model 

Since it is assumed in the IR model that all the databases in the system contain the same amount of 

topic data, and thus, there are no differences among the end nodes (i.e. leaves of the trees), we may directly 

borrow the array representation introduced in Section 3 to the IR model. Here Level 1 is the mediator level, 
where nodes are all mediators. The intermediate nodes correspond to aggregators, and the leaf nodes are 

database agents. The whole organization can be outlined by a set of trees. Exchange of information is enabled 

between every two root nodes and all immediate superiors and subordinates. 

From a practical viewpoint, we notice that it is not necessary to include an aggregator if it only has one 

subordinate, because it will only increase the information transmission delay and not bring any integration 

advantages. Hence, if such an organization instance emerges, we can simply omit the aggregator node and 

reduce the organization structure by one level. 
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Related modification can be made in the array representation, which is summarized below. Firstly, obtain all the 

 

Figure 8:  Flowchart of the algorithm. 

Original representation:                3 1 5 2 3 3 4 2 1 2 5 3 1 4 3 

 

Using “1” as separators:              3 1 5 2 3 3 4 2 1 2 5 3 1 4 3 

                                                                               
Using “1” “2” as separators:       2 1 5 2 3 3 4 2 1 2 5 3 1 4 2 

                                                                           
Using “1” to “3” as separators:   2 1 3 2 3 3 4 2 1 2 5 3 1 3 2 

                                                                  
Final organization:                      2 1 3 2 3 3 4 2 1 2 4 3 1 3 2 

 

Figure 7:  Simplifying the organization. Nodes M are mediators, nodes A are aggregators, and nodes D are 

databases. 
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segments of a genome between adjacent mediators (i.e. the integer series between 1‟s). Set the smallest values 

of these segments to 2. Secondly, obtain all the segments with 1‟s and 2‟s as separators. Set the smallest values 

of these segments to 3. Continue until the highest level of the organization. Figure 7 shows the detailed steps of 
a sample simplifying procedure. It transforms a 5-level sample organization of the IR system to a 4-level one. In 

the simplified organization, all mediators and aggregators have no less than two sources. 

The simplifying procedure is employed to achieve higher utility. At the same time, the number of organization 

instances we have to evaluate for every representation is reduced to one. 

 

5.3 Implementation and Evaluation Criteria 
In the case study of the IR model, the optimization is carried out using genetic algorithm with 

population of organizations represented by arrays, the hierarchical crossover and the mutation of small 

perturbation as described in the above sections. The utility value serves as the fitness measure of an individual 

organization. If the arrival rate exceeds the service rate at one or more points, resulting in infinite queues, the 

fitness of the organization will be penalized. Systems with one infinite queue are considered to have fitness of –
2500, and for each additional infinite queue, another 500 is deducted from the fitness. 

We recognize that there are likely multiple optimal solutions that achieve the same utility in a given 

system environment, owing to the symmetry of the structures. Besides, the building blocks that may lead to a 

good solution need to be maintained in the population. Therefore, we need a method that allows growth in 

several promising areas in the search space. In other words, the diversity of the population should be enhanced 

and over-convergence should be avoided. We increase the competition between similar individuals by applying 

the restricted tournament selection (RTS) method described in [6]. It helps to preserve diverse building blocks 

needed to locate the optimal organization. A flowchart of the algorithm is shown in Figure 8. 

We compare the proposed algorithm, called hierarchical genetic algorithm (HGA), with the standard genetic 

algorithm using one-point crossover with bit-wise mutation (SGA1) and two-point crossover with bit-wise 

mutation (SGA2) in order to show the benefits of the newly introduced operators. We examine the algorithms in 

two aspects, the accuracy and the stability of search, which are evaluated using the parameters, average 
percentage relative error (APRE) and success rate (SR), respectively. They are derived using the following 

equations. 

The percentage relative error (PRE) can be calculated by: 

PRE=(fbest–f)/fbest×100                 (9) 

where fbest is the best known fitness value among all the runs of all the algorithms for a given test case, and f is 

the current fitness value achieved by the algorithm. APRE is the average of the PRE values among all the 

independent runs of each test case. 

SR is a number between 0 and 1 that denotes the ratio of the number of runs in which the best known solution is 

found by the algorithm to the total number of runs in each test case. Since GAs involve stochastic initialization 

of solution candidates, selection, crossover, and mutation, the stability of search is also an important factor that 

we should take account into. 
We examine the test cases of 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 databases. The maximum height of the 

structures is set to be 4. The population size and the maximum number of candidate evaluations used are shown 

in Table 1. All algorithms use a window size w=5 for RTS in the population updating stage. The mutation rate is 

0.1. All the test cases involve 10 independent runs. 

The environment parameters of the IR model are set as follows: message latency = 20 milliseconds, process 

service rate = 10 per second, response service rate = 20 per second, and query rate = 3 per second. The search 

set size and query set size are set to be the total number of mediators for each organization. The response recall 

is therefore identical (100%) in all cases, and the utility is determined by the response time. 

The best achieved fitness value in every generation is recorded and the best organization instance found after the 

maximum number of candidate evaluations along with its fitness are used for calculating APRE and SR. In this 

case study and many other applications, the computation time of the genetic operators and population updating 

is negligible compared to that of the candidate evaluations. Moreover, when parallel computing is used, the 
execution time depends on number and quality of the machines used. Therefore, we conclude that the number of 

candidate evaluations is more suitable as an evaluation metric than computation time. When we use the same 

machine, computation time is proportional to the number of candidate evaluations. All algorithms are tested in 

MATLAB ver. 7.9.0. 
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Table 1:  Configurations of HGA. 

No. DBs Population Size No. of Candidate Evaluations 

12 50 2,000 

14 100 5,000 

16 200 10,000 

18 500 50,000 

20 500 50,000 

22 500 50,000 

24 500 100,000 

26 500 100,000 

28 500 100,000 

30 1,000 200,000 

 

VI. Experimental Results 
In this section we will firstly analyze the properties of the best solutions found by the algorithms so far. 

Secondly, we will demonstrate the advantage of the proposed HGA over the standard GA with one-point and 

two point crossover in locating the best organization of the IR system.1 

 

6.1  Best Organizations Found by the Algorithms 

The characteristics of the best organizations found by the algorithms are listed in Table 2, and the 

corresponding structures are shown in Figure 9. Since previous studies did not give comparison among the 

highly rated organizations in different scenarios, it should be worthwhile for us to summarize their features.  

 

Table 2:  Characteristics of the Best Organizations. 

No. of DBs Representation of Best Organization 
No. of 

Mediators 
No. of 
Levels 

Total 
No. of 
Agents 

Fitness 

12 33233133233 2 3 18 860.39 

14 3233132331323 3 3 23 847.62 

16 332313323133233 3 3 25 839.20 

18 33233133233133233 3 3 27 832.27 

20 4434342443434243434 1 4 33 821.60 

22 332434341434342434434 2 4 37 813.90 

24 43434243434143434243434 2 4 42 810.13 

26 4434342443434143434243434 2 4 44 802.24 

28 443434244343414434342443434 2 4 46 795.96 

30 4434344244343441443434244343
4 

2 4 48 790.06 

 

Firstly, we may see that there is no node with more than 6 sources in the best organization of any test case 

because it will cause an infinite queue in the current settings. If an aggregator has too many sources, it needs a 

long time to collect and analyze the information from the sources, and is thus not optimal. Secondly, most of the 

best found organizations are composed of the following strings: 3323, 33233, 443434. These baseline structures 

of 5, 6, and 7 databases offer an advantage in efficiency and are assembled to constitute the best organization in 
a larger scale. During the evolutionary search, they are identified by the algorithms as building blocks for 

solutions with high fitness values. Thirdly, as the number of databases increases, the model has to deal with 

more distributed load. It first seeks to introduce more mediators, and later the height of the structure is increased 

to balance off the transmission burden of mediators. For example, 2 mediators are sufficient to handle a system 

with 12 databases, but for a system with 18 databases, 3 mediators are needed. And in the 20-database case, a 3-

level organization with 3 mediators is no longer adequate, therefore a 4th level is added. Since the height of the 

structure is raised, the number of mediators is cut down to avoid unnecessary delay in assembling the data. 

                                                             
1 As the EOS method does not contain detailed description of the algorithm, unfortunately, we are not able to 

compare our algorithm with EOS. 
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It can be observed from Figure 9 that it is beneficial to group the databases at the bottom level as evenly as 
possible, which is consistent with our intuition of a good organization design. In the test cases where there are 

12, 18, 24, and 28 databases, balanced allocation can be realized. Perfect symmetry appears in the designs. 

Similar efforts are made in the test cases of 14, 16, 20, 26, and 30 databases. Note that for the latter two 

instances, the two mediators process different number of databases, however the second-level aggregators have 

exactly the same subordinate structures. The organizations shown in Figure 9(h&j) achieve higher fitness values 

than the organizations with both mediators having the same number of databases, which can be represented as 

[443434 2 43434 1 443434 2 43434] and [4434344 2 443434 1 4434344 2 443434] respectively. It is more 

interesting to investigate the case where there are 22 databases. The tradeoff is so difficult and eventually 

      

 

(a)  12 databases                              (b)  14 databases                                            (c)  16 databases 

       

(d)  18 databases                                                           (e)  20 databases 

   

 

(f)  22 databases                                                           (g)  24 databases 

 

(h)  26 databases 

   

(i)  28 databases 

 

(j)  30 databases 

Figure 9:  Best organizations found by the algorithm. 
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unbalanced organization wins. Moreover, putting two or three databases at the penultimate level emerges as a 

good choice in this kind of situations. 

 

6.2  Comparison of Results 

Table 3 shows the APRE of SGA1, SGA2, and HGA in the 10 test cases, and the SR values are 

displayed in Table 4. The best value for each test case is highlighted. It can be observed that the accuracy of the 

proposed HGA is better than SGA1 and SGA2 in 9 out of the 10 cases. Only in the 18-database case, SGA2 

outperforms SGA1 and HGA in terms of APRE. 

 

Table 3:  Average Percentage Relative Error. 

No. DBs SGA1 SGA2 HGA 

12 0.1103 0.1122 
 

0.0370 

14 0.0090 0.0460 
 

0 

16 0.0966 0.0869 
 

0 

18 0.0940 0.0372 

 
0.0505 

20 0.1150 0.3076 0.0749 

22 0.2037 0.3085 0.0031 

24 0.3376 0.4914 0.0406 

26 0.1556 0.3494 0 

28 0.2104 0.5307 0.0067 

30 0.2470 0.4825 0 

 

Regarding the search ability, HGA also has an advantage over SGA1 and SGA2 in the majority of the test cases. 

The superiority of HGA is more pronounced in larger-scale organizations which contain more than 20 database 

nodes. In those cases, SGA1 and SGA2 fail to locate the best known organization instances for most of the time, 

whereas the proposed HGA still maintains high SR values of 90%–100%. This proves that HGA uses fewer 

candidate evaluations to locate the best organization than the conventional GAs. Given that the candidate 

evaluations are very computationally expensive in many real-world systems, it is beneficial to use HGA in such 

circumstances. 

 

Table 4:  Success Rate. 

No. DBs SGA1 SGA2 HGA 

12 0.5 0.5 

 
0.8 

14 0.8 0.7 

 
1 

16 0.7 0.8 

 
1 

18 0.8 0.8 

 
0.8 

20 0.5 0.1 0.3 

22 0.1 0 0.9 

24 0.2 0 0.9 

26 0.4 0.1 1 

28 0.2 0 0.9 

30 0.2 0.1 1 

 

The non-parametric Wilcoxon signed-rank test is performed to judge whether there is a statistically significant 

difference between HGA and SGA1/SGA2. As a pair-wise test in a multi-problem scenario, we use all the 

APRE values of each algorithm as sample vectors. The null hypothesis H0 is set as “there is no difference 

between HGA and SGA1/SGA2 in terms of the APRE values.” Accordingly, the alternative hypothesis H1 is 

„„The two methods are significantly different.” A significance level of 0.05 is implemented, i.e. if the p-value of 

the test turns out to be less than 0.05, the algorithms involved are considered to have different performance, and 
the smaller the p-value is, the more distinct they are from each other. We get that the APRE values of HGA is 

different from those of SGA1 at the p-value of 0.001953 and is different from those of SGA2 at the p-value of 

0.003906, which suggests the proposed algorithm is statistically better than both SGAs. 

The performance graphs of the median runs (i.e. the 5th best runs in our experiment) of SGA1, SGA2, and HGA 

are shown in Figure 10. Owning to the specially designed genetic operators, HGA is able to locate good 

solutions faster in most of the circumstances. When the number of databases is larger (especially over 20 

databases), HGA regularly scores higher fitness than SGA1 and SGA2 when the same number of candidate 
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evaluations is used. It is also able to find better organizations within the maximum number of candidate 

evaluations. From Figure 10(f,g,h,i,j) we can see, HGA has a remarkable advantage over SGA1 and SGA2 in 

the convergence speed 
.  

 

               
(a)  12 databases                                                                       (b)  14 databases 

               
(c)  16 databases                                                                       (d)  18 databases 

                
(e)  20 databases                                                                       (f)  22 databases 

Figure 10:  Performance graph. 
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VII. Comparison of HGA with the State-of-the-Art Multi-Agent Organization Design 

Methodologies 
While we have demonstrated the advantage of HGA‟s newly introduced operators over the traditional 

GA operators, it is interesting to investigate how HGA performs compared with the search processes of the 

state-of-the-art multi-agent organization design methodologies. In this section we will explore the hierarchical 

               

(g)  24 databases                                                                       (h)  26 databases 

               

(i)  28 databases                                                                       (j)  30 databases 

Figure 10 (cont.):  Performance graph. 

       

       

Figure 11:  An Example of equivalent organizations in ODML. 
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IR system using ODML [10] and KB-ORG [17] that are previously mentioned in Section 2. Results are given 

following the experimentation in Section 5.3. 

 

7.1  Comparison with ODML 

In ODML, four approaches are listed to assist the search process. They are the exploitation of hard 

constraints, equivalence classes, parallel search, and model abstraction. Rather than going through a decision 

tree to verify whether an organization instance satisfies the hard constraints of the problem as ODML does, our 

algorithm incorporates the array representation that already ensures the satisfaction of constraints in maximum 

height of the structure and the number of databases in the system. Parallel search and model abstraction are also 

intuitively used in HGA. 

In ODML, the agents are treated in three equivalence classes: the mediators, the aggregators, and the 

databases. Within the same class, the characteristics of the agents do not distinguish between each other. In 

other words, choosing any agent in the “mediators” group for a role of mediator in the IR organization is the 

same. Moreover, the number of organization alternatives can be cut down by discarding organizations which are 
equivalent to an existing one in the candidate pool. For instance, the organizations shown in Figure 11 are 

equivalent in ODML in that their utility will be exactly the same, and only one should be kept as an evaluation 

candidate. 

Based on these notions, we have calculated the number of evaluations needed for ODML in the 10 test 

cases as in Section 5.3, with exploited hard constraints of the number of database nodes from 12 to 30 and the 

maximum height of the structure equaling 4. All nodes in the organizations (expect the leaf nodes) should have a 

minimum of two subordinates. Details are shown in Table 5. It confirms that the number of organization 

instances increases exponentially as the number of leaf node agents increases, despite the truncation of 

redundant equivalent organizations. The total number of evaluations can be approximated as O(2.1N), where N is 

the number of leaf nodes. Comparing Table 5 with Table 1, we can see that HGA uses much fewer candidate 

evaluations than ODML does. Especially, when the number of databases becomes larger, the fraction of the 

number of candidate evaluations needed by HGA to the total number of candidate evaluations becomes smaller 
and smaller. This saves a great amount of computation burden, as the computation of utility functions can be 

extremely expensive. 

 

Table 5:  Number of organization Evaluations Needed for ODML. 

No. DBs No. of Evaluations No. DBs No. of Evaluations 

12 4,304 22 9,675,949 

14 20,699 24 43,663,703 

16 98,186 26 195,062,099 

18 459,311 28 863,372,191 

20 2,120,799 30 3,788,734,984 

 

It should be noted that the proposed HGA is compatible with all the above mentioned search space reducing 

measures, however, we maintain the equivalent organizations as in Figure 11, for they may contribute to finding 

an optimal solution of the test problems. This compromise results in a larger search space for HGA, whereas in 

ODML, the elimination of redundant equivalent organizations helps to narrow down the search range to a great 

extent. When the number of equivalent organizations is prevailing, ODML should have an advantage benefited 
from the elimination measure. Nevertheless, in the studied system, HGA still manages to evolve the population 

of organizations at a reasonable pace, and it spares the computation time for branch pruning at the same time. 

 

7.2 Comparison with KB-ORG 

KB-ORG has also placed much effort on reducing the search space. Different from ODML, it 

emphasizes the use of design knowledge in application and coordination of roles and design functions. With 

good knowledge, a system can be designed with relatively affordable cost. However, in certain cases, design 

knowledge is hard to acquire. It largely depends on the level of expertise of the designer. A barely trained 

designer may have little experience to rely on when he or she tries to construct an organization for a multi-agent 

system under the guideline of KB-ORG. Design knowledge is not guaranteed to be accurate. When taking a 

greedy approach in a certain decision step, the search process may leave out the optimal solutions. In addition, 
design knowledge needs to be updated following the change of environmental variables. If the environmental 

variables are altered, previous knowledge may not be applicable anymore; instead, new knowledge should be 

added to help the organization design. 

In the IR model, the utility of the organizations does not involve spatial contents, and every role has 

only got one kind of agent to perform, so no extra knowledge is required in either spatial proximity of the agents 
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or role-agent binding. The main difficulty lies in the coordination of agents, e.g. how many levels of hierarchy is 

needed. Assume that the designer has successfully searched out the best organizations for 12, 14, 16, and 18 

databases. He may think that a 3-level hierarchy is best for the 20-databse case. This will reduce the search 
space to 58,327 organizations, which is only 2.75% of ODML‟s search space, but, it will miss out the highest 

rated organization, which is 4-leveled with the utility of 821.60. The best 3-level organization can be expressed 

with our proposed representation as [33233 1 33233 1 3233233], with the utility of 814.11, which is worse than 

the worst utility (820.01) found by HGA within 50,000 evaluations in all runs. On the other hand, if the designer 

reaches at a relaxed bound of structure height of either 3 or 4 for the 20-database case, the number of 

organization evaluations will mount to 2,120,662. 

Let us further assume that the designer not only has the knowledge about the vertical depth of the 

organization structure, but also has some knowledge about its horizontal size. If in the 22-database case, it can 

be speculated that the organizations with 4 levels and 2 mediators are optimal, the designer is faced with a 

search space of 3,384,278 options without duplicate. And for organizations with 24 databases, 4 levels, and 2 

mediators, the number is 12,686,252. If it can be speculated furthermore that the highest rated organization is 
made up of 4 levels, 2 mediators, with every mediator having 2 subordinate agents, the number of evaluations 

needed for KB-ORG will be 282,812 and 800,996 for the test cases with 22 and 24 databases respectively, 

whereas, for HGA, only 50,000 and 100,000 evaluations are needed to reach a 90% success rate. Although 

design knowledge has brought us convenience in searching for the highest rated organization in these test cases, 

it is far from satisfactory. In contrast, our algorithm searches for the highest rated organization in a heuristic way. 

It is able to handle these test cases without the assistance of external expertise. 

 

VIII. Conclusion and Future Work 
We have proposed a novel genetic algorithm based approach to solve the problem of designing the best 

organization in hierarchical multi-agent systems. Complementary to existing methodologies that emphasize on 

the pruning of the search space, our algorithm uses a bio-inspired evolutionary approach to lead the search to 

promising areas of the search space, and is thus suitable for optimizing multi-agent systems with a great variety 

of possible organizations where designer expertise alone is not enough or hard to acquire. In the example of the 

information retrieval system, we have empirically proved that the algorithm is able to discover competitive 

baseline structures in different systems and assemble them to obtain the highest rated structure from a 

magnitude of up to 109 organization alternatives. In particular, we propose the use of hierarchical crossover and 

mutation of small perturbation to add to the advantage of our algorithm. The new crossover and mutation 

methods help HGA enhance the search efficiency greatly, promoting its performance both in accuracy and 
stability of search. 

With necessary modifications, the proposed algorithm is applicable to other models as well. It can be 

used to optimize any tree-based hierarchical organizations of multi-agent systems, given that proper fitness 

values are assigned. Application areas include scenario tree and decision tree optimization. On the other hand, 

the proposed array representation can also be used for other forms of MAS organizations, such as holarchies. It 

is worthwhile to further examine the performance of the algorithm for systems with non-uniform leaf nodes and 

unfixed number of leaf nodes using Representation 2 and 3. In subsequent studies, we will investigate the 

efficiency of the proposed approach in larger-scale MASs involving a massive number of agents. 
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