
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)

e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 7, Issue 3 (Jul. - Aug. 2013), PP 52-70
www.iosrjournals.org

www.iosrjournals.org 52 | Page

New application of genetic algorithm in optimization of structural

weights

Mokhtar Jalilian
 * 1

, Nasser Taghizadieh
2

1Master Student Civil Structures, Department of Civil Engineering, University of Tabriz, Tabriz, Iran

 2Assistant Professor of Faculty Departments of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract: It has been widely recognized that the performance of a multi-agent system (MAS) is highly affected

by its organization. A large scale MAS may have billions of possible ways of organization, depending on the

number of agents, the roles, and the relationships among these agents. These characteristics make it impractical

to find an optimal choice of organization using exhaustive search methods. In this report, we propose a genetic

algorithm aided optimization scheme for designing hierarchical structures of multi-agent systems. We introduce

a novel algorithm, called the hierarchical genetic algorithm, in which hierarchical crossover with a repair

strategy and mutation of small perturbation are used. The phenotypic hierarchical structure space is translated

to the genome-like array representation space, which makes the algorithm genetic-operator-literate. A case

study with 10 scenarios of a hierarchical information retrieval model is provided. Our experiments have shown

that competitive baseline structures which lead to the optimal organization in terms of utility can be found by

the proposed algorithm during the evolutionary search. Compared with the traditional genetic operators, the
newly introduced operators produced better organizations of higher utility more consistently in a variety of test

cases. The proposed algorithm extends the search processes of the state-of-the-art multi-agent organization

design methodologies, and is more computationally efficient in a large search space.

Keywords: genetic algorithm, hierarchical crossover, information retrieval, multi-agent systems, organization

design, optimization, representation, tree structures.

I. Introduction
The research on the organization of a multi-agent system (MAS) has attracted much interest in recent

years. An organization provides a framework for activities and interactions in a MAS through the definition of

agent roles, groups, tasks, behavioral expectations and authority relationships such that all the agents in the

MAS can cooperate systematically and contribute to the common good of the overall system. More specifically,

the organization defines which resources an agent is able to acquire, what roles/functions it takes, with which
other agents it is allowed to exchange information, etc.

A proper organization for a MAS can ensure the behavior of the agents to be externally observable and

make up for the major drawback of the traditional agent centered MAS in which the patterns and the outcomes

of the interactions are inherently unpredictable because of the high likelihood of emergent (and unwanted)

behavior [4]. Particularly, in large scale systems, to form and evolve an organization makes it possible for the

system to exploit collective efficiencies and to manage emerging situations [12]. So far, a number of

organization designs have been proposed for multi-agent systems [9]. Experiments and simulations have shown

that various organizations employed by a system with the same set of agents may have different impacts on its

performance [8][15][5][10][17][21].

Among all kinds of organizations, the hierarchical structure is one of the most common structures

observed in multi-agent systems. Like human organizations, primate societies, and insect colonies, many multi-

agent systems can be abstracted as hierarchical, tree-like structures or sets of parallel hierarchical structures,
where agents are categorized in different levels in the hierarchies [11]. Often, the level of an agent indicates its

capabilities and roles. In other words, a specific level in the system consists of equally capable agents,

performing similar roles. Agents at the bottom level may execute the routine tasks under the orders given by

their higher-level authorities, whereas agents at the top level may assign the task, collect and assemble the

returned information from their subordinates, as seen in the distributed information retrieval (IR) system

described in [10].

For a large hierarchical MAS, there exist a great variety of possible ways to organize the system, which

induces different agent behaviors and system characteristics. Due to the difference in the depth and the width of

the hierarchy, the number of organization instances increases exponentially with the number of agents, which

poses a great challenge for us to construct the most suitable organization for a given system. Although many

methodologies for organization modeling have been proposed, few of them present an effective way to search
for an optimal organization instance.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 53 | Page

In order to solve the problem, this report proposes a genetic algorithm (GA) approach as an alternative to the

conventional enumeration methods for optimizing hierarchical multi-agent systems. Inspired by biological

evolution processes such as selection, reproduction, and mutation, GAs are known to be robust global search
algorithms for optimization and machine learning [7][2][3]. The heuristic nature of GA helps it to locate the

global optimum in a vast search space. We design novel crossover and mutation operators to make the algorithm

suitable for organization evolution and thereby ensure competitive performance. We tested the algorithm in an

example of the IR model [10] which exhibits numerous possible organizational variants and verify its capability

through simulations in different scenarios.

The rest of the report is structured as follows. Section 2 discusses the related work. In Section 3, we

introduce the representation of organization employed in our algorithm, followed by the newly proposed

crossover and mutation operators in Section 4. Section 5 proceeds with description of the IR model in our case

study, with implementation details and experimental setup. And in Section 6, the simulation results are

presented with the number of databases varying from 12 to 30. We analyze the results by comparing the

different test cases which show the impact of environment variables on the best organizations obtained. The
proposed algorithm is compared with the standard genetic algorithm (SGA) with one-point crossover and two-

point crossover in terms of its search accuracy and stability. In Section 7, we further compare our algorithm with

the search process of the state-of-the-art multi-agent organization design methodologies. In the last section, we

conclude the report and discuss promising future research directions in this topic.

II. Related Work
The design of a multi-agent system organization has been investigated by many researchers. Early

methodologies such as Gaia [19] and OMNI [18] aim to assist the manual design process of agent organizations.

In these models the roles that agents have to play within the MAS and the interaction protocols are identified.
Instead of relying heavily on the expertise of human designers, it is desirable to automate the process of

producing multi-agent organization designs. In this case, a quantitative measurement of a set of metrics is

essentially needed for us to rapidly and precisely predict the performance of the MAS. With these metrics we

can evaluate a number of organization instances, rank them, and select the best organization without having to

introduce heavy cost by actually implementing the organization designs.

In [10], the utility value was defined as the quantitative measurement of the performance of a distributed sensor

network and an information retrieval system. An organizational design modeling language (ODML) was

proposed and a template was constructed for each domain. Several approaches, including the exploitation of

hard constraints and equivalence classes, parallel search, and the use of abstraction, have been studied in order

to reduce the complexity of searching for a valid optimal organization.

Another organization designer, KB-ORG, which also incorporates quantitative utility as a user

evaluation criterion, was proposed for multi-agent systems in [17]. It uses both application-level and
coordination-level organization design knowledge to explore the combinatorial search space of candidate

organizations selectively. This approach significantly reduces the exploration effort required to produce

effective designs as compared to modeling and evaluation-based approaches that do not incorporate designer

expertise.

Nonetheless, similar to ODML, KB-ORG aims at pruning the search space. However, the design

knowledge alone is inadequate for the identification of an optimal design when the possible varieties of the

organization structure become large.

Evolutionary based search mechanisms have been used to help the design of MAS organizations on a

few occasions. For example, in [20], a GA-based algorithm is proposed for coalition structure formation which

aims at achieving the goals of high performance, scalability, and fast convergence rate simultaneously. And in

[13], a heuristic search method, called evolutionary organizational search (EOS), which is based on genetic
programming (GP), was introduced. A review of evolutionary methodologies, mostly involving co-evolution,

for the engineering of multi-agent market mechanisms, can also be found in [16]. These techniques show a

promising direction to deal with the organization search in hierarchical multi-agent systems, as exhaustive
methods, such as breadth-first search and depth-first search, become inefficient and impractical in a large search

space.

III. Representation of Organizations
Generally speaking, the organization of a hierarchical MAS consists of a number of tree structures. It

can either be a single tree, where the root node is the sole leader of the organization, or a set of trees, where
there are several equally important leaders that communicate with each other and share the decision-making

power. The intermediate nodes in a tree have the responsibility to assign tasks to their subordinates, as well as

reporting the results of the accomplished tasks back to their higher-level authorities. Information exchange is

only allowed in the vertical directions between higher and lower levels, and there is no interaction of agents

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 54 | Page

horizontally, or among different hierarchies. The leaf nodes are the bottom of the structure and they complete

the most basic tasks.

Optimization in such a search space can be handled by evolutionary algorithms [3], especially genetic
programming, which supports populations of model structures of varying length and complexity. It has also

been shown from previous studies that some well-structured trees (e.g. binary trees), with a certain number of

levels and a fixed number of subordinates per node, can be represented by arrays [14][1]. Transformations are

feasible as a result of their regular structures, which thereby allow the traditional crossover and mutation

operators of other evolutionary algorithms, such as genetic algorithms, to take effect.

We propose an array representation of hierarchical MAS organizations which is applicable to a much

broader range of hierarchical structures than just binary trees. It converts s set of hierarchical trees into a fixed-

length array with integer components, which resemble gene sequences. The representation is not limited to

describe a single tree, and the number of subordinates of each node need not be a constant. Unbalanced trees, in

which leaf nodes are not on the same hierarchical level, can also be depicted using this representation.

3.1 Translating Organizations into Genomes

We assume that the hierarchical MAS considered here have the following properties. We assume that

the number of leaf node agents is fixed before the search. We also assume that the maximum possible number of

levels is determined. Thus, the total number of agents in the organization is bounded. Based on these

assumptions, we can make use of the partition concept to convert the organization from tree structures to arrays.

Let N be the total number of leaf nodes or end nodes, so that the they can be numbered as 1, 2, …, N

respectively from left to right. Let M be the maximum tree depth (i.e. maximum height of the structure). The

reason for limiting the height is that very tall structures can be slow or irresponsive, as the long path length from

root to leaf increases message latency among the agents. The organization of a hierarchical MAS can be

outlined by Representation 1:

a1a2a3…aN–1

where ai is an integer between 1 and M, denoting the level number where leaf nodes i and i+1 start to
separate.

An example with seven leaf nodes (N=7) is illustrated in Figure 1. It consists of two trees. On Level 1, the four

leaf nodes on the left and the three leaf nodes on the right separate into two trees. In other words, there is one

separation between the leaf nodes 4 and 5, so a4=1. On Level 2, there are two leaf nodes and one intermediate

node (three nodes altogether) under the left tree root, corresponding to the “2 2” (two partition numbers) to the

left of the “1” in the array. The one leaf node and one intermediate node (two nodes altogether) under the right

tree root give the “2” (one partition number) to the right. Both intermediate nodes on Level 2 have two leaf

nodes as their subordinates (leaf nodes 3 and 4, leaf nodes 6 and 7), which are separated on Level 3, resulting in

the two 3‟s in the 3rd and 6th places in the array. Therefore, the array “2 2 3 1 2 3” fully specifies the
organization.

Conversely, we can also obtain an organization by interpreting the representation array. For instance, if

we want to determine which level node 4 in Figure 1 sits on, we need to examine both the node's left and right

neighbor. The third and forth digits in the array are “3” and “1”. It means that node 3 and node 4 are separated

on Level 3. Node 4 and node 5 are separated on Level 1. As a result, we can place node 4 on Level 3 (larger

number between 3 and 1). Similarly, because the fifth digit is “2”, i.e. node 5 and node 6 are separated on level 2,

node 5 can be put on level 2 (larger number between 2 and 1).

2 2 3 1 2 3

Figure 1: A sample organization and its array representation. Agent

nodes are displayed as circles in the figure, and leaf nodes are numbered.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 55 | Page

Theorem:

The above representation has the following properties.

(1) For every hierarchical organization instance which satisfies our assumptions in the beginning of
Section 3.1, the array representation that can be generated is unique.

(2) For every representation of the above mentioned form, there is an organization instance corresponding

to it.

Proof:

(1) We firstly prove the existence of an array representation for every hierarchical organization instance.

The way of generating an array representation of an arbitrary hierarchical organization instance can be

expressed as follows. If there are N leaf nodes, we prepare N–1 slots. Firstly, organize the structure well so that

the root nodes, intermediate nodes, and leaf nodes are on their proper levels. Secondly, we examine the

separation pattern between adjacent leaf nodes one by one from left to right. Fill the slots with the level number

where the adjacent leaf nodes start to separate. See Figure 1 for an example. The first two leaf nodes on the left

are direct subordinates of the first tree root, i.e. on the root level (Level 1) they do not separate. However, on

Level 2, they separate into different nodes. So the first number is 2. The second slot should also be filled with

number 2 because the second and third leaf nodes on the left separate on Level 2. The third leaf node belongs to
an intermediate node on Level 2 different from the second leaf node. And as the third and fourth leaf nodes are

direct subordinates of an intermediate node on Level 2, they start to separate on Level 3. Number 3 should be

the third number in the array representation. And so on, we can get the values, which are the level numbers, for

all the slots. Together they form the required representation.

We then prove the uniqueness of the generated array representation. If array representations

a1a2a3…aN–1 and b1b2b3…bN–1 which are derived from the same organization instance are different, there exits an

i{1, 2, …, N} such that ai≠bi. This shows that the leaf nodes i and i+1 separate at different levels in the two

corresponding organization structures, which means the organization structures are not identical.

 (2) Given an array representation with positive integers of length L, we would like to construct an

organization instance containing L+1 leaf nodes as follows. Find all the digit “1”s in the representation (if there

are any). Calculate the number of digits (greater than 1) between adjacent 1‟s one by one from left to right, and
denote them as n1, n2, n3, …, nk+1, where k is the number of 1‟s. If there are no 1‟s, then k=0 and n1=L. The

corresponding organization has k+1 root nodes with n1+1, n2+1, n3+1, …, nk+1+1 leaf nodes, respectively, from

left to right. So far we have completed the root level (Level 1) of the organization. For instance, with array [2 2

3 1 2 3], n1=3, n2=2, i.e. there are two root nodes with 4 and 3 leaf nodes respectively. For Level 2, we take

segments with 1‟s and 2‟s as separators. These segments should only contain digits greater than 2 (if any). Like

what is done for Level 1, the number of digits between adjacent separators are recorded as r1, r2, r3, …, rt+1,

where t is the number of 1‟s and 2‟s. If ri=0, it corresponds to a leaf node; otherwise, it corresponds to an

intermediate node on Level 2. After that, take segments with 1‟s, 2‟s, and 3‟s as separators, and repeat the steps

until the greatest numbers in the representation are examined. In this way we can obtain the full organization

instance.

Note that the organization instance is non-unique. Figure 2(a) illustrates an extreme case where all

three leaf nodes separate on Level 2, so the representation is [2 2]. It has the same representation as the
organization in Figure 2(b). When such circumstances arise, we should examine all the possible organization

instances that correspond to a representation and use the best one. In the following section we explain that in the

IR model, the sub-organizations having nodes with only one subordinate are uneconomical and should be

simplified to achieve higher utility. Therefore, we only need to focus on the most simplified organization

instance.

So far, we have established a surjective mapping from the set of all valid structure instances containing

N leaf nodes with maximum height M, denoted as A, to the set of all arrays containing N–1 integer elements

(a) (b)

Figure 2: Organizations with the same representation.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 56 | Page

ranging from 1 to M, denoted as B. Furthermore, the representation is compatible with genetic operators such as

one-point, two-point or uniform crossover, i.e. the offspring generated after the crossover of individuals from set

B still belong to set B. Bit-wise mutation can also be applied here, so that every bit of the genome ai is mutated
to a randomly picked different value from {1, 2, …, M}\{ai} according to the user defined mutation probability.

3.2 Simplifying Organizations

The above representation can be applied to a general hierarchical MAS organization. For specific

organization search problems, we may find it beneficial to simplify the representation in order to prune the

search space and avoid unnecessary candidate evaluations of the algorithm. The simplification steps should be

determined by the designer depending on the problems. Trimming, combining, and reducing of branches are

easy to achieve using the proposed representation. We will give an example of how to remove redundant

intermediate nodes of the IR system in Section 5.2.

3.3 Variations of Representations
In Section 3.1, we have assumed that the leaf nodes are homogeneous. In such circumstances, a 1×N–1

array is enough to represent a hierarchical organization of a MAS. Nonetheless, in view of the circumstances

where each leaf node must be treated uniquely, a second row can be added to the array representation to address

the distinction resulting from permutations. This will make the representation to be in the form of a 2×N–1 array

(Representation 2):














1321

1321

N

N

pppp

aaaa





where {ai} are still integers between 1 and M, denoting the level of the partition between leaf nodes i and i+1,

and p1, p2, …, pN–1 are a permutation of 1 to N with the last number discarded. Still using the example in Figure
1, now we use numbers 1, 2, …, 7 to distinguish the mutually different leaf nodes. If in the organization they are

5, 3, 2, 1, 4, 7, 6, respectively, then the representation is:










741235

321322

.

One may also want to design an organization in which the number of leaf node agents is not fixed beforehand.

To account for varied number of leaf node agents, we may use the following Representation 3:


s0')(

1321

12

1
000

NN

Naaaa




where N1 is the actual number of leaf nodes of the representation, N2 is the maximum number of leaf nodes
allowed in the organization, and the remaining positions are filled with zeros.

These variants of representations will function in the same manner as the Representation 1 when taken to go

through genetic operators which are introduced next.

IV. Crossover and Mutation Operators
The traditional one-point crossover chooses a random slicing position along the chromosomes of both

parents. All data beyond that point in either solution is swapped between the two parents. The resulting

chromosomes are two offspring. Though commonly used in genetic algorithms, this crossover method only

influences the structure near the crossover point, as shown in Figure 3(a,b). It may not be enough to generate
new offspring in large-scale systems. To speed up the evolution and increase the chance of getting a desired

structure with higher utility, new crossover operators are needed. In this report, we propose a novel crossover

operator - hierarchical crossover - specially designed for optimization of tree-structured organizations.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 57 | Page

The proposed hierarchical crossover operator based on the previously described Representation 1

contains swapping of sub-organizations and a repair strategy to keep the number of total leaf nodes constant. It

is implemented as follows.

First of all, we compare the number of structure levels of two randomly selected organization solutions from the

population. Denote the organization with more levels as the first individual and the number of levels as T.

Denote the organization with fewer levels as the second individual. (In the case of a tie, the order can be

arbitrarily assigned.) After that, we choose a node randomly from all nodes whose level number is between 1

and T–1 from the first solution and denote the level number of the chosen node as S. Thirdly, we choose a node

randomly at Level S, or the penultimate level, whichever is smaller, from the second solution, and exchange the
sub-structures between the two solutions below the chosen nodes. If any of the solution candidates have only

(a) Array representation

(b) One-point crossover

(c) Hierarchical crossover

Figure 3: Illustration of one-point crossover and hierarchical crossover using

array representation and organization structures.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 58 | Page

one level, we generate two random individuals of maximum tree depth instead. The exchange ensures that the

two newly formed organization structures do not exceed the maximum height of their parent structures.

However, the exchanged sub-structures do not necessarily contain equal number of leaf nodes. Thus, we
propose the following repair strategy.

Find the solution with longer representation and randomly pick out one digit from it and insert this digit

into a random slot in the other solution. Continue until the two solutions have equal length. This will guarantee

the validity of the two solutions, as shown in Figure 3(a,c). Illustrated in both the array representation and the

organization structures, Figure 3 displays the difference between the proposed hierarchical crossover and one-

point crossover. The pseudo code of hierarchical crossover is given in Figure 4.

To apply hierarchical crossover to Representation 2, all we need is to bundle each column and move

the second row together with the first row. As for organizations in Representation 3, the repair strategy is

implemented with the digits randomly picked out from non-zero locations only and until each selected

organizations have the same number of leaf nodes as before.

As seen in Figure 3, a branch of the tree is corresponding to a piece of gene fragment. By swapping the two

selected gene segments in the parents, we get two new organization instances with exchanged sub-organizations.

This step is similar to two-point crossover, in which the segments between the two randomly selected crossover
points of both parents are swapped to form the offspring. However, like one-point crossover, two-point

Let parent1 and parent 2 be the array representations of two selected parents.

if max(parent1)<max(parent2)
 Exchange parent1 and parent2;
end
T = max(parent1);
if T==1 or max(parent2)==1
 Randomly generate offspring1 and offspring2 of maximum tree depth;
 return
end

For parent1:
List all possible crossover nodes of parent1 from Level 1 till T-1;
Randomly select a node from the above list as cp1;
Record the level number of cp1 as S;
Get the segments of the array representation of the sub-structure below cp1 as portion_c1;
Get the segments of the array representation to the left of the sub-structure below cp1 as portion_l1;
Get the segments of the array representation to the right of the sub-structure below cp1 as portion_r1;

For parent2:
Randomly select a node cp2 from parent2 at the level number min(S, max(parent2)-1));
Get the segments of the array representation of the sub-structure below cp2 as portion_c2;
Get the segments of the array representation to the left of the sub-structure below cp2 as portion_l2;
Get the segments of the array representation to the right of the sub-structure below cp2 as portion_r2;
offspring1 = [portion_l1 portion_c2 portion_r1];
offspring2 = [portion_l2 portion_c1 portion_r2];

Repair strategy:
if length(offspring1)>length(parent1)
 exnum = length(offspring1)-length(parent1);
 for j=1:exnum,
 Randomly select an integer p1 between 1 and length(offspring1);
 Randomly select an integer p2 between 1 and length(offspring2)+1;
 offspring2 = [offspring2(1:p2-1) offspring1(p1) offspring2(p2:end)];
 offspring1 = [offspring1(1:p1-1) offspring1(p1+1:end)];
 end
elseif length(offspring2)>length(parent2)
 exnum = length(offspring2)- length(parent2);
 for j=1:exnum,
 Randomly select an integer p2 between 1 and length(offspring2);
 Randomly select an integer p1 between 1 and length(offspring1)+1;
 offspring1 = [offspring1(1:p1-1) offspring2(p2) offspring1(p1:end)];
 offspring2 = [offspring2(1:p2-1) offspring2(p2+1:end)];
 end
end

Figure 4: Pseudo code for hierarchical crossover.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 59 | Page

crossover also does not concern whether the selected gene segments correspond to the whole tree branches or

not. And as long as the two crossover points are determined, the segments are fixed and the locations of them in

the arrays do not change. Hierarchical crossover is different from two-point crossover in that it focuses on the
branches of the tree structures and only change the gene segments that refer to whole branches. Moreover, the

locations of the two gene segments of the parents may differ from each other, and the repair strategy promotes

population update.

In addition to the crossover method mentioned above, we use the mutation of small perturbation. It is

different from bit-wise mutation in that the digit can only increase by 1 or decrease by 1 with equal probability.

In the cases of the boundaries, if the perturbed digit is out of bounds, the original value is restored. The pseudo

code of the mutation operator based on Representation 1 is displayed in Figure 5.

V. The Information Retrieval Model
In this report we will examine the algorithm in the information retrieval system [10]. A structured,

hierarchical organization composed of nodes as mediators, aggregators, and databases is used to model the IR

system. An agent is assigned for each node to take the corresponding functions. The information recall and the

query response time are combined to form a metric to determine the utility of the organization. We will

summarize the derivation of the utility function in the following section. Detailed procedures to calculate the

utility can be found in [10]. In the template of the IR system shown in Figure 6, directed edges with a solid

arrow represent has-a relations, and the corresponding label indicates the magnitude of that relation, and

hollow-arrow edges represent is-a relations.

At the top level of each hierarchy is a mediator. The user sends a query, which a randomly assigned

mediator is responsible to handle. It uses the collection signatures of all the mediators to compare data sources,

then routes the query to those mediators that seem appropriate. After the query has been directed through the

aggregators and processed by all the databases under the selected mediators, the responsible mediator finally

collects and delivers the resulting data.

5.1 The Utility of the IR Model

According to [10], every mediator has got a rank according to its perceived response size. The one with the

largest perceived response size receives rank No. 1, and the same rank is given to mediators with equal

Let offspring be the array representation of an offspring created by the

crossover operator, numVar be the length of the representation,

mutOps be the mutation probability, and maxTreeDepth be the

maximum tree depth.

rN = rand(size(offspring,1),numVar)<mutOps;

offspring = offspring+rN.*((rand(size(offspring,1),numVar)>0.5)*2-

1);

offspring(offspring==0) = 1;

offspring(offspring==maxTreeDepth+1) = maxTreeDepth;

Figure 5: Mutation of small perturbation.

Figure 5: Organization template of the information retrieval system. [10]

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 60 | Page

perceived response sizes. Mediators are chosen to be sent queries based on their ranks, resulting in the query

probability P(m) (m=1, 2, …, num_mediators). This is used to calculate the response recall of the organization,

which is given by the following equation:

sizetopicenv

msizeresponseactualmP

recallresponse

mediatorsnum

m

__

)(__)(

_

_

1








 (1)

where the expectation of the system‟s actual response size regarding all the mediators is divided by the

environmental topic size to form the value of the response recall.

The IR model assumes that queries have a Poisson arrival distribution with mean rate query rate, and each node

follows the FIFO processing principle. Each database has a process service rate, defining how quickly it can

process queries. Likewise, each aggregator and mediator has a response service rate, and must wait for the
slowest information source before sending responds. The probability density function (pdf) and cumulative

density function (cdf) of the waiting time in a database node are given as:

x

M exf  ),((2)
x

M exF  1),((3)

where x≥0 is the waiting time and =service_rate–arrival_rate. The query rate of the mediator m equals
query_rate×P(m), and all nodes under a particular mediator inherit the query rate of that mediator. The service

rate of a database is simply its process service rate, whereas aggregators and mediators have service rate as

response_service_rate/num_sources.

The pdf and cdf of the maximum service time of a node‟s all sources can be generated by the following

equations:





n

i i

i
n

i

in
xF

xf
xFxf

11

)(
)(

)(
])([)(

 (4)





n

i

in xFxF
1

)()()(

 (5)

 where fi and Fi represent the pdf and cdf of the ith source respectively.

The mediator and aggregator must process and aggregate the resulting data, leading to a total service time

combining these two activities. The pdf and cdf of the total service time can then be determined by the

convolution of the corresponding local and source distribution functions, which have the forms:





x

i

lsC stepdistixfifxf
0

_)()()(

 (6)





x

i

lsC stepdistixFifxF
0

_)()()(

 (7)
where x=0, 1, 2, …, dist_range/dist_step, with dist_range representing the upper bound on the sampled points

and dist_step the stride length between points. fs is the aggregate information source pdf, and fl and Fl are the pdf

and cdf of the waiting time for the local queuing process.

By incorporating the result propagation process and the cumulative overhead latency incurred by the message

transits we can predict the expected response time of the system as a whole. And finally the utility of

organization is computed by combining the aspects of response recall and response time with appropriate

weights of each term as follows:
10/_1000_ timeresponserecallresponseutility  (8)

5.2 Simplifying the Organization Representation with Regard to the IR Model

Since it is assumed in the IR model that all the databases in the system contain the same amount of

topic data, and thus, there are no differences among the end nodes (i.e. leaves of the trees), we may directly

borrow the array representation introduced in Section 3 to the IR model. Here Level 1 is the mediator level,
where nodes are all mediators. The intermediate nodes correspond to aggregators, and the leaf nodes are

database agents. The whole organization can be outlined by a set of trees. Exchange of information is enabled

between every two root nodes and all immediate superiors and subordinates.

From a practical viewpoint, we notice that it is not necessary to include an aggregator if it only has one

subordinate, because it will only increase the information transmission delay and not bring any integration

advantages. Hence, if such an organization instance emerges, we can simply omit the aggregator node and

reduce the organization structure by one level.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 61 | Page

Related modification can be made in the array representation, which is summarized below. Firstly, obtain all the

Figure 8: Flowchart of the algorithm.

Original representation: 3 1 5 2 3 3 4 2 1 2 5 3 1 4 3

Using “1” as separators: 3 1 5 2 3 3 4 2 1 2 5 3 1 4 3

Using “1” “2” as separators: 2 1 5 2 3 3 4 2 1 2 5 3 1 4 2

Using “1” to “3” as separators: 2 1 3 2 3 3 4 2 1 2 5 3 1 3 2

Final organization: 2 1 3 2 3 3 4 2 1 2 4 3 1 3 2

Figure 7: Simplifying the organization. Nodes M are mediators, nodes A are aggregators, and nodes D are

databases.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 62 | Page

segments of a genome between adjacent mediators (i.e. the integer series between 1‟s). Set the smallest values

of these segments to 2. Secondly, obtain all the segments with 1‟s and 2‟s as separators. Set the smallest values

of these segments to 3. Continue until the highest level of the organization. Figure 7 shows the detailed steps of
a sample simplifying procedure. It transforms a 5-level sample organization of the IR system to a 4-level one. In

the simplified organization, all mediators and aggregators have no less than two sources.

The simplifying procedure is employed to achieve higher utility. At the same time, the number of organization

instances we have to evaluate for every representation is reduced to one.

5.3 Implementation and Evaluation Criteria
In the case study of the IR model, the optimization is carried out using genetic algorithm with

population of organizations represented by arrays, the hierarchical crossover and the mutation of small

perturbation as described in the above sections. The utility value serves as the fitness measure of an individual

organization. If the arrival rate exceeds the service rate at one or more points, resulting in infinite queues, the

fitness of the organization will be penalized. Systems with one infinite queue are considered to have fitness of –
2500, and for each additional infinite queue, another 500 is deducted from the fitness.

We recognize that there are likely multiple optimal solutions that achieve the same utility in a given

system environment, owing to the symmetry of the structures. Besides, the building blocks that may lead to a

good solution need to be maintained in the population. Therefore, we need a method that allows growth in

several promising areas in the search space. In other words, the diversity of the population should be enhanced

and over-convergence should be avoided. We increase the competition between similar individuals by applying

the restricted tournament selection (RTS) method described in [6]. It helps to preserve diverse building blocks

needed to locate the optimal organization. A flowchart of the algorithm is shown in Figure 8.

We compare the proposed algorithm, called hierarchical genetic algorithm (HGA), with the standard genetic

algorithm using one-point crossover with bit-wise mutation (SGA1) and two-point crossover with bit-wise

mutation (SGA2) in order to show the benefits of the newly introduced operators. We examine the algorithms in

two aspects, the accuracy and the stability of search, which are evaluated using the parameters, average
percentage relative error (APRE) and success rate (SR), respectively. They are derived using the following

equations.

The percentage relative error (PRE) can be calculated by:

PRE=(fbest–f)/fbest×100 (9)

where fbest is the best known fitness value among all the runs of all the algorithms for a given test case, and f is

the current fitness value achieved by the algorithm. APRE is the average of the PRE values among all the

independent runs of each test case.

SR is a number between 0 and 1 that denotes the ratio of the number of runs in which the best known solution is

found by the algorithm to the total number of runs in each test case. Since GAs involve stochastic initialization

of solution candidates, selection, crossover, and mutation, the stability of search is also an important factor that

we should take account into.
We examine the test cases of 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 databases. The maximum height of the

structures is set to be 4. The population size and the maximum number of candidate evaluations used are shown

in Table 1. All algorithms use a window size w=5 for RTS in the population updating stage. The mutation rate is

0.1. All the test cases involve 10 independent runs.

The environment parameters of the IR model are set as follows: message latency = 20 milliseconds, process

service rate = 10 per second, response service rate = 20 per second, and query rate = 3 per second. The search

set size and query set size are set to be the total number of mediators for each organization. The response recall

is therefore identical (100%) in all cases, and the utility is determined by the response time.

The best achieved fitness value in every generation is recorded and the best organization instance found after the

maximum number of candidate evaluations along with its fitness are used for calculating APRE and SR. In this

case study and many other applications, the computation time of the genetic operators and population updating

is negligible compared to that of the candidate evaluations. Moreover, when parallel computing is used, the
execution time depends on number and quality of the machines used. Therefore, we conclude that the number of

candidate evaluations is more suitable as an evaluation metric than computation time. When we use the same

machine, computation time is proportional to the number of candidate evaluations. All algorithms are tested in

MATLAB ver. 7.9.0.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 63 | Page

Table 1: Configurations of HGA.

No. DBs Population Size No. of Candidate Evaluations

12 50 2,000

14 100 5,000

16 200 10,000

18 500 50,000

20 500 50,000

22 500 50,000

24 500 100,000

26 500 100,000

28 500 100,000

30 1,000 200,000

VI. Experimental Results
In this section we will firstly analyze the properties of the best solutions found by the algorithms so far.

Secondly, we will demonstrate the advantage of the proposed HGA over the standard GA with one-point and

two point crossover in locating the best organization of the IR system.1

6.1 Best Organizations Found by the Algorithms

The characteristics of the best organizations found by the algorithms are listed in Table 2, and the

corresponding structures are shown in Figure 9. Since previous studies did not give comparison among the

highly rated organizations in different scenarios, it should be worthwhile for us to summarize their features.

Table 2: Characteristics of the Best Organizations.

No. of DBs Representation of Best Organization
No. of

Mediators
No. of
Levels

Total
No. of
Agents

Fitness

12 33233133233 2 3 18 860.39

14 3233132331323 3 3 23 847.62

16 332313323133233 3 3 25 839.20

18 33233133233133233 3 3 27 832.27

20 4434342443434243434 1 4 33 821.60

22 332434341434342434434 2 4 37 813.90

24 43434243434143434243434 2 4 42 810.13

26 4434342443434143434243434 2 4 44 802.24

28 443434244343414434342443434 2 4 46 795.96

30 4434344244343441443434244343
4

2 4 48 790.06

Firstly, we may see that there is no node with more than 6 sources in the best organization of any test case

because it will cause an infinite queue in the current settings. If an aggregator has too many sources, it needs a

long time to collect and analyze the information from the sources, and is thus not optimal. Secondly, most of the

best found organizations are composed of the following strings: 3323, 33233, 443434. These baseline structures

of 5, 6, and 7 databases offer an advantage in efficiency and are assembled to constitute the best organization in
a larger scale. During the evolutionary search, they are identified by the algorithms as building blocks for

solutions with high fitness values. Thirdly, as the number of databases increases, the model has to deal with

more distributed load. It first seeks to introduce more mediators, and later the height of the structure is increased

to balance off the transmission burden of mediators. For example, 2 mediators are sufficient to handle a system

with 12 databases, but for a system with 18 databases, 3 mediators are needed. And in the 20-database case, a 3-

level organization with 3 mediators is no longer adequate, therefore a 4th level is added. Since the height of the

structure is raised, the number of mediators is cut down to avoid unnecessary delay in assembling the data.

1 As the EOS method does not contain detailed description of the algorithm, unfortunately, we are not able to

compare our algorithm with EOS.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 64 | Page

It can be observed from Figure 9 that it is beneficial to group the databases at the bottom level as evenly as
possible, which is consistent with our intuition of a good organization design. In the test cases where there are

12, 18, 24, and 28 databases, balanced allocation can be realized. Perfect symmetry appears in the designs.

Similar efforts are made in the test cases of 14, 16, 20, 26, and 30 databases. Note that for the latter two

instances, the two mediators process different number of databases, however the second-level aggregators have

exactly the same subordinate structures. The organizations shown in Figure 9(h&j) achieve higher fitness values

than the organizations with both mediators having the same number of databases, which can be represented as

[443434 2 43434 1 443434 2 43434] and [4434344 2 443434 1 4434344 2 443434] respectively. It is more

interesting to investigate the case where there are 22 databases. The tradeoff is so difficult and eventually

(a) 12 databases (b) 14 databases (c) 16 databases

(d) 18 databases (e) 20 databases

(f) 22 databases (g) 24 databases

(h) 26 databases

(i) 28 databases

(j) 30 databases

Figure 9: Best organizations found by the algorithm.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 65 | Page

unbalanced organization wins. Moreover, putting two or three databases at the penultimate level emerges as a

good choice in this kind of situations.

6.2 Comparison of Results

Table 3 shows the APRE of SGA1, SGA2, and HGA in the 10 test cases, and the SR values are

displayed in Table 4. The best value for each test case is highlighted. It can be observed that the accuracy of the

proposed HGA is better than SGA1 and SGA2 in 9 out of the 10 cases. Only in the 18-database case, SGA2

outperforms SGA1 and HGA in terms of APRE.

Table 3: Average Percentage Relative Error.

No. DBs SGA1 SGA2 HGA

12 0.1103 0.1122

0.0370

14 0.0090 0.0460

0

16 0.0966 0.0869

0

18 0.0940 0.0372

0.0505

20 0.1150 0.3076 0.0749

22 0.2037 0.3085 0.0031

24 0.3376 0.4914 0.0406

26 0.1556 0.3494 0

28 0.2104 0.5307 0.0067

30 0.2470 0.4825 0

Regarding the search ability, HGA also has an advantage over SGA1 and SGA2 in the majority of the test cases.

The superiority of HGA is more pronounced in larger-scale organizations which contain more than 20 database

nodes. In those cases, SGA1 and SGA2 fail to locate the best known organization instances for most of the time,

whereas the proposed HGA still maintains high SR values of 90%–100%. This proves that HGA uses fewer

candidate evaluations to locate the best organization than the conventional GAs. Given that the candidate

evaluations are very computationally expensive in many real-world systems, it is beneficial to use HGA in such

circumstances.

Table 4: Success Rate.

No. DBs SGA1 SGA2 HGA

12 0.5 0.5

0.8

14 0.8 0.7

1

16 0.7 0.8

1

18 0.8 0.8

0.8

20 0.5 0.1 0.3

22 0.1 0 0.9

24 0.2 0 0.9

26 0.4 0.1 1

28 0.2 0 0.9

30 0.2 0.1 1

The non-parametric Wilcoxon signed-rank test is performed to judge whether there is a statistically significant

difference between HGA and SGA1/SGA2. As a pair-wise test in a multi-problem scenario, we use all the

APRE values of each algorithm as sample vectors. The null hypothesis H0 is set as “there is no difference

between HGA and SGA1/SGA2 in terms of the APRE values.” Accordingly, the alternative hypothesis H1 is

„„The two methods are significantly different.” A significance level of 0.05 is implemented, i.e. if the p-value of

the test turns out to be less than 0.05, the algorithms involved are considered to have different performance, and
the smaller the p-value is, the more distinct they are from each other. We get that the APRE values of HGA is

different from those of SGA1 at the p-value of 0.001953 and is different from those of SGA2 at the p-value of

0.003906, which suggests the proposed algorithm is statistically better than both SGAs.

The performance graphs of the median runs (i.e. the 5th best runs in our experiment) of SGA1, SGA2, and HGA

are shown in Figure 10. Owning to the specially designed genetic operators, HGA is able to locate good

solutions faster in most of the circumstances. When the number of databases is larger (especially over 20

databases), HGA regularly scores higher fitness than SGA1 and SGA2 when the same number of candidate

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 66 | Page

evaluations is used. It is also able to find better organizations within the maximum number of candidate

evaluations. From Figure 10(f,g,h,i,j) we can see, HGA has a remarkable advantage over SGA1 and SGA2 in

the convergence speed
.

(a) 12 databases (b) 14 databases

(c) 16 databases (d) 18 databases

(e) 20 databases (f) 22 databases

Figure 10: Performance graph.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 67 | Page

VII. Comparison of HGA with the State-of-the-Art Multi-Agent Organization Design

Methodologies
While we have demonstrated the advantage of HGA‟s newly introduced operators over the traditional

GA operators, it is interesting to investigate how HGA performs compared with the search processes of the

state-of-the-art multi-agent organization design methodologies. In this section we will explore the hierarchical

(g) 24 databases (h) 26 databases

(i) 28 databases (j) 30 databases

Figure 10 (cont.): Performance graph.

Figure 11: An Example of equivalent organizations in ODML.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 68 | Page

IR system using ODML [10] and KB-ORG [17] that are previously mentioned in Section 2. Results are given

following the experimentation in Section 5.3.

7.1 Comparison with ODML

In ODML, four approaches are listed to assist the search process. They are the exploitation of hard

constraints, equivalence classes, parallel search, and model abstraction. Rather than going through a decision

tree to verify whether an organization instance satisfies the hard constraints of the problem as ODML does, our

algorithm incorporates the array representation that already ensures the satisfaction of constraints in maximum

height of the structure and the number of databases in the system. Parallel search and model abstraction are also

intuitively used in HGA.

In ODML, the agents are treated in three equivalence classes: the mediators, the aggregators, and the

databases. Within the same class, the characteristics of the agents do not distinguish between each other. In

other words, choosing any agent in the “mediators” group for a role of mediator in the IR organization is the

same. Moreover, the number of organization alternatives can be cut down by discarding organizations which are
equivalent to an existing one in the candidate pool. For instance, the organizations shown in Figure 11 are

equivalent in ODML in that their utility will be exactly the same, and only one should be kept as an evaluation

candidate.

Based on these notions, we have calculated the number of evaluations needed for ODML in the 10 test

cases as in Section 5.3, with exploited hard constraints of the number of database nodes from 12 to 30 and the

maximum height of the structure equaling 4. All nodes in the organizations (expect the leaf nodes) should have a

minimum of two subordinates. Details are shown in Table 5. It confirms that the number of organization

instances increases exponentially as the number of leaf node agents increases, despite the truncation of

redundant equivalent organizations. The total number of evaluations can be approximated as O(2.1N), where N is

the number of leaf nodes. Comparing Table 5 with Table 1, we can see that HGA uses much fewer candidate

evaluations than ODML does. Especially, when the number of databases becomes larger, the fraction of the

number of candidate evaluations needed by HGA to the total number of candidate evaluations becomes smaller
and smaller. This saves a great amount of computation burden, as the computation of utility functions can be

extremely expensive.

Table 5: Number of organization Evaluations Needed for ODML.

No. DBs No. of Evaluations No. DBs No. of Evaluations

12 4,304 22 9,675,949

14 20,699 24 43,663,703

16 98,186 26 195,062,099

18 459,311 28 863,372,191

20 2,120,799 30 3,788,734,984

It should be noted that the proposed HGA is compatible with all the above mentioned search space reducing

measures, however, we maintain the equivalent organizations as in Figure 11, for they may contribute to finding

an optimal solution of the test problems. This compromise results in a larger search space for HGA, whereas in

ODML, the elimination of redundant equivalent organizations helps to narrow down the search range to a great

extent. When the number of equivalent organizations is prevailing, ODML should have an advantage benefited
from the elimination measure. Nevertheless, in the studied system, HGA still manages to evolve the population

of organizations at a reasonable pace, and it spares the computation time for branch pruning at the same time.

7.2 Comparison with KB-ORG

KB-ORG has also placed much effort on reducing the search space. Different from ODML, it

emphasizes the use of design knowledge in application and coordination of roles and design functions. With

good knowledge, a system can be designed with relatively affordable cost. However, in certain cases, design

knowledge is hard to acquire. It largely depends on the level of expertise of the designer. A barely trained

designer may have little experience to rely on when he or she tries to construct an organization for a multi-agent

system under the guideline of KB-ORG. Design knowledge is not guaranteed to be accurate. When taking a

greedy approach in a certain decision step, the search process may leave out the optimal solutions. In addition,
design knowledge needs to be updated following the change of environmental variables. If the environmental

variables are altered, previous knowledge may not be applicable anymore; instead, new knowledge should be

added to help the organization design.

In the IR model, the utility of the organizations does not involve spatial contents, and every role has

only got one kind of agent to perform, so no extra knowledge is required in either spatial proximity of the agents

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 69 | Page

or role-agent binding. The main difficulty lies in the coordination of agents, e.g. how many levels of hierarchy is

needed. Assume that the designer has successfully searched out the best organizations for 12, 14, 16, and 18

databases. He may think that a 3-level hierarchy is best for the 20-databse case. This will reduce the search
space to 58,327 organizations, which is only 2.75% of ODML‟s search space, but, it will miss out the highest

rated organization, which is 4-leveled with the utility of 821.60. The best 3-level organization can be expressed

with our proposed representation as [33233 1 33233 1 3233233], with the utility of 814.11, which is worse than

the worst utility (820.01) found by HGA within 50,000 evaluations in all runs. On the other hand, if the designer

reaches at a relaxed bound of structure height of either 3 or 4 for the 20-database case, the number of

organization evaluations will mount to 2,120,662.

Let us further assume that the designer not only has the knowledge about the vertical depth of the

organization structure, but also has some knowledge about its horizontal size. If in the 22-database case, it can

be speculated that the organizations with 4 levels and 2 mediators are optimal, the designer is faced with a

search space of 3,384,278 options without duplicate. And for organizations with 24 databases, 4 levels, and 2

mediators, the number is 12,686,252. If it can be speculated furthermore that the highest rated organization is
made up of 4 levels, 2 mediators, with every mediator having 2 subordinate agents, the number of evaluations

needed for KB-ORG will be 282,812 and 800,996 for the test cases with 22 and 24 databases respectively,

whereas, for HGA, only 50,000 and 100,000 evaluations are needed to reach a 90% success rate. Although

design knowledge has brought us convenience in searching for the highest rated organization in these test cases,

it is far from satisfactory. In contrast, our algorithm searches for the highest rated organization in a heuristic way.

It is able to handle these test cases without the assistance of external expertise.

VIII. Conclusion and Future Work
We have proposed a novel genetic algorithm based approach to solve the problem of designing the best

organization in hierarchical multi-agent systems. Complementary to existing methodologies that emphasize on

the pruning of the search space, our algorithm uses a bio-inspired evolutionary approach to lead the search to

promising areas of the search space, and is thus suitable for optimizing multi-agent systems with a great variety

of possible organizations where designer expertise alone is not enough or hard to acquire. In the example of the

information retrieval system, we have empirically proved that the algorithm is able to discover competitive

baseline structures in different systems and assemble them to obtain the highest rated structure from a

magnitude of up to 109 organization alternatives. In particular, we propose the use of hierarchical crossover and

mutation of small perturbation to add to the advantage of our algorithm. The new crossover and mutation

methods help HGA enhance the search efficiency greatly, promoting its performance both in accuracy and
stability of search.

With necessary modifications, the proposed algorithm is applicable to other models as well. It can be

used to optimize any tree-based hierarchical organizations of multi-agent systems, given that proper fitness

values are assigned. Application areas include scenario tree and decision tree optimization. On the other hand,

the proposed array representation can also be used for other forms of MAS organizations, such as holarchies. It

is worthwhile to further examine the performance of the algorithm for systems with non-uniform leaf nodes and

unfixed number of leaf nodes using Representation 2 and 3. In subsequent studies, we will investigate the

efficiency of the proposed approach in larger-scale MASs involving a massive number of agents.

References
[1]. Aranha, C., and Iba, H. 2009. The memetic tree-based genetic algorithm and its application to portfolio optimization. Memetic

Computing 1(2): 139–151.

[2]. Bäck, T. 1996. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic

Algorithms. Oxford University Press US.

[3]. De Jong, K. A. 2006. Evolutionary Computation: A Unified Approach. Cambridge, MA: MIT Press.

[4]. Ferber, J., Gutknecht, O., and Michel, F. 2003. From agents to organizations: an organizational view of multi-agent systems. In:

Lecture Notes in Computer Science, 2935, Proc. Agent-Oriented Software Engineering 2003: 214–230.

[5]. Fernández, A., and Ossowski, S. 2008. Exploiting organisational information for service coordination in multiagent systems. In

Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 257–264, Estoril,

Portugal.

[6]. Harik, G. R. 1995. Finding multimodal solutions using restricted tournament selection. In Proceedings of the 6th International

Conference on Genetic Algorithms, 24–31. San Francisco, CA: Morgan Kaufmann Publishers Inc.

[7]. Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press.

[8]. Horling, B., and Lesser, V. 2005. Analyzing, modeling and predicting organizational effects in a distributed sensor network. Journal

of the Brazilian Computer Society 11(1): 9–30.

[9]. Horling, B., and Lesser, V. 2005. A survey of multi-agent organizational paradigms. The Knowledge Engineering Review 19(4):

281–316.

[10]. Horling, B., and Lesser, V. 2008. Using quantitative models to search for appropriate organizational designs. Autonomous Agents

and Multi-Agent Systems 16(2): 95–149.

[11]. Kirley, M. 2006. Dominance hierarchies and social diversity in multi-agent systems. Proceedings of the 8th Annual Conference on

Genetic and Evolutionary Computation (GECCO), 159–166. Seattle, Washington, USA.

New application of genetic algorithm in optimization of structural weights

www.iosrjournals.org 70 | Page

[12]. Lesser, V. 1998. Reflections on the nature of multi-agent coordination and its implications for an agent architecture. Autonomous

Agents and Multi-Agent Systems, 1: 89–111.

[13]. Li, B., Yu, H., Shen, Z., and Miao, C. 2009. Evolutionary organizational search. In Proceedings of the 8th International Conference

on Autonomous Agents and Multiagent Systems - Volume 2, 1329–1330. Budapest, Hungary.

[14]. Nan, G., Li, M., and Kou, J. 2005. Multi-level genetic algorithm (MLGA) for the construction of clock binary tree. In Proceedings

of the 2005 Conference on Genetic and Evolutionary Computation, 1441–1445. Washington DC, USA: ACM.

[15]. Okamoto, S., Scerri, P., and Sycara, K. 2008. The impact of vertical specialization on hierarchical multi-agent systems. In

Proceedings of the 23rd AAAI Conference on Artificial Intelligence, 138–143.

[16]. Phelps, S., McBurney, P., and Parsons, S. 2010. Evolutionary mechanism design: a review. Autonomous Agents and Multi -Agent

Systems, 21: 237–264.

[17]. Sims, M., Corkill, D., and Lesser, V. 2008. Automated organization design for multi-agent systems. Autonomous Agents and Multi-

Agent Systems 16(2): 151–185.

[18]. Vázquez-Salceda, J., Dignum, V., and Dignum, F. 2005. Organizing multiagent systems. Autonomous Agents and Multi-Agent

Systems, 11: 307–360.

[19]. Wooldridge, M., Jennings, N. R., and Kinny, D. 2000. The Gaia methodology for agent-oriented analysis and design. Autonomous

Agents and Multi-Agent Systems, 3: 285–312.

[20]. Yang, J. and Luo, Z. 2007. Coalition formation mechanism in multi-agent systems based on genetic algorithms. Applied Soft

Computing, 7: 561–568.

[21]. Zafar, H., Lesser, V., Corkill, D., and Ganesan, D. 2008. Using organization knowledge to improve routing performance in wireless

multi-agent networks. In Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems - Volume

2, 821–828.

