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Abstract: In order to obtain concrete with a desired elastic modulus, E, at minimum cost, it is necessary to 

carry out optimization of concrete mixtures.  Effectively and efficiently optimized concrete mixtures, usually 

have better properties, satisfy intended use and minimize costs.  In this work, the cost of concrete mixtures based 

on its elastic modulus, E, is optimized using Osadebe’s optimization Method.  The resulting optimization model 
can be used to estimate the cost of concrete when the elastic modulus, E, is specified.  Conversely, the model 

can be used to determine the elastic modulus, E, obtainable from concrete mixture of a given cost.  In addition, 

it can be used to determine the optimum concrete mix and cost when given the desired elastic modulus, E.  

Fluctuations in market prices can be accommodated by multiplying the base prices of constituent materials with 

a price fluctuation factor (PFF).  The predicted costs compare favourable with the values obtained from the 

market survey.  The optimization model was tested for adequacy using statistical tools and found to be adequate.  

Keywords: Optimization, Costs, Concrete Mixtures, Elastic Modulus, Osadebe’sTheory, Optimization Method.   

 

I. Introduction 
 Today, concrete is the most widely used construction material.  Some of its notable properties are 

workability of the fresh concrete are compressive strength, elastic modulus, durability and thermal 

characteristics of hardened concrete.  A knowledge of its modulus of elasticity, E, is necessary in the analysis 

and design of structural concrete members. The production of concrete using conventional mix design methods, 

are well known and documented.  These conventional methods of concrete mix design used to obtain concrete 

of desired modulus of elasticity, MOE, involve several trial mixes with their attendant waste of time, materials 

and labour. 
       However concrete can be optimized to meet a number of performance criteria simultaneously at 

minimum cost.  Majid (1974) defined optimization as a process that seeks for a maximum value for a function 

of severable variables while at the same time satisfying a number of imposed requirements.  Although, 

optimization methods require commitment of time and money upfront, they have the potential to save money 

during production (Simon et al, 1997).  In this article, an optimization approach by Osadebe (2003) is adopted 

and used for the formulation of an optimization model for predicting the cost of concrete on the basis of its 

modulus of elasticity.  To achieve this, experiments were carried out and the results used to develop the final 

optimization model based on the Osadebe‟s optimization method.    

 

II. Methods 

2.1Osadebe Optimization Method  
 Osadebe (2003) assumed that a regression function, F(Z), is continuous and differentiable with respect 

to its variables, Zi . By making use of Taylor‟s series, the response function, could be expanded in the 

neighbourhood of a chosen point, Z(o) 
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Expanding Eqn (1) up to the second order gives:         
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        where m = degree of polynomial of the response function  

                    and      0 ≤ i ≤ 4  
Assuming Zi is the fractional portion and Si, the actual portion of the mixture component, then the total quantity 

of concrete, S, for a four-component mixture, is given by 
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                            S  =

    

iSå  ………………………………………………………………..……(3) 

      Thus, 

                 S = S1 + S2 + S3 + S4 ………………………………………………………….(4) 

If 1m
3
 of concrete is required, dividing both sides of Eqn (4) by S yields: 

                      S/S = S1/S + S2/S + S3/S + S4/S     ……………………………………………..(5)  

 Let    Si/S   =   Zi  …………….…………………………………………………………………....(6)     

Then,                                                                                                             

                1 = Z1  + Z2 +  Z3  + Z4   ……………………………………………………………..……. (7) 
This can be written in compact form as : 

                Zå = 1      ………………………………………………………………………..…..(8) 

Assuming the point Z0 is taken as the origin, it implies that  

                       
(0) 0z =  ………………………………………………………………….………. (9) 
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Substituting Eqns (11)-(14) into Eqn(2) yields Eqn(15) for 4-component mixture: 
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Multiplying Eqn (7) by  0
b  gives:  

 b0 =b0 Z1 + b0 Z2 + b0 Z3 + b0 Z4   …………………………………………………………….. (16) 

Multiplying Eqn (7) successfully by Z1, Z2, Z3 and Z4  yields respectively: 

                     1Z =
2

1Z  + 1 2Z Z  + 1 3Z Z  + 1 4Z Z     ……………………………………………. (17) 

.                        2Z = 1 2Z Z  + 
2

2Z  + 2 3Z Z  + 2 4Z Z      …………………………………………...(18) 

                        3Z  = 1 3Z Z  + 2 3Z Z  + 
2

3Z  + 3 4Z Z            ……………………………….……...(19) 

                         4Z  = 41Z Z  + 2 4Z Z  + 3 4Z Z  + 
2

4Z        ……………………………………… .(20) 

Rearranging Eqns (17)-(20) gives: 

                         
2

1Z = 1Z  - 1 2Z Z - 1 3Z Z - 1 4Z Z  ……………………………………………….....(21) 

                         
2

2Z  = 2Z  - 1 2Z Z  - 2 3Z Z  - 2 4Z Z        ………………………………….…...….(22) 

                    
2

3Z   = 3Z  - 1 3Z Z  - 2 3Z Z  - 3 4Z Z        …………………………………………. (23) 

                    
2

4Z  = 4Z  - 1 4Z Z  - 2 4Z Z  - 3 4Z Z             ………………..…………….. ………(24) 

Substituting Eqns (21) -  (24) into Eqn (15) yields Eqn(25) 

                     

 Y = 0 1b Z + 20b Z + 0 3b Z + 0 4b Z + 1 1b Z + 2 2b Z + 3 3b Z + 4 4b Z  
                         + 12 1 2b Z Z  + 13 1 3b Z Z + 14 1 4b Z Z  + 23 2 3b Z Z + 24 2 4b Z Z + 34 3 4b Z Z  

                         + 11b ( 1Z - 1 2Z Z - 1 3Z Z  - 1 4Z Z ) + 22b ( 2Z  - 1 2Z Z  - 2 3Z Z  - 2 4Z Z )      

                         + 33b ( 3Z - 1 3Z Z - 2 3Z Z - 3 4Z Z )+ 44b ( 4Z  - 1 4Z Z  - 2 4Z Z  - 3 4Z Z ) …. (25) 

Factorizing Eqn (25 gives: 

Y = ( 0b + 1b + 11b ) 1Z +( 0b + 2b + 22b ) 2Z +( 0b + 3b + 33b ) 3Z +( 0b + 4b + 44b ) 4Z  
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     +( 12b - 11b - 22b ) 1 2Z Z +( 13b - 11b - 33b ) 1 3Z Z +( 14b - 11b - 44b ) 1 4Z Z  

     +( 23b - 22b - 33b ) 2 3Z Z +( 24b - 22b - 44b ) 2 4Z Z  + ( 34b - 33b - 44b ) 3 4Z Z  ……………...(26)         

Since the summation of constants gives another constant, let   

                           i
a = 0b  + ib  + iib     ………………………………............................... (27) 

                and     ija = ijb  - iib  + jjb      ………………………………..............................(28) 

Then, substituting Eqns (27) and (28) into Eqn (26) yields: 

         Y =         1 1za + 2 2za + 3 3za + 4 4za + 12 1 2z za + 13 1 3z za + 14 1 4z za  

                      + 23 2 3z za + 24 2 4z za + 34 3 4z za  …………………………………………… (29) 

In compact form,  Eqn (29) becomes: 

          Y = 

4 4 4
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i i j
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= = =

+å å å   …………………..…………………………..…… (30) 

    In Eqn(30), Y is the response function at any point of observation, zi  and zj  are the predictors, and i
a  and 

ja are the coefficients of the regression equation.   

Putting Eqn(30) in a matrix form gives: 

       [Y(n) ] =   [Z(n)] [a ] ………………………………………………………………….. (31) 
In expanded form, Eqn(31) becomes 
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Rearranging, Eqn (32) yields 
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Putting Eqn(32) in a compact form gives: 

         [ a ] = [Z(n)]-1[Y(n) ] ……………………………………………………………………(36) 
              where 

                    [Y(n) ] = matrix of responses function determined from laboratory tests. 

                     [Z(n)] =  matrix of fractional portions obtained from matrix of actual portion. 

                        = matrix of coefficients of the regression function‟  

 It should be noted that fractional portion, Zi, is the ratio of the actual portions, Si, to the total quantity of 

concrete, S.  Thus, the values of the fractional portions, Zi, is obtained from the values of actual portions, Si, and 

presented in Table 1.  The Z(n) values were used for developing the Z(n) matrix and the inverse Z(n) matrix given 

in Tables 2 and 3 respectively. 

 

3.2experimental Method  
 Tests were conducted in the laboratory to determine the values of the response, Yi, required to 
determine the final response function for predicting the elastic modulus of concrete.  In all, fourteen mix ratios 

were used for producing 28 cylindrical concrete specimen measuring 100mm in diameter and 200mm in depth.  

Four out of the fourteen mix ratios were used as control mix ratios for testing the adequacy of the regression 

response function developed in this work.  The cylindrical concrete specimen were produced from Dangote 

cement, a brand of Portland cement conforming to BS 12 (1978) specifications, river sand that fell within zone 2 

of BS 882 grading zone, crushed granite of maximum size conforming to BS 882 and B.S 812 (1983) and 

portable water.  The concrete cylinders were cast, cured in water for 28 days and then, tested in a universal 

testing machine in accordance with the specifications of BS 1881 (1983). The results of the laboratory tests are 

presented in Table 4   
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3.3Costing Of Materials   
 This section is concerned with the determination of the cheapest of all the concrete mixes that will 

yield a particular modulus of elasticity.  Knowledge of current market price of the constituent (building) 

materials is very essential in the determination of the total costs of various concrete mixes.  The unit prices of 
these constituent materials are defined as follows: 

N w = cost of water per kg 

N c = cost of cement per kg 

N k = cost of sand per kg 

N p = cost of coarse aggregate per kg 

 

Calculation of Quantities of concrete constituents. 

 The predictors, Zi, are determined from the response function i.e Eqn (29) for predicting the possible 

combinations of the proportions of the concrete constituents for a desired modulus of elasticity. 

 It will be recalled that for 1 m3 of concrete, 

               Z1 + Z2+ Z3 + Z4= 1   …………………………………………………………………….(35) 

This can be rewritten in a compact form as follows: 

    

4

1

i

i

Z
=

å
  

=  1   ……………………………………………………………….…………………..(36) 

But, the total weight of 1m
3
 of concrete = 2400kg 

Therefore, 

Quantity of water   = 
1z

zå
* 2400 Kg……………………………………………………….... (37) 

         where   z1 = proportion of water in 1m3 of concrete. 

Quantity of cement = 
2z

zå
*  2400 Kg   ………………………..……….………………..….(38) 

           where   z2 = proportion of cement in 1m3 of concrete. 

 

Quantity of sand    = 
3z

zå
* 2400 Kg   ………………………………….…………….…….(39)  

           where   z3 = proportion of sand in 1m3 of concrete. 

     

 Quantity of coarse aggregate = 
4z

zå
* 2400 Kg   …………………………….……..… (40) 

           where   z1 = proportion of coarse aggregate in 1m3 of concrete. 

 

COSTS OF CONCRETE 

  Cost of water   = 
1z

zå
* 2400 * w……………………………………………………….. (41) 

   Cost of cement = 
2z

zå
*  2400 * c   ………………………..……….………….……....(42) 

  Cost of sand    = 
3z

zå
* 2400 * k   …………………………….…………………..……(43)            
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  Cost of coarse aggregate = 
4z

zå
* 2400 * p   …………………………….…….…… (44) 

Therefore, the total cost of concrete is obtained by summing up the costs of its constituents as follows: 

Total cost of concrete, Ct = (cost of water + cost of cement + cost of sand + cost of coarse      

                                          aggregate).   

Ct = 
3 1 2 3 4

*2400 *2400 *2400 *2400
z z z z z

w c k p
z z z z
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é ù
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Simplifying Eqn(4) gives: 
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III. Results And Analysis 
    The results of the experimental tests are given in Table 4 

Table 4.: Experimental results 

Exp 

No 

Mix ratios 

w/c : c : F.A:C.A 

Replciates Response 

symbol 

MOE 

(N/mm
2
) 

Average MOE 

( N/mm
2
) 

1 

 

0.5:1:1.5:3 1A Y1 40.20 41.30 

1B Y1 42.42 

2 

 

0.55:1:2:3 2A Y2 55.03 50.04 

2B Y2 45.05 

3 

 

0.6:1:2:4 3A Y3 24.97 25.21 

3B Y3 25.45 

4 

 

0.65:1:3:5 4A Y4 19.39 19.24 

4B Y4 19.09 

5 

 

0.525:1:1.5:2.25 5A Y5 22.13 21.78 

5B Y5 21.43 

6 0.55:1:1.5:2.75 6A Y6 25.43 26.10 

6B Y6 26.77 

7 
 

0.575:1:2:3.25 7A Y7 34.20 35.80 

7B Y7 37.40 

8 0.575:1:2:3.5 8A Y8 25.54 23.68 

8B Y8 21.82 

9 0.6:1:2.5:4 9A Y9 28.90 28.15 

9B Y9 27.40 

10 
 

0.625:1:2.5:4.5 10A Y10 26.36 25.79 

10B Y10 25.22 

11 
 

0.575:1:2:3.375 11A Y11 23.20 27.08 

11B Y11 22.76 

12 
 

0.5875:1:2.25:3.625 12A Y12 26.58 23.93 

12B Y12 26.92 

13 0.625:1:2.75:4.5 13A Y13 23.35 22.71 

13B Y13 22.41 

14 
 

0.54:1:1.6:2.6 14A Y14 18.61 19.69 

14B Y14 18.97 

  

 where   w/c   = water-cement ratio 

               C     = Cement 
               F.A. = Fine Aggregate,  

                C.A  = Coarse Aggregate 
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               MOE = modulus of Elasticity. 

 

4.1 Determination Of The Regression Function For Elastic Modulus. Substituting the values of 

obtained from the test results (given in Table 4) into Eqn (33) yields the following coefficients,  
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…..……………………………......…….…(47) 

And substituting the values of these coefficients into Eqn (29) gives: 

     Y   =    5351667.6400 Z1 +888151.9143 Z2 + 1835.219102 Z3 

                +2392.479301Z4 –10609392.05Z1Z2 – 5791804.077 Z1Z3 

                –5620199.635 Z1Z4 –699734.4294 Z2Z3 –786415.528 Z2Z4                                                
                +12085.08274 Z3Z4   ……………………………………………………………………………………….. (48) 

The Eqn (49), is the final Osadebe‟s regression function for optimizing the Modulus of Elasticity of a 28 day 

concrete.  

 
4.2 Test Of Goodness Of Fit Of Osadebe’s Regression Function. 

(a) Determination of Replication Error. 

 The variation of replicates, Sy at any arbitrary point of observation arising from instruments, tools and 

weather variation, is determined using Eqn (50) 

            Sy
2   = 

1

eV

2

iSå  ………………………………………………………….…… (49) 

                 where   Si
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1

( 1)m -

2

2

1 1

1
i i
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å å              

                                  mi – 1 =  degree of freedom 

                                  yi         =  value of responses at any point 

                                 iy        =  mean of responses 

Thus, random error is given by: 

 

             Sy
   = 

1

eV

2

yS  ……………………………………………………………..(50)  

The replication variance and random error computations are carried out and summarized in Table 5. 

 

Table 5:  Computations of Standard Error of Replicates and Replication Variance of  Modulus 

of Elasticity of Test Results. 
Exp 

No 

Replicate   Response 

symbol 

MOE, yr 

(N/mm
2
 

1

im

r

r

y
=

å  

y  
2

1

im

r

r

y
=

å
 

2

iS  

1 1A 

1B 

       Y1 40.20 

42.42 

82.62 41.30 3415.50 2.4642 
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2 2A 

2B 

       Y2 55.03 

45.05 

100.08 50.04 5057.00 49.8002 

3 3A 

3B 

       Y3 24.97 

25.45 

50.42 25.21 1271.20 0.1152 

4. 4A 

4B 

        Y4 19.39 

19.09 

38.48 19.24 740.40 0.045 

5 5A 

5B 

       Y12 22.13 

21.43 

243.56 21.78 948.98 0.245 

6 6A 

6B 

       Y13 25.43 

26.77 

52.20 26.10 1363.32 0.8978 

7 7A 

7B 

       Y14 34.20 

37.40 

71.60 35.80 2568.40 5.12 

8 8A 
8B 

       Y23 25.54 
21.82 

47.36 23.68 1128.40 6.9192 

9 9A 

9B 

      Y24 28.9 

27.4 

56.30 28.15 1585.97 1.125 

10 10A 

10B 

      Y34 26.36     

25.22 

51.58 25.79 1330.90 0.6498 

11 11A 

11B 

      C1 20.80 

22.76 

43.56 21.78 950.66 1.9208 

12 12A 

12B 

      C2 30.58 

28.92 

59.50 29.75 1771.50 1.3778 

13 13A 

13B 

      C3 24.35     

22.41 

46.76 23.38 1095.13 1.8818 

14 14A 

14B 

      C4 16.17 

17.97 

34.14 17.07 584.38 1.62 

                                                                                                                           
2

iSå =74.18                                                                          

Therefore 

 Replication variance, Sy
2  =

74.18

14
 = 5.30 

Replication, Error, Sy = 5.30  = 2.30 

 

  

Fishers test  
 The test of adequacy was performed using fishers test.  The computations for Fishers test of Adequacy, 
are presented in Table 7. 

 

Table 7 :Computations for Fisher’s Test of Adequacy 

Response 

symbol 

Ye 

(Yexp) 

Yp 

(Ypred) 
Ye- eY  Yp- pY  (Ye- eY )

2
 (Yp- pY )

2
 

C1 22.98 27.08 0.13 3.727 0.0169 13.8905 

C2 26.75 23.93 3.90 0.577 15.21 0.332929 

C3 22.88 22.71 0.03 -0.643 0.0009 0.413449 

C4 18.79 19.69 -4.06 -3.663 16.4836 13.4176 

å  
91.40 93.41  31.7114 28.0545 

Mean 22.85 23.353  

         Sexp
2  = 

2( )e eY Y-å /(N-1) = 31.7114/(4-1)  = 10.570467 

         Spred
2  = 

2( )p pY Y-å /(N-1) = 28.0545/(4-1) = 9.35 

Using  Sexp
2   as  S1

2  and  Spred
2  as  S2

2 in in Fisher‟s test equation, then, 



Optimization Of Concrete Cost Based On Its Elastic Modulus 

www.iosrjournals.org                                                             22 | Page 

           F= 

2

1

2

2

S

S
 =

 

10.5705/9.3500 = 1.13 

And from Fisher‟s Table,  

             (3, 3)Fa  =9.28 and 
1

F
 =0.108 

Since, Fisher‟s condition, 
1

F
 <  S1

2 /  S2
2 < F is satisfied, the Null Hypothesis ,H0 ,is also accepted. And so there 

is no significant difference between the predicted and experimentl results. 

 

4.3 Predicted Costs and mix ratios 
 The costs and mix ratios corresponding to concrete with an elastic modulus of 36 N/Mm2 is given 

below. 

Table 6:  Concrete mix ratios and costs corresponding to elastic modulus of 36N/mm
2
  

S/N Elastic 

modulus 

Y(N/mm2) 

Mix Ratios 

w/c :C:FA:CA 

Market-

based 

 Costs 

(N) 

Predicted 

Costs 

1 36 0.64:1.00:2.58:5.98 19,602.98 19,596.72 

2 36 0.56:1.00:2.00:3.07 22,545.88 22,560.73 

3 36 0.51:1.00:1.62:1.85 25,528.03 25,536.19 

4 36 0.50:1.00:1.52:1.42 26,927.58 26,915.23 

5 36 0.49:1.00:1.30:1:07 29,076.89 29,082.58 

6 36 0.47:1.00:0.95:1.24 30,577.78 30,639.44 

  where    w/c     =  water – cement ratio 

                C          =  cement 
     F.A       =   Fine aggregate 

                 C.A      =   Coarse aggregate 

A cursory look at Table 6 shows that the maximum percentage difference between the market-based  costs and 

the predicated costs, is  0.07%. And, the optimum mix and cost of concrete with an elastic modulus of 36N/mm2 

are 0.64:1.00:2.58:5.98 and N19, 596.72 respectively. 

 

IV. Conclusions 
      An optimization model based on Osadebe theory has been successfully formulated for the 

determination of cost estimates of concrete based on its elastic modulus.  In doing so, the first things to be 

calculated are the proportions that can yield a given elastic modulus, and subsequently estimates of the costs of 

the predicted mix proportions, are obtained. 

      Conversely, the model can be used to predict the elastic modulus, E, obtainable from concrete mixture 

of a given cost and comprehensive strength. 

The model can be used to determine optimum concrete mix and its cost based on its elastic modulus. The 

maximum elastic modulus predictable by the model is 50.04 N/mm2 and the cheapest mix proportion that yield 

it, is 0.55: 1.0:2.0:3.0 with a total cost of N22, 387.78.     
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