IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)
e-ISSN: 2278-1684, p-ISSN: 2320-334X, Volume 22, Issue 5 Ser. I (Sept - Oct 2025), PP 47-59
www.iosrjournals.org

Temperature Rise Associated With A Joule Heating Effect
Of A Disturbed Current Density In A Plate With A
Through Crack During Resistance Spot Welding
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Abstract:

Background: Resistance spot welding is a type of the electric resistance welding, through a process in which
contacted metal surfaces are joined by the heat obtained from the Joule heating effect. If there are some defects
in the material, such as cracks, the current density will be disturbed by the presence of the crack, and an
unexpected temperature rise will be caused by the disturbed current density. This unexpected temperature
distribution may cause some troubles in the welding process.,

Materials and Methods: The temperature distribution in a cracked plate during resistance spot welding under
a uniform current density is considered. In the calculations, the crack faces are supposed to be electrically and
thermally insulated. By using the Fourier integral transform method, the electric problem is reduced to a
singular integral equation, which is solved numerically. Using the obtained solution, the disturbed components
of the electric potential and the current density are computed. Furthermore, the temperature field induced by
the disturbed current density components is also calculated. The results for the electric and thermal fields are
presented for the various values of the geometric parameters.

Results and Conclusion: 1. The temperatures along the crack surfaces should not depend on the geometric
parameters. 2. The normalized maximum values of the crack surface temperatures would be 0.5. 3. As the crack
approaches to the upper or lower plane, the temperature distributions tend to decrease except for the crack
surface temperatures. 4. If the thickness of the plate is infinite, the temperatures along the crack surfaces can be
obtained as closed form solution.

Key Word: Resistance spot welding; Disturbed current density;, Joule heating effect; Temperature rise;
Fourier transform, Singular integral equation.
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I. Introduction

Resistance spot welding is a type of the electric resistance welding, through a process in which
contacted metal surfaces are joined by the heat obtained from the Joule heating effect. If there are some defects
in the material, such as cracks, the current density will be disturbed by the presence of the crack, and an
unexpected temperature rise will be caused by the disturbed current density. This unexpected temperature
distribution may cause some troubles in the welding process. However, except for Liu’s study' about the
electro-thermo-structural coupled-field simulation of electric connector with edge crack, very few investigations
on these phenomena have been made.

In this study, the electric and thermal problems for a cracked plate during resistance spot welding under
a uniform current density is considered. First, the Fourier integral transform technique is used to reduce the
electric problem to the solution of a singular integral equation?, which are solved numerically®. Next, using the
solution of the singular integral equation, the disturbed electric field can be calculated. Furthermore, by solving
the Poisson’s equation with a heat generation due to the Joule heating effect induced by the disturbed current
density components, we can get the temperature field. Numerical calculations are carried out, and detailed
results are presented to illustrate the influence of the crack location on the temperature field. The results for the
electric field are also included. For the case of the special case, the closed-form solution of the temperature field
can be obtained.

II. Formulation Of The Problem
The problem under consideration is an infinite long plate of thickness 4 = h, +h, containing a through

crack with its length being 2c¢ parallel to the boundaries, as shown in Figure nol. The system of rectangular
Cartesian coordinates (x,,z) is introduced in the material in such a way that the crack is located along the x -
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axis. It is assumed that the current density components in the y -direction J ,(x,y) (i =1,2) at the top surface
(y=h,) and the bottom surface (y=—h,) are maintained at J,, (x,/s) =J , (x,~h,) =—J, (0< |x| < ), where
J, indicates the constant current density. The temperatures 7,(x,») (i =1,2), which are induced by the

disturbed current density components, at the surfaces are fixed to 7,(x,h)="T,(x,—h,)=0 (0S|x| <o),

respectively. The crack faces are supposed to be insulated electrically and thermally. In the following, the
subscript i =1,2 denotes the electric and thermal fields in 0 < y </ and —h, < y <0, and the subscripts x, y

will be used to refer to the direction of coordinates. The electric conductivity and the thermal conductivity are
denoted by x and 4.

y
‘-\ i h1
\'h o ¢ J X
)
f ‘ -h2 \

Figure nol: A through crack in a conducting plate.

III.  Electric Fields
For the problem considered here, it is convenient to represent the electric potentials @,(x,y) (i =1,2)
as the sums of two functions.
®,(x,0) =@V () + PP (x,) (=12) (1)
where ®"(y) and ®'?(x,y) (i=1,2) indicate the non-disturbed and disturbed components. The

governing equation and the boundary conditions for ®(y) are

d*o®
T(y) 0 2)
o= 00 h)=0 G)

The goveming equations and the boundary conditions for ®'*(x,y) (i =1,2) are also given by

P CD(Z)(X y)+ CD(Z)(X »=0 (=12) (4)
£®§2>(x,0+)=—ﬁ (0S|x|<c)
y K (5)
P (x,07) =0 (x 07) (c< |x| < o0)
66 O (x,0")=— Py CI>(2)(x 0)

< |x| < ) (6)
—cD<2>( Jh) = q><2>(x ~hy)=0
oy
It is easy to find from the equations (2) and (3) that ®" () is
oV (y)= (y+h ) M
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The non-disturbed current density components J',J f,l) induced by the non-disturbed electric

potential component ®(y) are
10 = Lavpy=0, s =Lt )=-J, ®)
dx ’ dy

Applying the Fourier integral transform method, the general solutions of the equations (4) can be
obtained as follows:

1 ¢ . .
O (6 ) =~ [ {4 exp(=|s|9) + A, (s)exp( s | y)}exp(-isds (1=1.2) ©)
where 'i' indicates the imaginary unit, and 4, (s) (i, j =1,2) are the unknown functions to be solved.

We define the following new unknown function? G, (x) :

a 2 + 2 -
G () a[c1>§>(x,0 )= @ (x,0)] (0<[x|<c)

0 (cS|x|<00)

(10)

Using the boundary conditions (6), the relationships between 4, (s) (i, =1,2) and G.(&) can be
obtained as follows:

A== ex;(_2|s| y{1-ex2b) [ Ge(@exp(-isg)ds

= ex; Sy w2kl -2 [ G expissras

()= - ex;(—2|s| o {exp(-2]s|h,) - exp(-2|s| )} ijGE(g) exp(—is&)d & o
Ay (5) = {1_@:) ] {1-exp(2[s| )} [ Go(&)exp(-ise)dé

Making use of the first boundary condition (5) with the equations (11), we have the following singular
integral equation for the determination of the unknown function? G, (&) :

1 ¢e 1 J

gy |:_+ME(§ax):|GE(§)d§=__O 0<x|<c) (12)
| E—x K

where the integral kernel M (&, x) is given by

M, (&,x) = j :m {2exp(~2sh) —exp(~2sh,) —exp(~2sh, )} sin {s (& —x)} ds (13)

The singular integral equation (12) is to be solved with the following subsidiary condition obtained
from the second boundary condition (5).

[ Ge(&)ag=0 (14)

We solve the singular integral equation (12) and the additional equation (14) by using the Gauss-
Chebyshev integration formula®, and we can get the solution G, (&) . Substituting the equations (11) to the

equations (9) with the solution G, (&), the general solutions of the equations (4) can be obtained.

For the case of |y| >0, the disturbed components Csz) (x,y) (i=1,2) can be obtained as follows:

2 - -
! >(x,y)=%jo exp(—s|y|) L (s, x)ds

LY R S exp{=s(2h=y)} ~exp{=s(2h-+ 1)} L(s,x)ds (i=12) (15)
27 °0 1—exp(=2sh) | +exp{-s(2h — y)} —exp{-s(2h, + y)}
where
Ly(s,x) = é [ Go(&)sin{s(g-x)}dg (16)
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The first terms of the equations (15) may be

(;—Bi J:c exp (—S |J’|)LE (s,x)ds = % I; arctan [

o] ]G (e)ds (i=12) (17)

And for the case of y — 0", the equations (15) will be

® (x,0* )—( b .[ L. (s, x)ds+ [exp(—2shl)—exp(—2sh2)]LE(s,x)ds @=12) (19)

2790 1—exp(—2sh)
The first terms of the equations (18) are

EV [ 222 6,0ds 0<|x<o)
c f—x|

(Vi _ -
> [ Ly (s, x)ds = (i=12) (19)

0 (c<|x| <)

For the case of |y| >0, the disturbed current density components J(x,y), J ilz) (x,y) (i=1,2) are
given by

J2(x,y) = _Kﬁq>gz> (x,)
ox

= (1)’('[ exp s|y|) L, (s,x)ds

K g 1 exp{—s(2h— y)} —exp{—s(2h+y)}
27 %0 1—exp(=2sh) | +exp{—s(2h — y)} —exp{—s(2h, +y)

0
J2 () =-x—0 (x,y)
: oy

}:| g L,(s,x)ds (i=12) (20)

= —%J.:S eXp(_S|y|)LE (s,x)ds

K oo s [exp {=s(2h—y)} +exp{-s(2h+ y)}

2o 1-exp(=2sh) | +exp{—s(2h — )} +exp{-s(2h, +y)}}LE (s,x)ds (i=12) 21

where
L6 =-] Gu@eos s} dz @)
The first terms of the equations (20) and (21) are
(D'« ey -
- j exp(—s| y|) Ly (5,3)ds === j e G (E)déE (i=1,2) N
—%J.:sexp(—s|y|)L (s,x)ds =—— [ % =G, (&)dé

2rl e

Taking the non-continuity of the equations (19) into consideration, the equations (20) and (21) for
¥ — 0 become
00y = EVE[ G0 O<hi<o)
o 2 0 (c<|r|<oo)
+ w;[exp(—Zshl)—exp(—2sh2)]dsr Go(&)cos{s(E—x)}de (i=12)  (24)
2790 1—exp(—2sh) e
A 0< |x| <c)
JPE0)=ID@0) =1 ko { 1

M x)}G (©)dé (e <[ <w)

(25)

2 d-e
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IV.  Temperature Fields
The heat generation J; / x due to only the non-disturbed current density component .J _f,” =-J, will
be ignored. The Poisson’s equations with heat generations due to the Joule heating effect induced by the non-
disturbed current density component J )(,l) =—J, and the disturbed current density components J ' (x,y),

JP(x,y) (i=12) are

i{azzZ(xy)+iT(xy)}+Q(xy) 0 (i=12) (26)
o oy’

where

0.(x,y)=— [{J“)(x ») {J;?)(x,y)—Jo}z—Jé] (i=12) 27)

The boundary conditions are

ng(x,O*)zo (0<]x|<c)
oy

(28)
T(x0)=T,(x,0) (c<|x[<o0)

I

57—1’()6,0 )_ayTZ(x’O ) (0£|x|<00) 29

T, (x,h) =T,(x,—h,) =0
Because the Poisson’s equations (26) are nonhomogeneous, the temperature fields 7,(x, y) (i =1,2) are

given as the sums of the particular integrals 7"’ (x, y) and the complementary functions 7* (x,y) (i=1,2).

i

Ty =T",)+T7(xy)  (=12) (30)
We can get the particular integrals 7, (x,y) (i=1,2) after repeated trial and error as follows:
1|1 2 .
7;(1)(X9y):__ _{Fl(st/)} +Joyr,-(X,J’) (121’2) (31)
Ax| 2
where I',(x,y) (i=1,2) are
-1«
T, (x,y) = ) —I, —exp( s|ysin{s(G—x)}ds| G (&)dg

- jj’ ;[E(s)exp{—s@hl — M} =F(s)exp{-sQh, + )} Jsin{s(f - 0)}ds[ G.(HdE (i=12) (32)

In the above equations, F,(s) (j =1,2) are

Fy(s)= {l—exp(—Zshj )} (j=12) (33)

1
1—exp(—2sh)

For the case of | y| > 0, the first terms of the equations (32) are

Chx l) K j —exp( s|yPsin{s(&—x) dsj G, (§)d§_( ) j arctan( ¥ ]G (&)dé (i=1,2) (34)
And for the case of y—>0i the equations (32) become
D'« 1)f<
(1,0 = i e <
0 (c<|x| <o)
K = 1 . c .
o jo m{exp(—2shl)—exp(—2shz)} sin{s(& - x)} ds J._CGE(cf)d§ (i=12)  (35)

The temperature gradients qi,i.) (x,¥) (i=1,2) inthe y -direction are

0 1 0 0 .
‘IS)(X,)’)=—7;(1)(X:Y)=—_ Fi(xay)_ri(x:y)+J0Fi('x’y)+J0y_ri(x’y) (l=1a2) (36)
Oy Ak oy oy
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where

0 0 K e -X

L rn=Lr e =L G, (e

oy dy 277y +(E-x)

K e . c

o [ TR exp{=sh ~ )} + F()exp (-s2h, + )} Jsin{s(& -0} ds[ G (&g (7)
Especially, for the case of y — 0", the equations (37) become

5 5 -J, (0< |x| <c)
—TI(x,0)=—T,(x,0)=1 x cc [ 1 (38)
o o’ [ ML) (GO (e <|r| <)

2rie|E—x

Therefore, the temperatures and the temperature gradients shown in the equations (31) and (36) are
iﬂ(”(x,0+)=0 (0<|x|<c)

oy
0 (x,0M)=1"(x,0") (c=|x[ <o) (39)

in"(x,O*) = iTz“)(x,O’) (o< |x| < )
oy oy

Because the particular integrals 7" (x,y) (i =1,2) do not satisfy the second and third boundary

conditions of the equations (29), we have to analyze of the complementary functions 7> (x, ) (i =1,2) by the

same method used in the electric field analysis.
The governing equations and the boundary conditions for the complementary functions

TP (x,y) (i=1,2) are

6—222<2’(x,y>+a—zzﬂ<2>(x,y> =0 (i=12) (40)
ox oy
271(2)(JC,O+):O (0S|x|<c)
oy (41)
T2 (x,00)=T"(x,07) (c<|x| <o)
ETI(Z)(X,OJr) — QTZ(Z)(X’()*)
oy oy
LP(x,h) =~1" (x, 1) (0 <[x| <o) (42)
T2 (x,=hy) = =T, (x,~h,)
The complementary functions 7% (x, y) (i =1,2) of the equations (40) can be obtained as follows:

p ry G q (40)

2 (= )

17 () =~ [ 1B, (5)expl=s | ¥ )+ B(s)expls | y D} cos(sx)ds (i =1.2) (43)

where B, (s) (i, j =1,2) are the unknown functions to be solved. We also define the following new

unknown function G, (x):

0 2 + 2 -
G, (x) = LA R0 =BT w0)] O<hi<o) (44)
0 (¢ <|x| <)

Using the boundary conditions (42), the relationships between B, (s) (i, j =1,2) and G,($) can be
obtained as follows:
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__ 1+exp(-2sh)) exp(—sh,) B B
B, (s)= 4{1 —eXp(—ZSh)} Iy (s)+ 1—exp(~2sh) [exp( sh)D,(s)—D, (S)]
_exp(-2sh,) {1+exp(-2sh,)} _exp(-sh) o
B ) = ] ) T expaoiy D) T EPED)
(45)
_ 1+exp(-2sh) B exp(—sh,) B B
B8 = eaps] ) T explasiy |18 XD ()
_exp(-2sh,) {1+exp(-2sh,)} exp(—sh,) o
R e Ol e LORE G LIS)
where
1) =[G, @sintscd (46)
D) ==3| [ i mycostopyn | [ costspp+Zh fi(s.y)
> : 2 (7)
D,V == [ fin=oycostnp)dn | [ cossp)dp + 21 (s ~h)
_ 1| 1-exp(-2sh,) 3 Y- 1| I—exp(=2sh,) 3
filshy=— [—1 R }exp( (), o5, he) = [—1 R }exp( L) @8)

Making use of the first boundary condition (41) with the equations (45), we have the following singular

integral equation for the determination of the unknown function G, (¢) :
1 ¢ 1 2 0
= Tt MG ) Gn(ﬁ)d§=—j [N, (5)D,(s) = N, (5)D,(s)]cos(sx)ds (0 <[x|<c) (49)
2| E—x o
where the integral kernel M, (£,x) is given by
o 1

M, (¢ x)=| ———

n(e:) IO 1—exp(—2sh)
The known functions N, (s) (j =1,2) are

{2exp(~2sh) + exp(~2sh,) +exp(~2sh, )} sin {s (& - x)} ds (50)

N
Ni(s) = m[exp(—% )+exp{=s(h, +h)} | 651)

N, (s) = l_expsw[exp(—shz)+ exp{-s(h +h)}]

The singular integral equation (49) is to be solved with the following subsidiary condition obtained
from the second boundary condition (41).

[ G (&dz=0 (52)

We can also solve the singular integral equation (49) and the additional equation (52), and we get the
solution G, (&) and the function I,,(s) .

Substituting the equations (45) to the equations (43), the complementary functions 7" (x,y) (i =1,2) can
be obtained as follows:

T (x,y) = i.“: [(—l)i exp(—s|y|) -K, (S,y)]IH (s)cos(sx)ds

o2 [ [Kor(5:3)D,(5)+ Ky (5, 9) Dy (5)]cos(sx)ds (i =1,2) (53)
Y0

where
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K, (s,y)= m[exp {=s@2h+y)} —exp{-s(2h— y)} +exp{-s(2h, + y)} —exp{-s(2h - y)} |

Ky (s.9) = m[exp{—s(h +h,+ )} —expi=sh — )} ] (54)

Kpy(s.7) = m[exp{—sm +h =) —expi=sth, + )]

Furthermore, the temperature gradients are

%Tﬁ” (x,0) = i J; [sexp(=s[y) = K7, (s.) ] 1, (s) cos(sx)ds

o2 [ [K (5. 0)D,(5)+ Ky (5, 1) Dy (5)]cos(sx)ds (i =1,2) (55)

T 0
where
Kl (s,y)= m[exp —s(2h+ )} +exp{-s(2h— y)} + exp{-s(2h, + y)} + exp{-s(2h, - )} |
Kpi(s,y)= m[exp —s(h+hy+y)} +exp{—s(h — J’)}] (56)
Ky, (s,y)= m[ﬁp —s(h+h - y)}+exp{ s(h, +J/)}]

The first terms of the equations (53) and (55) are

[ (G j arctam(ér _"J G, (&)dE (y]>0)
(;i ro exp(—s|y|)1,, (s) cos(sx)ds = ad b1 (i=12)
T 0
G (&)d¢ (=0 (57)
1 c

ZJ.O sexp(=s|y|)1, (s) cos(sx)ds = > L% G, (9)dS

For the case of y — 0",

TP(x,0) =T (x,00) (c<|x|<o0) (58)

i (2) + :ﬁ (2) -
ay]-; (X,O) ayTz (X,O)
"% CLI M, (& x)}G @z =2 [ [NEODE-NoDO]eos(snds 0=[<x)  (59)

2w e

Therefore, taking the singular integral equation (49) into consideration,

2Tlm(x, 0")= 2T;2>(x, 0)=0 (0<]x|<c) (60)
oy y

For the cases of y=# and y =-h,,

1) === [ Dy (s)cos(sn)ds = 1" ()

(61)
T (x—hy) =2 "D ds = ~T" (x,~h
() === [ Dy(s)cos(sx)ds =T (x, )

From the equations (58)~(61), the complementary functions 7, (x,y) (i =1,2) satisfy the boundary
conditions (41) and (42).
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V.  Temperature Fields For The Case Of h = h, =& o

First, we consider the particular integrals ﬂ(l)(x, »)(i=12) for h =h, > . It is convenient to
analyze that we introduce the following dimensionless quantities.
veer ymat E=agh 5= hechlh =ch =S =eh) =L, GE @) =267 (£ ©)
c
where the superscript co indicates the solutlon for b = h2 — 0. In this case, the singular integral
equation (12) and the subsidiary condition (14) become

i lﬁGw'(\f')d\gEv =-1 (0< |x'| <1)
¢ (63)

LGZf'(f')d(f' =0
It is easy to show that the function G, (&') takes the form

o gy 2&!
GrE) = (64)

(1-¢7)

Substituting the equations (64) into the equations (32), we obtain I', (ex',ey') =T (x,y) (i =1,2) as follows:

© ' v 1 J ¢ yoen V[ e e '
ey = T [ Loxpsysingsiexnjan [ 67 @ras
=—(-1)'J,c j :—, exp(—s'[y)J, (s cos(s'x")ds' (i=1,2) (65)

S

In the equations (65), J,() is the Bessel function of the first kind of order 1. Similarly,
ol (ex',cy")/ 0y (i =1,2) become

9 ety = L2 (ex' )
oy oy

Jo [ v s NET N R NG
=20 [ expos y sin fs' (& -0} d [ 67 (£

=-J, jo exp(—s'|y )/, (s") cos(s'x")ds' (66)
Therefore,
T (ex',ey) =T, (CX' o)

(J c

S 2“ —exp(—s'|y |)J(s)cos(s'x’)ds}

J
( C) |y|j —exp(—s |y |)J (s")cos(s'x"ds' (67)
ﬁ (1o ' N — — 7o ' '

ayT‘ (ex',cy") ayTz (ex',cy")

J: o
- _AL/:[ jo exp(—s'|y|)J, (s cos(s ' x')ds }
><leexp(—s'|y'|)J1(s')cos(s'x')ds'}
1] s’

2 2
— % I: % exp(—s '|y '|)J, (s"cos(s'x")ds'— % |y '| J? exp(—s '|y '|)Jl (s")cos(s'x")ds' (68)

For the case of y'— 0", the equations (67) and (68) become
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0" (ex',0") = T (ex',0)

J c)2 1
J 2 - 2 _( 0 (142 <y
=_ﬂl J‘ lJ](s')cos(s'x’)ds' — i 2(1 X ) (0_|X|<1) (69)
A 270 '
0 1< |x'| < o)
ETIU)W (Cxl’ 0+) — ETZ(I)oc (va’ 07) =0 (70)
y oy
Moreover, for the case of x'=0, the solutions (67) become
Jc)
107(0,¢p) =T, (0,cp") = e 0<[y]<w) (1)

21Kk
Next, we consider the complementary functions 7, (x, y) (i =1,2) for the case of /4 =h, — . Using the

equation (64) and G, (c&") =0, the equations (53) become

(Joc)z

TP (ex',ey") = TV (ex',cp") = lim ~——— jxé‘(s')f(s’)ds’ (72)
h>o 0
where
, h'exp(—s'h")
s ey " 7
+exp(—s
P v (73)
’ ! r 1 1 1 1 S C 1 v
S(s',x',y") = [exp(=s'|y ) +exp(s'|y |)}‘TCOS(S x')
Because the function d(s’) is the Delta function sequence, the equations (72) become
2 2 (J oc)2
TP (ex'ep) =T (ex',ep') =" (74)
24K
Therefore,
2
J,c
%x@ O<[x|<D
T (ex',07) =T} (ex',0) =4 = (75)
(JOC) (1 < |xl| < OO)
2Ak B
Numerical Results And Discussion
2 ye—00% '
halc=05
o halc=15 -
- 1F he=20 2
n il
¥ 5
) =~
ag 0 P ~ =
- 15 e
03 . —=1
T
_______ =T I
- 0 1 2
x/c
(a) (b)
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Figure no2: The disturbed distributions of the electric potentials (a), the current densities in the y-direction (b),
the temperatures (c) and the temperature gradients in the y-direction (d) for 4, /c¢=0.5 and h,/c=1.5

(h/c=2.0).

First, we consider the entire trend of the disturbed electric and temperature fields and we will also
check the wvalidity of the solutions. Figures no2(a)~(d) show the normalized -electric potentials

®? (x,y)/(J,c/ ), the current densities Jﬁf) (x,y)/J,, the temperatures 7,(x,y)/ |:(J0C)2 / /IK] and the
temperature gradients g, (x,y) /(Joc/Ax) (i=1,2) for b /c=0.5 and h,/c=1.5 (h/c=2.0). In the figures,
y/c shows the normalized position parameter and the solid and dotted lines indicate the fields of 0< y <A,

(i=1) and —h, <y <0 (i=2). Figures no2(a)~(d) show that the disturbed electric and temperature fields

satisfy the electric boundary conditions (5), (6) and the temperature boundary conditions (28), (29),
respectively. Thus, it is noted that the obtained solutions should be reasonable.

All the values are symmetric with respect to the x-axis and the values of Ji,,.z) (x,y) (i=1,2) have
singularity at the crack tip (|x| —c", y—0.0°). While the temperatures 7,(x,0%) and T,(x,07) on the crack
surfaces (Os|x| <c) are evaluated by the numerical calculations, the values of them are almost equal to
T (ex',0") =T, (cx',07) given by the equations (75). Therefore, it may be that the top and bottom surfaces do
not affect the temperatures, and the maximum values are 7,(c,0") =T, (c,0”) = (J,¢)’ / 2Ax . The temperatures
7,(x,0") and T,(x,07) (c S|x| <o) decrease and approach zero with increasing |x| . The distribution of the
temperatures 7;(x, y) (i =1,2) tend to decrease with increasing | y| )

Next, we study the influence of the crack position on the temperature distribution. Figure no3 indicates the
normalized temperature along the y — 0.0 planes for the case of /4/c¢=2.0. On account of symmetry, we

will consider only 7;(x,0") for the case of 0.0 </ /¢ <1.0. Because the temperature at the upper surface of
the plate is thermally restricted, the temperature 7,(x,0") (|x| >c¢) decreases with decreasing A, /¢ . However,

the crack face temperature 7;(x,0") (0 < |x| <c¢) isindependent of A /c .
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Figure no3: The influence of the crack location on the disturbed temperature distribution on the y/c =0" plane
for the case of h/c=2.0.
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Figure no4: The influence of the thickness of the plate on the disturbed temperature distribution on the
y/c— 0.0" plane for the case of h/c=h,/c.

Finally, we study the influence of the thickness of the plate on the disturbed temperature distribution.

Figure no4 shows the effect of %/ ¢ on the normalized temperature distribution 7;(x,0")/ [(Joc)2 / /11(1 on the
vy/¢—0.0" plane for the case of /, /c=h,/c. Because of 7;(x,0")=T,(x,07), it is also sufficient to consider
only the temperature 7,(x,07) . The dotted line indicates the close-form solution 7,”(x,0") given by the
equation (75). Because the effect of the upper surface increases, the temperature 7;(x,07) (¢ < |x| < 0)

decreases with decreasing //c.

VI.  Conclusion

The temperature distribution in a plate with a through crack during resistance spot welding under a
uniform current density is considered in this paper. Using the integral transform method, the electric and
temperature fields disturbed by the crack are obtained. The following facts can be found from the analysis and
the numerical results.
1. The temperatures along the crack surfaces should not depend on the geometric parameters.
2. The maximum values of the crack surface temperatures would be 7;(¢,0") =7,(c,07) = (Joc)2 /24K
3. As the crack approaches to the upper or lower plane, the temperature distributions tend to decrease except for

the crack surface temperatures.
4.1f the thickness of the plate is infinite, the temperatures along the crack surfaces can be obtained as closed

form solution as follows:
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J 2
%x@ O<|x]<1)
T (ex',07) =T} (ex',0) =4 “**

Jc)
(2;2 (l£|x'|<oo)

Similarly, the temperatures along the y -axis are
L (0.09) =" (0.c0) =0 (0<]y|<=)

References
[1]. Liu, T. J-C., Electro-Thermo-Structural Coupled-Field Simulation Of Electric Connector With Edge Crack. Proceedings Of The 6th
Asian Conference On Mechanics Of Functional Materials And Structures (ACMFMS2018), 2018, Pp.7-10.
[2]. Sneddon, 1. N. And Lowengrub, M., Crack Problems In The Classical Theory Of Elasticity, 1969, John Wiley & Sons, Inc., New

York
3] Erdogan, F., Gupta, G.D. And Cook, T.S., Methods Of Analysis And Solution Of Crack Problems 1972, G. C. Sih (Ed), Noordhoff,

Leyden.

DOI: 10.9790/1684-2205014759 www.iosrjournals.org 59 | Page



