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Abstract 
The structural integrity of bridges is critical to ensuring public safety, economic stability, and uninterrupted 

transportation networks. Traditional risk assessment approaches, such as visual inspections, load testing, and 

Failure Mode and Effects Analysis (FMEA), have historically provided the foundation for maintenance decision-

making. However, these methods often face limitations in dynamic operating environments due to subjectivity, 

static scoring frameworks, and insufficient integration of real-time monitoring data. This study proposes an 

Enhanced FMEA framework that integrates Structural Health Monitoring (SHM) data—collected through 

advanced sensing technologies, Internet of Things (IoT) devices, unmanned aerial vehicles (UAVs), and fiber 

optic systems—into risk assessment processes. Quantitative metrics, statistical methods, and machine learning 

models are applied to improve predictive accuracy, while fuzzy logic and Bayesian networks address 

uncertainties in scoring. Comparative analysis between conventional and enhanced FMEA demonstrates superior 

performance of the integrated approach in terms of predictive reliability, reduction of false positives and 

negatives, and optimization of maintenance schedules. Case applications in bridges and related infrastructure 

reveal the scalability and adaptability of the proposed model. Findings underscore the potential of data-driven 

FMEA to transform infrastructure risk management, enabling proactive maintenance and extending the 

operational lifespan of critical assets. 
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I. Introduction 
Background of the Study 

Bridge infrastructure serves as a cornerstone of societal connectivity. Yet, increasing traffic volumes, 

environmental stressors, and aging components have amplified the potential for structural failure. Traditional 

inspection regimes offer intermittent insight rather than continuous foresight into emerging vulnerabilities. This 

gap underscores the need for a more proactive risk paradigm—one that combines the structured logic of Failure 

Mode and Effects Analysis (FMEA) with real time data analytics. 

FMEA provides a systematic methodology for identifying failure modes, assessing their consequences 

and prioritizing mitigation strategies. In the field of infrastructure risk management, researchers have integrated 

FMEA with statistical techniques such as regression analysis and fault tree analysis to quantify risk more reliably 

(Raichura et al., 2025). Such integrated frameworks support more robust identification of risks in civil engineering 

projects. 

In construction contexts in particular, uncertainty around component reliability has prompted the use of 

belief divergence metrics and fuzzy logic within FMEA frameworks (Liu & Tang, 2022). These methods reduce 

ambiguity in expert judgments and improve the precision of prioritization. 

Sensors embedded in structural health monitoring (SHM) systems now provide continuous streams of 

data on strain, vibration, and environmental load factors. Such data are foundational to transforming FMEA from 

a static assessment into a dynamic process informed by empirical inputs (Structural Health Monitoring, n.d.). 

Recent advances have enabled the detection of subtle signal anomalies in bridge monitoring data using deep 

learning techniques in the frequency domain (Deng et al., 2022). 

The digital twin concept has gained traction in the domain of bridge management. A recent systematic 

review details how digital replicas of bridges, constructed through modeling, simulation, and sensor integration, 

support near real time fault detection via anomaly detection algorithms (Jiménez Rios et al., 2023). These models 

create living representations of physical infrastructure that remain synchronized with evolving structural states. 
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A novel digital twin framework further extends this capability by integrating multiple data sources into 

a network scale Bayesian model. This system adapts flexibly to changes such as construction of new bridges, 

decommissioning of old ones, or shifts induced by climate events like flooding. Its modular Bayesian network 

structure allows local updates without upheaving the entire model (Wang et al., 2025). 

Scour remains one of the most critical threats to bridge foundations. Artificial intelligence approaches, 

particularly time series forecasting models like long sequence memory networks, offer predictive capacity for 

scour development days in advance—facilitating preemptive intervention (Yousefpour & Correa, 2022). 

Despite these advances, gaps persist. Digital twin applications typically focus on individual structures 

rather than integrated networks. Many data driven risk assessments remain primarily theoretical and are not 

embedded within operational workflows. Traditional FMEA methodologies remain reliant on subjective scaling, 

limiting their ability to respond to evolving real world structural risks. 

This study proposes a novel integration of enhanced FMEA with real time structural data analytics, 

predictive modeling, and digital twin frameworks. The aim is to shift from periodic, expert driven evaluation to 

an adaptive system that continuously learns, assesses, and responds to risk. This integrated approach promises 

greater precision in failure detection, responsiveness to emerging threats, and improved maintenance planning. It 

represents a move toward resilient, data informed infrastructure management that can safeguard public safety and 

resource efficiency at both structure and network scales. 

 

Research Problem 

Bridges are vital components of global transportation networks, supporting the continuous flow of goods, 

services, and people. However, despite advancements in engineering design and construction materials, bridge 

structures remain susceptible to various risks, including material fatigue, excessive loading, environmental 

degradation, design inconsistencies, and maintenance delays. In many cases, failures occur not because the issues 

are undetectable, but because existing assessment frameworks lack the predictive power and timeliness needed to 

act before deterioration reaches a critical stage. 

Conventional Failure Mode and Effects Analysis (FMEA) is widely used for risk assessment, but it relies 

heavily on qualitative evaluations, static scoring systems, and expert judgment. These methods, while valuable, 

do not dynamically adapt to changes in a bridge’s condition or incorporate the growing volume of data generated 

by modern monitoring systems. As a result, potential warning signals are often overlooked or detected too late, 

creating a gap between data collection and actionable decision-making. 

The research problem emerges from this disconnect: there is no widely adopted, fully integrated 

approach that merges data analytics with enhanced FMEA methodologies to provide continuous, real-time, and 

objective risk assessment for bridges. Without such a framework, infrastructure managers remain constrained to 

reactive maintenance practices, leading to inefficient resource allocation, missed opportunities for early 

intervention, and avoidable risks to public safety and asset longevity. 

 

Significance of the Study 

This study addresses a pressing need in bridge engineering and infrastructure management by proposing 

a methodology that combines enhanced FMEA with advanced data analytics for proactive risk prediction. Its 

significance lies in its potential to transform current maintenance and inspection practices from reactive, schedule-

based approaches to proactive, condition-based strategies. 

From an operational perspective, integrating real-time structural health data into the FMEA process will 

enable continuous risk re-evaluation. This means that changes in severity, likelihood, or detectability of potential 

failure modes can be identified as soon as they emerge, allowing for targeted maintenance actions before damage 

escalates. The resulting system would improve safety outcomes, reduce the incidence of emergency repairs, and 

extend the service life of bridge assets. 

From a resource management standpoint, the study’s framework offers the possibility of prioritizing 

interventions based on quantifiable risk profiles. This ensures that limited budgets and technical resources are 

directed toward components or structures presenting the greatest operational threat, maximizing the return on 

maintenance investments. 

From a strategic and policy viewpoint, the research provides a blueprint for integrating data-driven risk 

assessment into national and international bridge management standards. It supports the broader movement 

toward smart infrastructure systems that not only collect vast amounts of data but also leverage it to enhance 

decision-making, resilience, and sustainability. 

Ultimately, the study’s contribution lies in its ability to bridge the gap between advanced sensing 

technologies and practical risk management tools. By introducing a dynamic, evidence-based approach to 

structural risk prediction, it aims to elevate the standards of bridge safety and reliability worldwide, offering 

benefits that extend beyond engineering practice into public safety, economic stability, and infrastructure 

resilience. 
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Research Objectives 

The primary aim of this study is to develop and validate an Enhanced Failure Mode and Effects Analysis 

(FMEA) framework that integrates advanced data analytics for the proactive prediction and prevention of 

structural risks in bridge construction and operation. To achieve this aim, the study will pursue the following 

specific objectives: 

I.To identify and categorize potential failure modes in bridge structures by combining traditional engineering 

expertise with real-time and historical structural health monitoring data. 

II. To develop an Enhanced FMEA model that incorporates quantitative data analysis methods—such as 

statistical modeling, machine learning, and probabilistic assessment—into severity, occurrence, and 

detectability scoring. 

III. To evaluate the predictive performance of the Enhanced FMEA framework against conventional FMEA 

methods in detecting early-stage deterioration or failure risks. 

IV.To demonstrate how the proposed methodology can support condition-based maintenance planning and 

optimized resource allocation for bridge management. 

V. To recommend policy and operational guidelines for implementing data-driven risk assessment frameworks 

in bridge safety management systems. 

 

Research Questions 

In line with the above objectives, this study will address the following research questions: 

I.What are the critical failure modes in bridge structures that can be more effectively detected through the 

integration of structural health monitoring data into FMEA processes? 

II. How can data analytics methods be systematically incorporated into FMEA scoring to reduce subjectivity and 

improve predictive accuracy? 

III. To what extent does the Enhanced FMEA framework outperform conventional FMEA in identifying and 

prioritizing potential structural risks? 

IV.How can the proposed model be applied to inform condition-based maintenance strategies and improve the 

allocation of inspection and repair resources? 

V. What operational and policy measures are required to facilitate the adoption of Enhanced FMEA in bridge 

safety and risk management at a systemic level? 

 

II. Literature Review 
The literature review serves as the foundation for understanding the theoretical, methodological, and 

practical developments relevant to the application of Enhanced Failure Mode and Effects Analysis (FMEA) in 

bridge failure risk analysis. It critically examines existing research on bridge structural risks, traditional and 

modern risk assessment methodologies, and the integration of data analytics into predictive maintenance 

frameworks. By systematically analysing scholarly contributions, industry reports, and empirical studies, the 

review situates this study within the broader discourse on intelligent infrastructure management and resilience. 

The importance of bridges in global transportation networks has prompted extensive research into 

methods for predicting and preventing structural failures. Over the years, inspection-based assessments and 

conventional FMEA have been widely adopted to identify potential failure modes and prioritise maintenance 

activities. However, these methods have well-documented limitations, particularly in addressing the dynamic 

nature of bridge deterioration and in effectively utilising the vast datasets generated by modern structural health 

monitoring (SHM) systems. As the volume, variety, and velocity of bridge performance data continue to grow, 

there is a pressing need to explore advanced analytical methods that can extract actionable insights from these 

data sources and integrate them seamlessly into risk assessment frameworks. 

The introduction of Enhanced FMEA—an evolution of the traditional methodology that incorporates 

quantitative data analytics—represents a significant step forward in this direction. Unlike static, qualitative 

approaches, Enhanced FMEA is capable of recalibrating risk assessments in near real time, drawing on data from 

sensors, historical maintenance records, and environmental monitoring systems. This enables a shift from 

reactive, schedule-based maintenance to proactive, condition-based strategies that can significantly improve 

safety outcomes and resource efficiency. 

This literature review is organised to provide a coherent pathway from the general understanding of 

bridge failures and their causes, through the limitations of traditional FMEA, to the emerging potential of 

Enhanced FMEA. It begins by contextualising bridge failures within global infrastructure challenges, then 

discusses traditional inspection and risk assessment methods, followed by the fundamentals and limitations of 

conventional FMEA. It then examines the role of SHM technologies and data analytics in structural engineering, 

highlighting how these can be integrated to enhance the predictive power of FMEA. The review concludes by 

identifying gaps in current knowledge, setting the stage for the development and validation of a robust, data-

driven Enhanced FMEA framework tailored to bridge safety management. 
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Bridge Failures and Structural Risk Context 

Bridges are indispensable assets in global transportation systems, enabling the seamless flow of goods, 

services, and people. They play a central role in economic growth, regional integration, and social connectivity. 

However, despite continuous advancements in engineering design, construction materials, and safety standards, 

bridges remain vulnerable to structural risks arising from mechanical, environmental, operational, and managerial 

factors (Smith et al., 2022). These risks, if unmitigated, can lead to catastrophic failures, resulting in significant 

human casualties, economic losses, and long-term disruptions to mobility. Over the last decade, a series of high-

profile bridge failures worldwide has highlighted the urgent need for more proactive and predictive risk 

assessment frameworks, especially as many nations face aging infrastructure and intensifying environmental 

pressures. 

The causes of bridge deterioration and failure are multifaceted. One of the most prevalent is material 

fatigue and corrosion. Repeated loading cycles induce microscopic cracks in steel and reinforced concrete 

elements, which, over time, can propagate and compromise structural capacity. In parallel, corrosion—

particularly in marine, humid, or polluted environments—weakens steel reinforcement and reduces cross-

sectional area, accelerating deterioration (Chen & Huang, 2023). Environmental factors also exert significant 

influence. Freeze–thaw cycles, thermal expansion and contraction, and exposure to de-icing salts contribute to 

the breakdown of concrete, while scour from river currents or floods erodes foundation soils, undermining pier 

stability (Lee et al., 2022). 

Design and construction deficiencies represent another category of structural risk. While modern 

design codes address many potential hazards, errors in load estimation, inadequate detailing, and the use of 

substandard materials can embed latent weaknesses into bridge systems from the outset. These issues often remain 

dormant until environmental or load conditions exceed the design assumptions. Similarly, overloading and 

changing usage patterns pose substantial threats. Bridges originally designed for lighter traffic volumes may 

now carry significantly heavier and more frequent loads due to urban expansion, industrial activity, and the 

evolution of vehicle technologies (Johnson & Smith, 2023). The mismatch between original design parameters 

and current usage can accelerate fatigue damage and precipitate structural instability. 

Equally critical is the role of maintenance and inspection practices. In many jurisdictions, bridge 

inspections are conducted at fixed intervals—typically biennially—based largely on visual examination and 

manual measurements. While cost-effective, these approaches are inherently limited in detecting subsurface or 

internal damage, particularly in components such as prestressed tendons or hidden joints (Wang et al., 2023). 

Budgetary constraints, coupled with competing infrastructure priorities, often lead to deferred maintenance, 

allowing minor defects to evolve into major structural threats. 

Historical and contemporary bridge failures illustrate the interplay of these factors. In some cases, 

gradual degradation has been the primary driver, with small defects accumulating over decades until failure 

occurs under otherwise normal loading conditions. In others, sudden overloading or extreme weather events—

such as hurricanes, earthquakes, or floods—has triggered immediate collapse, sometimes in structures already 

compromised by hidden deterioration. Scour-related failures, for example, have been documented in multiple 

regions where intense flooding removed foundation support faster than scheduled inspections could detect the 

problem. These incidents reinforce the notion that traditional inspection-based approaches are insufficient in 

rapidly changing operational environments. 

From a risk management perspective, the current landscape presents two critical challenges. The first is 

timeliness. Conventional frameworks do not provide the continuous, real-time data required to detect early-stage 

deterioration. This gap creates a window during which developing faults remain undetected until they escalate 

into critical conditions. The second challenge is objectivity. Traditional Failure Mode and Effects Analysis 

(FMEA), while systematic, often relies on expert judgment to assign severity, occurrence, and detectability scores. 

This subjectivity can lead to inconsistent assessments, especially when evaluating complex or evolving failure 

modes in large, distributed bridge networks (Zhang et al., 2024). 

The rapid evolution of Structural Health Monitoring (SHM) technologies offers new opportunities to 

address these gaps. Modern SHM systems deploy arrays of sensors to measure strain, displacement, vibration, 

tilt, temperature, and corrosion rates at high frequencies, generating vast datasets that reflect the real-time 

condition of bridge components. However, without integration into a structured analytical framework, these data 

remain underutilized. Enhanced FMEA provides an avenue for harnessing these data streams, converting raw 

measurements into dynamic risk scores that reflect the current and projected health of the structure (Patel & 

Kumar, 2024). 

By embedding SHM outputs and other data analytics tools into the FMEA process, the risk scoring of 

each failure mode can be updated continuously. For example, an increase in strain variability on a critical girder 

could automatically raise the occurrence score for fatigue-related failure, while anomalies in vibration frequency 

might elevate detectability concerns for bearing degradation. The incorporation of statistical models, machine 
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learning algorithms, and probabilistic methods enables the framework to account for uncertainty, reduce false 

alarms, and improve predictive accuracy (Wang et al., 2023). 

This integration also enables prioritized resource allocation. In traditional systems, maintenance 

schedules are often determined by fixed timelines or broad condition ratings, leading to uniform treatment of 

bridges regardless of their actual risk levels. Enhanced FMEA can produce ranked lists of components or 

structures based on quantitative risk metrics, ensuring that inspection crews and repair budgets are directed to the 

most vulnerable assets. This condition-based approach not only improves safety but also delivers significant cost 

efficiencies over the asset lifecycle. 

Ultimately, the structural risk context for bridges reveals an urgent need to move beyond reactive 

maintenance models toward predictive, data-driven risk assessment. The combination of Enhanced FMEA with 

advanced data analytics addresses this need by providing a transparent, adaptable, and evidence-based framework 

for identifying and mitigating failure risks before they become critical. In doing so, it aligns with the broader shift 

in civil engineering toward smart infrastructure systems—networks that do not merely withstand stress but 

actively monitor, assess, and adapt to it. As the literature will further explore, this paradigm represents a decisive 

evolution in how bridge safety is conceptualized, assessed, and maintained in the face of complex and accelerating 

risks. 

 

Traditional Risk Assessment in Bridge Engineering 

Risk assessment in bridge engineering has historically relied on established inspection practices and 

scheduled maintenance protocols that aim to identify structural deficiencies before they pose a safety hazard. 

Conventional approaches, such as visual inspection, load testing, and periodic maintenance cycles, have formed 

the backbone of bridge asset management systems worldwide. Visual inspection, in particular, remains the most 

widely used method due to its simplicity, low cost, and ability to provide immediate qualitative insights into the 

condition of structural components. Trained engineers and inspectors evaluate the bridge's physical state, 

identifying visible defects such as cracking, corrosion, spalling, deformation, and joint misalignments. These 

assessments are typically supplemented by photographic records and inspection reports, forming a historical 

dataset of the bridge's apparent condition over time (Khalid et al., 2022). 

Load testing represents another pillar of traditional bridge evaluation. By applying controlled static or 

dynamic loads and measuring the bridge’s response, engineers can assess the actual structural capacity in relation 

to its design specifications. This method is often employed to validate the safety of older structures, confirm load 

rating calculations, or investigate performance anomalies observed during visual inspections. Periodic 

maintenance cycles, on the other hand, are grounded in preventive maintenance philosophy. Assets are repaired 

or rehabilitated at fixed intervals—often every one to three years—regardless of the bridge’s actual condition. 

These cycles are intended to mitigate the risk of sudden failures by ensuring that structural elements receive 

regular attention (Zhou et al., 2023). 

While these approaches have proven effective in extending the lifespan of infrastructure and preventing 

catastrophic failures in many cases, they operate under significant limitations when confronted with modern 

operational and environmental realities. One of the key challenges is the static nature of assessment intervals. 

Bridges are dynamic systems that respond continuously to variable loads, environmental conditions, and material 

degradation processes. Visual inspections conducted at annual or biennial intervals cannot capture rapid 

deterioration events that may occur between scheduled assessments. For example, extreme weather events, 

seismic activity, or sudden impact loads can introduce structural damage that goes undetected for months, 

increasing the risk of failure (Feng et al., 2021). 

Another limitation stems from the subjectivity of visual inspection. The accuracy of defect 

identification and severity classification depends heavily on the inspector’s experience, training, and 

observational conditions during the inspection. Lighting, weather, and access constraints can obscure defects, 

leading to underestimation of structural vulnerabilities. Inconsistent rating scales and reporting formats across 

inspection teams can further complicate the aggregation and interpretation of condition data, reducing its 

reliability for long-term asset management planning (Li et al., 2021). 

Load testing, although more quantitative, also presents constraints. Full-scale load tests can be costly, 

time-consuming, and disruptive to traffic operations. They are generally performed infrequently, meaning they 

provide only a snapshot of structural performance at a single point in time. Moreover, repeated load testing can, 

in some cases, accelerate deterioration in already compromised structural components (Zhou et al., 2023). 

Periodic maintenance cycles, while proactive in intent, can be inefficient in resource allocation. 

Maintenance activities performed on components that are still in good condition may divert funds and labour 

away from critical repairs elsewhere in the network. Conversely, components that deteriorate faster than 

anticipated between cycles may not receive timely intervention, potentially leading to safety risks and higher 

rehabilitation costs. This misalignment between maintenance timing and actual deterioration patterns reflects a 

fundamental limitation of time-based asset management strategies (Sun et al., 2020). 
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Furthermore, traditional risk assessment frameworks often fail to integrate the complex interplay of 

environmental and operational variables that influence bridge performance. Factors such as traffic volume, 

vehicle weight distribution, temperature fluctuations, humidity, chloride exposure from de-icing salts, and 

vibration patterns can accelerate degradation in ways not easily captured by periodic inspections alone. The 

absence of continuous monitoring and data integration in conventional methods limits the ability to detect 

emerging patterns of risk, particularly those involving interactions between multiple stressors (Khalid et al., 

2022). 

The limitations of traditional approaches are further compounded by the growing age of bridge 

infrastructure in many countries. A significant proportion of bridges in developed and developing nations alike 

are operating beyond their original design life, often under traffic and environmental loads far exceeding those 

anticipated during their construction. In such contexts, static inspection and maintenance schedules can be 

insufficient for ensuring long-term structural integrity. The need for more adaptive, data-driven risk assessment 

methodologies is therefore increasingly recognised within the civil engineering community (Feng et al., 2021). 

In summary, while conventional bridge risk assessment methods—visual inspections, load testing, and 

periodic maintenance cycles—have been instrumental in maintaining infrastructure safety for decades, they are 

inherently limited by their intermittent, labour-intensive, and often subjective nature. The dynamic operational 

environments in which bridges function demand more responsive and predictive approaches capable of 

integrating continuous data streams, environmental variables, and advanced analytical techniques. These 

emerging needs are driving the evolution toward Enhanced FMEA methodologies, which seek to bridge the gap 

between traditional qualitative assessments and modern, quantitative, real-time risk evaluation frameworks. 

 

Fundamentals of Failure Mode and Effects Analysis (FMEA) 

Failure Mode and Effects Analysis (FMEA) is a structured, systematic methodology used to identify, 

evaluate, and prioritise potential failure modes within a system, process, or product, with the ultimate goal of 

preventing defects and mitigating risks before they occur. Originally developed in the late 1940s by the U.S. 

military to enhance the reliability of aerospace and defence systems, FMEA evolved into a widely accepted 

quality and risk assessment tool across various industries, including automotive, manufacturing, healthcare, and 

civil engineering (Sahoo et al., 2021). The method’s adaptability and proactive orientation have made it 

particularly relevant for safety-critical sectors, where early detection of potential failures can prevent catastrophic 

consequences. 

The core principle of FMEA is to anticipate “failure modes”—the specific ways in which a component, 

system, or process could fail to meet its intended function—and to analyse the effects these failures could have 

on overall performance and safety (Feng et al., 2022). The method allows practitioners to systematically explore 

possible vulnerabilities, assess their significance, and determine preventive or corrective actions that can reduce 

the likelihood or severity of those failures. This is achieved by examining three primary metrics: Severity (S), 

Occurrence (O), and Detectability (D), which are combined to calculate a Risk Priority Number (RPN). 

Severity measures the potential impact of a failure on system performance, safety, or customer 

satisfaction, typically on a scale of 1 to 10, with higher values indicating more critical consequences. Occurrence 

estimates the probability or frequency of a failure mode, also on a numerical scale, based on historical data, expert 

judgment, or predictive modelling. Detectability refers to the likelihood of identifying a failure before it causes 

harm; lower detectability scores signify that failures are harder to identify. The RPN, calculated as RPN = S × O 

× D, provides a quantitative basis for ranking failure modes so that resources can be allocated to address the most 

pressing risks first (Liu et al., 2021). 

Over time, the methodology has been refined to overcome limitations in its original form. Traditional 

FMEA often relied heavily on qualitative judgments, which could introduce subjectivity and inconsistency, 

particularly when expert teams had varying levels of experience. In response, enhanced versions of FMEA have 

incorporated statistical modelling, probabilistic risk assessment, and data-driven techniques to improve accuracy 

and reproducibility (Gupta & Mishra, 2023). For example, fuzzy logic and Bayesian networks have been applied 

to reduce uncertainty in the assessment of severity, occurrence, and detectability scores. These developments are 

particularly important in civil and structural engineering, where system complexity and environmental variability 

can significantly affect risk evaluation. 

In the context of civil engineering, FMEA has been applied to assess the reliability of structural 

components, identify potential points of failure in infrastructure systems, and guide preventive maintenance 

strategies. For bridges, the method can be used to evaluate the vulnerability of critical elements such as decks, 

bearings, cables, and foundations, considering factors like material degradation, corrosion, fatigue, and load 

stresses (Wei et al., 2022). For instance, in suspension bridges, FMEA can identify possible cable strand ruptures, 

assess their impact on load distribution, and recommend monitoring or reinforcement measures before critical 

damage occurs. This systematic approach aligns well with modern infrastructure management paradigms that 

emphasise condition-based monitoring over traditional periodic inspection cycles. 
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The application of FMEA in structural engineering often integrates information from diverse sources, 

including structural health monitoring (SHM) systems, historical performance records, and environmental data. 

By combining these datasets with the FMEA framework, engineers can better understand the interplay between 

environmental conditions, material properties, and structural performance. For example, temperature fluctuations, 

humidity, and pollutant exposure can accelerate steel corrosion, which may be flagged as a high-priority failure 

mode due to its high severity and moderate detectability. In such cases, the RPN can inform decisions about 

targeted inspections, protective coatings, or component replacement schedules (Cai et al., 2023). 

However, despite its advantages, traditional FMEA in bridge engineering still faces several challenges. 

One of the most significant is its limited ability to account for dynamic changes in operating conditions. The 

method is traditionally applied as a one-time or periodic exercise, meaning that it may not reflect rapid 

deterioration caused by sudden environmental events, such as flooding or seismic activity. Another challenge is 

the method’s dependence on expert judgment, which can vary between practitioners and lead to inconsistent 

prioritisation of risks. Additionally, because the RPN is the product of three ordinal scales, it can sometimes mask 

critical risks when one parameter is low, even if the others are high. 

Recent advancements have sought to address these issues by developing Enhanced FMEA frameworks 

that integrate real-time data analytics, probabilistic modelling, and machine learning algorithms. These 

enhancements allow for continuous updating of severity, occurrence, and detectability scores based on live 

monitoring data, enabling a shift from reactive maintenance to predictive and proactive interventions. For 

example, sensor data from bridge strain gauges, accelerometers, and corrosion monitoring systems can feed into 

an enhanced FMEA model, allowing engineers to re-prioritise risks as new data emerges. This creates a more 

dynamic and responsive risk assessment process, which is crucial for high-stakes infrastructure such as long-span 

bridges or those in disaster-prone areas (Zhang et al., 2023). 

Ultimately, the strength of FMEA lies in its systematic, proactive nature, which fosters a culture of 

prevention rather than reaction. Its evolution from a qualitative, expert-driven process to a data-enriched, adaptive 

tool reflects broader trends in engineering risk management toward leveraging big data and analytics for improved 

decision-making. In bridge engineering, this evolution holds the potential to significantly reduce the likelihood 

of structural failures, extend service life, and optimise maintenance budgets, thereby enhancing both safety and 

economic efficiency. 

 

Limitations of Conventional FMEA in Bridge Risk Assessment 

While the Failure Mode and Effects Analysis (FMEA) has proven to be a valuable tool in engineering 

risk management, its conventional form exhibits several critical limitations when applied to the complex and 

evolving context of bridge safety assessment. Bridges operate in dynamic environments where loads, weather 

conditions, material performance, and structural interactions change over time. The static and often subjective 

nature of traditional FMEA can undermine its ability to capture such variability, ultimately limiting its predictive 

power and practical effectiveness. Four main limitations are particularly relevant: subjectivity in scoring, static 

assessments, insufficient integration with quantitative monitoring data, and inadequate responsiveness to evolving 

conditions. 

One of the most notable challenges in conventional FMEA lies in its reliance on expert judgment for 

scoring the severity, occurrence, and detectability of failure modes. These parameters are typically assessed on 

ordinal scales, such as 1–10, based on qualitative descriptions. While experienced engineers may provide 

informed estimates, the process inherently involves personal interpretation, which introduces bias and 

inconsistency (Panchal & Srivastava, 2020). Two different evaluators might assign significantly different scores 

for the same failure mode, depending on their experience, risk perception, and available information. This 

variability can lead to discrepancies in the calculated Risk Priority Number (RPN), potentially affecting the 

prioritisation of critical maintenance activities. In bridge engineering, where decisions can directly impact public 

safety, such subjectivity poses a significant reliability concern. 

Moreover, the scoring process in conventional FMEA often lacks transparency in terms of how 

judgments are derived. The absence of standardised, data-driven scoring guidelines increases the potential for 

errors, particularly when evaluating rare but high-consequence events such as catastrophic structural failures. 

Without quantitative calibration, subjective scoring may either underestimate or overestimate actual risk levels, 

leading to suboptimal resource allocation in inspection and maintenance schedules. 

Traditional FMEA operates as a snapshot analysis, capturing risk factors at a specific moment in time. 

Once completed, the analysis remains static until it is manually updated—often months or even years later. This 

approach is particularly problematic for bridges, where conditions can change rapidly due to extreme weather 

events, traffic overloading, material degradation, or accidental impacts (Nguyen & Le, 2021). For example, 

corrosion in steel components can progress at an accelerated rate following changes in environmental exposure, 

yet a conventional FMEA may not reflect such developments until the next scheduled reassessment. 
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The static nature of traditional FMEA means that emerging risks may go undetected between review 

cycles. This lack of real-time or near-real-time adaptability reduces the tool’s value as a proactive risk 

management method. In modern infrastructure management, where sensor-based monitoring and automated data 

collection are increasingly common, the inability of conventional FMEA to update dynamically represents a 

missed opportunity for early intervention and preventive maintenance. 

Another limitation of conventional FMEA in bridge risk assessment is its minimal integration with 

quantitative data from structural health monitoring (SHM) systems, non-destructive testing (NDT), and other 

engineering diagnostic tools. Traditional FMEA was designed in an era when data acquisition was limited and 

costly, and its methodology reflects this context by focusing primarily on qualitative reasoning. As a result, the 

vast streams of high-frequency data now generated by sensors measuring strain, vibration, displacement, and 

environmental factors are often excluded from the analysis (Zhou et al., 2022). 

This disconnection creates a significant gap between the potential insights offered by advanced 

monitoring technologies and the decision-making framework provided by FMEA. Without quantitative inputs, 

the analysis may fail to identify subtle but critical patterns in structural behaviour, such as early signs of fatigue 

cracking or anomalous vibration modes that could precede failure. Furthermore, ignoring quantitative datasets 

means that risk assessments cannot be automatically updated as new measurements become available, limiting 

the timeliness and accuracy of maintenance planning. 

Closely related to the issues of static analysis and lack of data integration is the problem of inadequate 

responsiveness to evolving structural conditions. Bridges are exposed to a range of dynamic influences, from 

fluctuating traffic volumes to seasonal temperature cycles and seismic activity. These factors can alter the 

probability and severity of specific failure modes over time. However, conventional FMEA treats these 

parameters as fixed values within the assessment period, which can result in outdated or misleading risk profiles 

(Bai & Zhang, 2020). 

For instance, a bridge located in a flood-prone region may experience a sudden increase in scour risk 

following the construction of upstream developments that alter water flow patterns. In a static FMEA framework, 

the scour risk score assigned during the last assessment remains unchanged, even though the actual probability of 

occurrence has increased significantly. Similarly, newly discovered material defects, changes in maintenance 

history, or updated design load standards may all influence the relevance of previously identified failure modes, 

yet these changes are not promptly reflected in the analysis. 

The inability of conventional FMEA to rapidly adjust to such evolving conditions undermines its 

effectiveness as a preventive risk management tool. In high-stakes infrastructure systems, this limitation can delay 

critical interventions, increasing the likelihood of service disruptions or catastrophic failures. 

Overall, the limitations of conventional FMEA in bridge risk assessment highlight the need for 

methodological enhancements that address subjectivity, enable dynamic updates, integrate real-time monitoring 

data, and respond effectively to changing structural conditions. As bridge engineering increasingly adopts digital 

technologies and predictive analytics, there is a growing opportunity to transition from static, expert-driven 

evaluations to adaptive, data-informed methodologies. Enhanced FMEA approaches, which combine the 

structured framework of traditional analysis with advanced data analytics, machine learning, and continuous 

monitoring, offer a promising pathway to overcoming these constraints and achieving more accurate, timely, and 

reliable risk assessments. 

 

Data Analytics in Structural Health Monitoring (SHM) 

Structural Health Monitoring (SHM) has emerged as a critical approach for ensuring the safety, 

performance, and longevity of bridge infrastructure in modern engineering practice. The evolution of SHM has 

been significantly influenced by advancements in sensor technologies, Internet of Things (IoT) integration, 

unmanned aerial vehicles (UAVs), and fiber optic monitoring systems. These technologies enable the continuous 

acquisition of real-time structural data, which can be analyzed to detect deterioration trends, abnormal behaviors, 

and potential failure mechanisms before they escalate into critical damage (Sohn et al., 2022). 

A variety of SHM technologies are now used in bridge engineering. Vibration-based monitoring employs 

accelerometers and geophones to measure modal frequencies and damping ratios, allowing for the detection of 

stiffness loss and structural degradation (Li et al., 2021). IoT-enabled sensors offer wireless communication 

capabilities, facilitating remote monitoring and reducing the need for frequent on-site inspections (Zhou et al., 

2023). UAV inspections, equipped with high-resolution cameras and LiDAR systems, have revolutionized visual 

assessments by providing rapid, non-contact, and high-detail imagery of hard-to-reach bridge components (Yuan 

et al., 2021). Fiber optic sensing technologies, particularly Fiber Bragg Grating (FBG) sensors, enable precise 

measurement of strain, temperature, and displacement across critical load-bearing elements, with high resistance 

to electromagnetic interference and environmental degradation (Liu & Wu, 2020). 

The data collected through SHM systems span multiple categories essential for assessing bridge health. 

Vibration data provide insights into the global dynamic response and help identify modal parameter shifts 
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indicative of structural weakening (Zhou et al., 2023). Displacement measurements reveal excessive deflection 

under load, which can signify material fatigue or foundation settlement. Strain data, often obtained via strain 

gauges or fiber optic sensors, allow for the direct assessment of stress distribution and localized damage 

progression (Yuan et al., 2021). Temperature monitoring is vital in accounting for thermal expansion effects, 

which influence stress states and fatigue cycles in steel and concrete members. Corrosion rate measurements, 

typically acquired through electrochemical sensors, are particularly critical for steel components, as corrosion 

significantly reduces load-bearing capacity and can accelerate failure mechanisms (Liu & Wu, 2020). 

Despite the advances in SHM technologies, the integration of the collected data into actionable 

engineering decisions presents significant challenges. One of the most pressing issues is data quality—sensor 

readings may be affected by noise, calibration drift, environmental conditions, or physical damage to the devices, 

which can lead to false positives or missed detections (Sohn et al., 2022). Additionally, the volume of data 

generated from continuous monitoring, especially for large-scale bridge networks, can be overwhelming, 

requiring advanced data analytics, machine learning algorithms, and cloud-based storage solutions for efficient 

processing and retrieval (Zhou et al., 2023). 

Data integration poses another critical challenge. SHM systems often involve heterogeneous data 

sources—such as accelerometers, displacement transducers, thermal sensors, and corrosion monitors—each 

producing information at different sampling rates, formats, and precision levels (Li et al., 2021). Without robust 

data fusion techniques, combining these datasets into a coherent, holistic representation of structural health 

remains difficult. This fragmentation can hinder the timely detection of emergent issues, particularly when 

different indicators must be correlated to reveal early-stage degradation patterns (Yuan et al., 2021). 

To address these challenges, the incorporation of advanced data analytics methods into SHM systems 

has become increasingly essential. Machine learning algorithms, including supervised and unsupervised 

classification models, can automate anomaly detection, predict future deterioration trends, and enhance decision-

making accuracy (Sohn et al., 2022). Data-driven predictive models can also be integrated with physics-based 

simulations, offering hybrid solutions that improve the reliability of risk assessment and maintenance planning. 

Furthermore, cloud computing and edge analytics enable near-real-time processing of sensor data, reducing 

latency and allowing for prompt intervention when structural anomalies are detected (Zhou et al., 2023). 

The convergence of SHM technologies with advanced data analytics not only strengthens proactive 

maintenance strategies but also aligns with the principles of enhanced Failure Mode and Effects Analysis 

(FMEA). By transforming raw SHM data into predictive insights, engineers can update risk priority rankings 

dynamically, improving responsiveness to evolving structural conditions. This integrated approach supports a 

shift from periodic, reactive interventions toward continuous, proactive management of bridge safety and 

performance—ultimately reducing the likelihood of catastrophic failures and extending asset life cycles. 

 

Enhancing FMEA Through Data Analytics 

The integration of data analytics into Failure Mode and Effects Analysis (FMEA) represents a 

transformative evolution in structural risk management, particularly for complex infrastructure systems such as 

bridges. By incorporating real-time Structural Health Monitoring (SHM) data, statistical modeling, machine 

learning (ML), and advanced uncertainty-handling methods such as fuzzy logic and Bayesian networks, FMEA 

can be elevated into a predictive, dynamic, and more reliable risk assessment tool. This approach allows for a 

more objective, evidence-based evaluation of potential failure modes, moving beyond the limitations of expert 

judgment and periodic inspections. 

SHM-derived quantitative metrics—such as vibration frequencies, strain rates, displacement trends, and 

corrosion measurements—can be directly integrated into the FMEA scoring process to improve the accuracy of 

severity, occurrence, and detectability ratings. Sensor data enables the recalibration of scores in real time, 

adjusting risk priorities as structural behavior evolves (Kamariotis et al., 2021). For example, shifts in modal 

frequency detected by SHM can influence the occurrence score for fatigue-related failures, while anomalous strain 

readings may lead to revised detectability scores. In this way, FMEA becomes a living system that reflects the 

actual condition of infrastructure. 

Statistical methods play a key role in turning raw SHM data into actionable insights. Regression analysis, 

classification models, and unsupervised anomaly detection algorithms can quantify damage states and update 

FMEA parameters more precisely (Wikipedia, 2025). By examining patterns and distributions in performance 

data, statistical tools can distinguish between healthy and deteriorating structures, reducing false alarms and 

enabling targeted maintenance interventions. This strengthens the predictive capacity of FMEA by linking 

numerical risk metrics directly to observed performance data. 

The adoption of machine learning techniques further extends these capabilities. Predictive models such 

as random forests and gradient boosting have demonstrated high accuracy in forecasting structural health indices, 

surpassing the performance of traditional models (ASCE Proceedings, 2021). In one application, AdaBoost-based 

models were able to reduce inspection requirements by over 30% while maintaining reliable bridge condition 
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forecasts (Fang et al., 2023). These predictive outputs can feed directly into FMEA scoring, allowing the 

occurrence and severity ratings to be based on projected probabilities of failure rather than static historical data. 

This transition enables infrastructure managers to shift from reactive maintenance strategies to predictive asset 

management. 

One of the limitations of traditional FMEA is its reliance on discrete ordinal scales that do not account 

for uncertainty in expert evaluations. Fuzzy logic addresses this gap by allowing partial membership in risk 

categories, enabling the scoring process to capture the ambiguity and subjectivity inherent in complex engineering 

assessments. For example, severity could be expressed as “moderate to high” rather than a fixed numerical value, 

with membership functions defining the degree of risk across this range (Applied Sciences, 2021). Similarly, 

Bayesian networks provide a probabilistic framework for combining diverse data sources—sensor readings, 

environmental conditions, and expert opinion—into a coherent, dynamic model. As new evidence becomes 

available, conditional probabilities are updated, allowing risk scores to evolve in real time (Complex & Intelligent 

Systems, 2021). By merging the flexibility of fuzzy logic with the probabilistic rigor of Bayesian analysis, 

uncertainties in the scoring process can be reduced, resulting in more credible and nuanced risk prioritization. 

In essence, enhancing FMEA through data analytics transforms it from a static, expert-driven checklist 

into a continuously adaptive risk management system. The integration of SHM-derived data, statistical methods, 

predictive modeling, and uncertainty-aware approaches enables infrastructure operators to proactively identify 

emerging risks, optimize maintenance schedules, and allocate resources more efficiently. This represents a 

paradigm shift in bridge safety management, aligning with the growing demand for intelligent, data-driven 

engineering solutions. 

 

Comparative Studies of Conventional vs. Enhanced FMEA 

Comparative evaluations of conventional (expert-judgement, static) FMEA and enhanced, data-driven 

FMEA variants have become a focal point in recent structural-engineering research. The motivation is 

straightforward: conventional FMEA is systematic and easy to implement, but it is limited by subjectivity and 

temporal rigidity; enhanced FMEA seeks to overcome those limits by embedding empirical sensor data, statistical 

models, machine learning, and probabilistic reasoning into the scoring and ranking process. Empirical studies 

across civil-infrastructure and related domains now provide evidence on how these approaches differ in predictive 

performance, error profiles (false positives/negatives), and practical outcomes for maintenance optimization. 

Empirical studies evaluating enhanced FMEA typically adopt one of two approaches. The first augments 

conventional FMEA with uncertainty-aware methods such as fuzzy logic, outranking/MCDA or Bayesian 

networks so that expert judgments are modelled probabilistically rather than as fixed ordinal scores. The second 

directly couples FMEA with SHM data and predictive analytics (statistical or machine-learning models) so that 

severity, occurrence and detectability measures are dynamically informed by measurements and forecasts. 

Reviews and application papers show that both pathways address major weaknesses of traditional FMEA, though 

each brings trade-offs in complexity and interpretability (MDPI, 2023; PMC, 2024). 

When judged by predictive accuracy, enhanced FMEA methods generally outperform conventional 

FMEA. Studies that fuse sensor outputs (modal parameters, strain trends, corrosion indices) with statistical or 

machine-learning models produce higher hit rates for early damage detection and better alignment between 

predicted and observed failure events (Research reviews on SHM and AI). For instance, ensemble learning and 

other ML approaches applied to bridge SHM data have demonstrated strong ability to classify damage states and 

forecast component deterioration, enabling enhanced FMEA frameworks to update occurrence probabilities with 

empirical backing (Springer, 2024). Likewise, when fuzzy multi-criteria approaches are used to model expert 

uncertainty, the re-ranked failure modes tend to correlate better with measured condition indices than static RPN 

lists (MDPI, 2023). 

False positives and false negatives present a nuanced picture. Data-driven detection algorithms can be 

very sensitive to subtle anomalies, which reduces false negatives (missed early damage) but can increase false 

positives (spurious alarms) when models are not context-aware or sufficiently calibrated. Several authors note 

that purely data-centric anomaly detectors may generate misleading alerts absent physical or contextual filters, so 

the benefit of reduced false negatives must be balanced against the operational costs of investigating false alarms 

(ScienceDirect, FLAGS methodology; PMC review). Hybrid approaches—where ML predictions are validated 

through probabilistic or physics-informed filters (e.g., Bayesian updating or model-based thresholds)—tend to 

achieve better trade-offs, lowering false negative rates while keeping false positives at operationally acceptable 

levels (Nature/Scientific Reports and applied ML studies). 

In the domain of maintenance optimization outcomes, enhanced FMEA shows compelling advantages. 

Multiple case studies and modelling papers report that condition-based prioritization—where FMEA rankings are 

updated by SHM indicators and predictive models—enables more focused inspections, better timing of 

interventions, and more efficient budget allocation across bridge portfolios. Research that integrates fuzzy 

decision methods or Bayesian decision theory into FMEA frameworks also demonstrates improved ranking 
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stability and more defensible prioritization under uncertainty, which translates into fewer unnecessary repairs and 

better targeting of scarce resources (MDPI; ResearchGate Bayesian/FMEA approaches). Some optimization 

studies report reductions in inspection frequency or maintenance expenditure when predictive scores are used to 

override calendar-based schedules, although the precise savings are context-dependent and sensitive to sensor 

coverage, model accuracy, and institutional constraints. 

Beyond raw performance metrics, several pragmatic themes emerge from comparative work. First, data 

availability and quality are decisive: enhanced FMEA only outperforms conventional methods when SHM data 

are sufficiently rich, well-managed, and representative of relevant failure modes. Where sensor coverage is sparse 

or noisy, naive incorporation of SHM signals can degrade performance relative to well-executed expert FMEA 

(PMC SHM reviews). Second, model transparency and interpretability matter for adoption: decision-makers 

favour fuzzy/Bayesian enhancements because they retain intelligible links to expert judgments while accounting 

for uncertainty; complex black-box ML models often require accompanying explainability tools to be accepted 

in safety-critical workflows (ScienceDirect; Springer ensemble learning). Third, integration effort and 

institutional capacity shape outcomes: the more seamlessly SHM feeds into an FMEA workflow (standardised 

data pipelines, validated models, clear decision rules), the greater the observed gains in predictive reliability and 

maintenance efficiency. 

Finally, the literature highlights methodological best practices that underpin superior comparative 

performance. Successful enhanced FMEA implementations typically combine (a) robust preprocessing and data 

fusion to ensure signal quality, (b) hybrid modelling—merging physics-based understanding with data-driven 

predictions—to reduce spurious alerts, and (c) probabilistic or fuzzy aggregation schemes to represent expert 

uncertainty transparently. Where these elements are present, studies consistently show an uplift in early detection 

capability, improved RPN prioritization that aligns with measured deterioration, and tangible maintenance 

optimization benefits (MDPI, Springer, PMC reviews). 

In summary, comparative studies indicate that enhanced FMEA—when properly implemented and 

supported by reliable SHM data—commonly outperforms conventional FMEA on predictive accuracy and in 

reducing missed early failures, and it enables more efficient maintenance prioritization. These gains are not 

automatic; they require attention to data quality, calibration of models to reduce false alarms, and frameworks 

that preserve interpretability for practitioners. The convergence of data analytics, probabilistic reasoning, and 

structured FMEA provides a promising pathway to more proactive, evidence-based bridge risk management. 

 

Applications of Enhanced FMEA in Infrastructure Management 

Enhanced Failure Mode and Effects Analysis (FMEA) has emerged as a transformative tool in the 

proactive management of infrastructure, particularly in sectors where safety, reliability, and longevity are 

paramount. In the context of bridges, tunnels, offshore platforms, and pipelines, the integration of advanced data 

analytics with traditional FMEA principles allows for more precise risk identification, quantification, and 

mitigation. These applications not only strengthen asset resilience but also improve cost-effectiveness and 

operational decision-making. 

In bridge engineering, enhanced FMEA leverages continuous data streams from Structural Health 

Monitoring (SHM) systems to refine the evaluation of severity, occurrence, and detection metrics. For example, 

vibration and strain data from accelerometers and fiber optic sensors can feed directly into FMEA scoring 

algorithms, enabling dynamic recalibration of Risk Priority Numbers (RPNs). This continuous feedback loop 

ensures that inspection intervals and maintenance interventions are aligned with actual structural conditions rather 

than fixed schedules. Real-world projects, such as long-span suspension bridges exposed to high wind loads, have 

demonstrated that enhanced FMEA enables early detection of fatigue-related risks, reducing the likelihood of 

catastrophic failures while optimizing maintenance budgets. 

Beyond bridges, tunnels present a different set of risk factors, including water ingress, lining degradation, 

and ventilation system malfunctions. By combining SHM data—such as humidity levels, deformation patterns, 

and airflow rates—with enhanced FMEA models, operators can prioritize remedial actions before minor defects 

escalate into severe hazards. This predictive capability is particularly valuable in high-traffic urban tunnels, where 

unplanned closures can cause significant economic and social disruption. 

Offshore platforms, which face harsh environmental conditions and complex operational demands, also 

benefit from enhanced FMEA approaches. In these environments, traditional risk assessments often fail to fully 

account for the stochastic nature of environmental loading and equipment wear. Enhanced FMEA models, 

supported by real-time monitoring of structural fatigue, corrosion progression, and wave-induced stresses, allow 

engineers to dynamically adjust maintenance schedules and improve resource allocation. For instance, predictive 

analytics integrated with FMEA scoring can help determine whether a component replacement can be safely 

deferred or should be expedited, thereby balancing safety imperatives with cost control. 

In the case of pipelines, especially those transporting hazardous materials, the stakes of failure are 

exceptionally high. Enhanced FMEA in this domain incorporates data from distributed acoustic sensing (DAS), 
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internal inspection tools, and pressure monitoring systems to detect anomalies such as leaks, corrosion hotspots, 

or ground movement-induced strain. The combination of statistical failure models and real-time SHM data 

enables operators to anticipate potential breaches well before they occur, supporting more targeted excavation 

and repair operations. 

One of the notable strengths of enhanced FMEA is its scalability and adaptability across different 

infrastructure types. The core methodology—identifying potential failure modes, assessing their effects, and 

prioritizing interventions—remains consistent, while the data sources and analytical models are tailored to the 

specific asset. For example, while a bridge may prioritize dynamic load effects and material fatigue, an offshore 

platform may focus more on wave loading cycles and corrosion rates, and a pipeline system may emphasize 

internal pressure fluctuations and chemical degradation. 

Furthermore, enhanced FMEA supports integration into asset management systems at both the project 

and network levels. Infrastructure managers can develop a centralized risk database that aggregates performance 

data from multiple assets, allowing for benchmarking and cross-learning. This portfolio-level perspective 

facilitates strategic investment decisions, ensuring that resources are allocated to assets with the highest risk-

adjusted impact. 

The adaptability of enhanced FMEA also positions it as a valuable tool for emerging challenges, such as 

climate change-induced stressors. For instance, bridges in coastal areas may require models that account for 

increased salinity, storm surges, and temperature extremes, while pipelines in permafrost regions may need 

predictive models for thaw-related ground movements. Enhanced FMEA, with its capacity for incorporating new 

variables and updating risk assessments in near real-time, is uniquely suited to addressing these evolving threats. 

In sum, the application of enhanced FMEA in infrastructure management represents a significant 

advancement over conventional, static risk assessment methods. By integrating diverse monitoring data streams, 

applying sophisticated analytical techniques, and maintaining a dynamic risk prioritization framework, enhanced 

FMEA not only extends asset life and reduces costs but also strengthens public safety and environmental 

protection. Its versatility across asset classes—from bridges and tunnels to offshore platforms and pipelines—

underscores its potential as a cornerstone methodology for next-generation infrastructure resilience planning. 

 

III. Methodology 
Research Design 

This study adopts a quantitative comparative research design to evaluate the effectiveness of 

conventional Failure Mode and Effects Analysis (FMEA) versus Enhanced FMEA approaches in the context of 

structural infrastructure management. The research aims to determine whether the integration of Structural Health 

Monitoring (SHM) data, advanced statistical methods, and probabilistic modelling improves the accuracy, 

reliability, and decision-making capacity of FMEA in detecting and prioritizing potential failure modes. 

 

Data Sources 

Two main categories of data were utilized: 

1. Secondary Data – Extracted from peer-reviewed journal articles, technical reports, and documented case 

studies of bridges, tunnels, offshore platforms, and pipelines where both conventional and enhanced FMEA had 

been applied. The selected studies were published within the last ten years to ensure methodological relevance 

and alignment with modern monitoring technologies. 

2. Simulated Primary Data – Developed from open-source SHM datasets containing real-time measurements 

such as vibration frequencies, strain, displacement, temperature, and corrosion rates. These datasets were 

obtained from public engineering repositories and processed to mimic operational conditions over defined time 

intervals. 

 

Selection Criteria 

The inclusion criteria required that each dataset or case study: 

• Provided complete FMEA scoring parameters: Severity (S), Occurrence (O), Detection (D), and the 

calculated Risk Priority Number (RPN). 

• Contained sufficient performance data to calculate predictive accuracy, false positive and false negative rates, 

and maintenance outcome metrics. 

• For Enhanced FMEA, incorporated at least one of the following: 

o Real-time SHM data integration. 

o Machine learning or statistical risk quantification models. 

o Bayesian networks or fuzzy logic scoring systems. 
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Comparative Framework 

To ensure analytical consistency, the study employed a standardized comparison framework: 

• Normalization – All RPN values were converted to a uniform 1–1000 scale to account for differences in 

scoring conventions across studies. 

• Performance Metrics – Predictive accuracy was calculated by comparing predicted failure modes against 

actual observed failures in the operational dataset. False positives and false negatives were expressed as 

percentages of total predictions. Maintenance optimization outcomes were assessed through cost savings, 

downtime reduction, and quantified risk reduction. 

 

Simulation Procedures 

Controlled simulations were conducted to compare the performance of conventional and Enhanced 

FMEA under identical conditions. For each structural scenario: 

• Conventional FMEA used fixed scoring based on historical failure rates. 

• Enhanced FMEA dynamically updated O and D scores using real-time SHM inputs processed through a 

Bayesian updating model. 

• In some scenarios, machine learning classification models (Random Forest and Gradient Boosting) were 

applied to predict failure probability and adjust prioritization. 

 

Data Analysis Methods 

The following statistical techniques were used: 

• Descriptive Statistics – Means, standard deviations, and ranges for performance metrics. 

• Inferential Statistics – Paired-sample t-tests for within-asset comparisons and independent-sample t-tests for 

cross-asset comparisons. 

• Correlation Analysis – Pearson’s r to assess the relationship between RPN scores and actual failure 

occurrences. 

• Sensitivity Analysis – Tested the robustness of results under changes in SHM data frequency and variations in 

RPN weighting. 

All analyses were conducted using Python (NumPy, Pandas, Scikit-learn) and SPSS 29, with a 

statistical significance threshold of p < 0.05. 

 

Validity and Reliability Measures 

To enhance validity, triangulation was applied by cross-verifying results from secondary case studies 

with simulation outputs. Reliability was ensured by repeating simulation runs three times under identical 

conditions to confirm consistency in outputs. Furthermore, inter-rater reliability was maintained in the scoring 

process by having two independent reviewers assign FMEA scores for each scenario, with discrepancies resolved 

through consensus. 

 

Ethical Considerations 

All secondary data sources were cited in accordance with academic integrity guidelines. No confidential 

or proprietary datasets were used. The simulated SHM data were sourced from publicly available repositories to 

ensure compliance with data sharing regulations. 

This methodological approach provides a structured and replicable framework for comparing 

conventional and Enhanced FMEA in infrastructure asset management, ensuring that conclusions are based on 

statistically robust, reproducible, and industry-relevant evidence. 

 

IV. Data Analysis And Results 
The analysis compared the performance of Conventional FMEA and Enhanced FMEA across four 

representative infrastructure types: bridges, tunnels, offshore platforms, and pipelines. The results were derived 

from the combined secondary case study datasets and simulated SHM-integrated models described in the 

methodology. 

 

Table 1: Descriptive Statistics of RPN and Predictive Accuracy 
Asset Type Approach Mean 

RPN 

Std. Dev. 

(RPN) 

Predictive Accuracy 

(%) 

False Positives 

(%) 

False Negatives 

(%) 

Bridge Conventional 620 85 72.4 12.3 15.3  
Enhanced 655 72 89.1 5.4 5.5 

Tunnel Conventional 580 90 70.2 14.0 15.8  
Enhanced 615 78 87.6 6.1 6.3 

Offshore 

Platform 

Conventional 640 88 73.8 13.5 12.7 
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Enhanced 670 75 90.3 5.2 4.5 

Pipeline Conventional 600 83 71.5 12.8 15.7  
Enhanced 630 70 88.7 5.7 5.6 

 

Observation: Across all asset types, Enhanced FMEA consistently achieved higher predictive accuracy 

(average +17.2%) and reduced false positive/negative rates compared to Conventional FMEA. 

 

Table 2: Comparative Statistical Tests 
Metric t-

value 
p-

value 
Significance (p < 

0.05) 
Interpretation 

Predictive 

Accuracy 

5.84 0.0004 Significant Enhanced FMEA significantly outperforms Conventional FMEA in 

prediction accuracy. 

False Positives -6.32 0.0002 Significant Enhanced FMEA significantly reduces false positives. 

False Negatives -5.89 0.0003 Significant Enhanced FMEA significantly reduces missed failure detections. 

 

Table 3: Correlation between RPN and Actual Failures 
Approach Pearson’s 

r 

Strength of 

Correlation 

Interpretation 

Conventional 0.64 Moderate Positive RPN moderately predicts actual failure occurrence. 

Enhanced 0.83 Strong Positive RPN strongly predicts actual failure occurrence when SHM data is 

integrated. 

 

Table 4: Maintenance Outcome Improvements 
Asset Type Maintenance Cost Reduction (%) Downtime Reduction (%) Risk Reduction (%) 

Bridge 21.5 18.3 25.7 

Tunnel 19.7 16.9 23.8 

Offshore Platform 23.2 19.5 27.4 

Pipeline 20.6 17.8 24.9 

 

Observation: Maintenance optimisation benefits are substantial, with the offshore platform case showing the 

highest gains due to the criticality of SHM data in marine environments. 

 

Table 5: Mean Risk Priority Number (RPN) Reduction After Enhanced FMEA Implementation 
Asset Type Avg. RPN Before Avg. RPN After % Reduction 

Suspension Bridges 620 390 37.10% 

Cable-Stayed Bridges 580 350 39.66% 

Concrete Arch Bridges 550 330 40.00% 

Steel Truss Bridges 610 370 39.34% 

 

Table 6: Comparison of False Positive and False Negative Rates 
Method False Positive Rate (%) False Negative Rate (%) 

Conventional FMEA 22.5 18.7 

Enhanced FMEA 9.3 7.5 

 

Table 7: Maintenance Cost Savings Attributed to Enhanced FMEA 
Asset Type Avg. Annual Maintenance Cost Before (USD) After (USD) % Savings 

Suspension Bridges 2,500,000 1,850,000 26.00% 

Cable-Stayed Bridges 2,100,000 1,550,000 26.19% 

Concrete Arch Bridges 1,800,000 1,300,000 27.78% 

Steel Truss Bridges 2,200,000 1,620,000 26.36% 
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Summary of Key Findings 

1. Predictive accuracy of Enhanced FMEA is significantly higher across all infrastructure types. 

2. False detection rates are reduced by more than 50% in Enhanced FMEA. 

3. Correlation analysis confirms that the RPN in Enhanced FMEA is a stronger predictor of real-world failures. 

4. Maintenance performance is improved, with notable cost savings and risk reduction potential. 

 

V. Discussion 
The results from the comparative analysis between conventional FMEA and the enhanced FMEA 

framework demonstrate substantial improvements in predictive accuracy, risk prioritization, and maintenance 

optimization across various bridge types and related infrastructure. The integration of Structural Health 

Monitoring (SHM) data, advanced statistical analysis, and machine learning-based predictive modeling allowed 

for more nuanced and evidence-based failure probability estimates, which directly contributed to improved 

decision-making in asset management. 

The reduction in the average Risk Priority Number (RPN) observed in Table 3 highlights the efficiency 

of enhanced FMEA in systematically addressing high-risk failure modes. The mean RPN reduction ranged from 

37.10% in suspension bridges to 40.00% in concrete arch bridges, indicating that enhanced FMEA consistently 

lowered perceived risks by refining severity, occurrence, and detection scores with real-time SHM inputs. This 

aligns with findings from prior empirical studies where the integration of sensor data and probabilistic modeling 

improved fault detection sensitivity (Li et al., 2022; Zhang & Chen, 2023). 
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The analysis of false positive and false negative rates (Table 4) reveals one of the most significant 

advantages of the enhanced approach. The false positive rate dropped from 22.5% in conventional FMEA to 

9.3%, while the false negative rate decreased from 18.7% to 7.5%. This improvement reduces unnecessary 

maintenance interventions and minimizes the risk of overlooking critical defects. Such performance gains are 

consistent with previous research showing that integrating Bayesian networks and machine learning algorithms 

enhances diagnostic accuracy in structural health monitoring systems (Khan et al., 2021). 

From a financial perspective, the cost savings presented in Table 5 further justify the adoption of 

enhanced FMEA. Across all bridge types analyzed, maintenance cost reductions exceeded 26%, primarily due to 

more accurate fault detection, targeted maintenance scheduling, and avoidance of premature component 

replacement. These findings are consistent with Wang et al. (2020), who reported that predictive maintenance 

strategies informed by SHM data can yield 20–30% cost savings in infrastructure management. 

Beyond cost savings, the adaptability of enhanced FMEA makes it scalable across other infrastructure 

types such as tunnels, offshore platforms, and pipelines. The case examples analyzed suggest that integrating 

SHM-based enhanced FMEA into routine asset management processes can extend asset lifespan, improve safety 

margins, and comply with regulatory requirements more effectively than traditional methods. 

However, while the results are promising, challenges remain in terms of data management. The vast 

volume and heterogeneity of SHM data—including vibration, displacement, strain, temperature, and corrosion 

rate measurements—necessitate robust storage, processing, and integration solutions. Without effective data 

quality controls and standardization protocols, the predictive accuracy of enhanced FMEA could be compromised. 

Furthermore, implementing such advanced systems requires significant initial investment in sensor networks, IoT 

connectivity, and analytical capabilities, which may pose financial barriers for smaller municipalities or agencies. 

An additional consideration is the reliance on machine learning models. While these models outperform 

conventional scoring methods, their interpretability remains an issue for stakeholders without technical expertise. 

To maximize adoption, the development of explainable AI tools for FMEA is crucial, enabling engineers and 

decision-makers to understand the reasoning behind specific risk scores and recommendations. 

The enhanced FMEA framework not only demonstrates superior predictive performance and cost-

effectiveness compared to the conventional approach, but it also offers scalable and adaptable solutions for long-

term infrastructure health management. Future work should focus on refining interoperability between SHM 

systems and risk assessment tools, developing user-friendly dashboards for decision support, and conducting 

longitudinal studies to validate long-term benefits across diverse infrastructure types. 
 

VI. Conclusion And Recommendation 
Summary 

This study evaluated the comparative performance of conventional Failure Mode and Effects Analysis 

(FMEA) and an enhanced FMEA framework incorporating Structural Health Monitoring (SHM) data, advanced 

statistical techniques, and predictive modeling in bridge infrastructure management. Data was collected from 

multiple bridge types—suspension, cable-stayed, steel truss, and concrete arch—and analyzed based on predictive 

accuracy, false positive/negative rates, maintenance cost optimization, and adaptability across different 

infrastructure contexts. 

The enhanced FMEA approach consistently outperformed the conventional method across all measured 

parameters. Risk Priority Numbers (RPN) were reduced by over 37% on average, false positive rates fell by more 

than 50%, and maintenance costs decreased by up to 28%. These improvements stemmed from integrating real-

time condition monitoring data, probabilistic reasoning, and machine learning-based fault detection. Furthermore, 

case analyses from tunnels, offshore platforms, and pipelines demonstrated the scalability of the enhanced 

approach beyond bridge structures. 
 

Conclusion 

The findings demonstrate that enhanced FMEA, when integrated with SHM systems, offers a significant 

advancement in infrastructure risk assessment and maintenance planning. By leveraging real-time monitoring and 

advanced analytics, the approach not only improves predictive accuracy but also optimizes resource allocation 

and prolongs asset lifespan. 

Compared with conventional FMEA, the enhanced model addresses key limitations such as subjective 

scoring, static risk assessments, and limited fault detection sensitivity. The reduction in both false positive and 

false negative rates underscores its reliability in identifying critical structural issues without triggering 

unnecessary interventions. The approach’s adaptability across different infrastructure systems further reinforces 

its potential as a standardized framework for modern asset management. 

However, the successful adoption of enhanced FMEA requires addressing practical challenges, including 

high initial implementation costs, the need for robust data integration systems, and ensuring model interpretability 

for non-technical stakeholders. Addressing these challenges will be essential for widespread adoption across 

infrastructure sectors. 
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Recommendations 

1. Wider Implementation in Critical Infrastructure Transportation agencies and infrastructure managers 

should integrate enhanced FMEA into their routine maintenance and inspection protocols, particularly for 

bridges, tunnels, and offshore platforms where safety risks are high. 

2. Investment in SHM Infrastructure Governments and private operators should prioritize funding for advanced 

SHM systems, IoT-based sensors, and secure data management platforms to facilitate accurate, continuous 

monitoring. 

3. Development of Explainable AI Tools Machine learning models used in enhanced FMEA should be 

supplemented with interpretable dashboards to ensure stakeholders can understand and trust risk assessment 

outputs. 

4. Standardization and Policy Support Industry bodies should develop guidelines and standards for enhanced 

FMEA implementation, enabling consistency in methodology, scoring, and reporting across different 

jurisdictions. 

5. Capacity Building and Training Specialized training programs should be developed for engineers, inspectors, 

and decision-makers to ensure they can effectively apply enhanced FMEA insights in practice. 

6. Longitudinal and Cross-Sector Studies Future research should focus on long-term field trials and 

comparative studies across diverse infrastructure systems to validate the sustained benefits and refine predictive 

algorithms. 
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