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Abstract: In order to investigate the phenomenon of buckling in thin laminated composite plates, the first order
shear deformable plate theory (FSDT) is used. The finite element technique, also known as FEM, is applied in
order to get a numerical solution for the differential equations that control the system. An investigation on the
buckling behavior of laminated plates having a rectangular cross-section is carried out for a number of different
combinations of end circumstances and aspect ratios. Buckling loads are examined and verified with other work
that is accessible in the literature in order to verify the correctness of the approach that is currently being used.
The trustworthiness of the finite element approach that was utilized is shown by the fact that it is in excellent
agreement with other data that is accessible. With the purpose of generating new numerical results for uniaxial
and biaxial compression loads on symmetrically laminated composite plates, new results have been developed.
For both uniaxial and biaxial compression loading, it was discovered that the influence of boundary conditions
on buckling load rises as the aspect ratio increases. This was the case for both types of loading. Additionally, it
was shown that the change in buckling load with aspect ratio becomes virtually constant for larger values of
elastic modulus ratio. This was another intriguing discovery.
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I. INTRODUCTION

Composite materials find extensive application across a diverse range of modern engineering fields,
spanning from conventional areas like automobiles, robotics, and everyday appliances to advanced sectors such
as the aerospace industry. This can be attributed to their outstanding high strength-to-weight ratio, modulus-to-
weight ratio, and the ability to control structural properties through variations in fiber orientation, stacking
scheme, and the number of laminates. The mechanical behavior of rectangular laminated plates, a key aspect of
the structural performance of composite material structures, has garnered significant attention. Specifically,
analyzing the buckling phenomena in these plates is crucial for ensuring an efficient and reliable design, as well
as for the safe application of the structural element. The analysis of composite laminated plates is typically more
complex than that of homogeneous isotropic materials, owing to their anisotropic and coupled material behavior.
The components and configurations made from laminated composite materials tend to be quite thin, making them
more susceptible to buckling. The buckling phenomenon poses significant risks to structural components, as the
buckling of composite plates typically happens at lower applied stress levels and results in substantial
deformations. This resulted in an emphasis on examining the buckling behavior of composite materials.
Comprehensive overviews of the buckling behavior of elastic structures and laminated plates are available in
sources such as Refs. {[1] — [14]}. Nonetheless, the data currently accessible are limited to idealized loading
scenarios, specifically uniaxial or biaxial uniform compression.

Given the significance of buckling considerations, there exists a vast array of studies addressing related
stability issues. These investigations employ a diverse range of analytical approaches, which can be categorized
as either closed-form analytical methods or fall under the semi-analytical or purely numerical analysis techniques.
Exact closed-form solutions for the buckling problem of rectangular composite plates exist solely for a restricted
set of boundary conditions and lamination schemes. The focus is on cross-ply symmetric and angle-ply anti-
symmetric rectangular laminates that feature at least two opposite edges simply supported. Additionally, it
encompasses similar plates with two opposite edges clamped yet free to deflect (referred to as guided clamps) or
configurations where one edge is simply supported while the opposite edge is equipped with a guided clamp. The
majority of the precise solutions examined in the works of Whitney, who formulated an exact solution for the
critical buckling of solid rectangular orthotropic plates with all edges simply supported, as well as those by Reddy
and Leissa and Kang, along with references [7] and [21]. Bao et al. [22] formulated an exact solution for
configurations with two edges simply supported and two edges clamped, while Robinson [23] provided an exact
solution for the critical buckling stress of an orthotropic sandwich plate with all edges simply supported. For all
other configurations, where only approximated results exist, various semi-analytical and numerical techniques
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have been established. The Rayleigh — Ritz method, the finite strip method (FSM), the element free Galerkin
method (EFG), the differential quadrature technique, the moving least square differential quadrature method, and
the widely utilized finite element method (FEM) are among the most prevalent approaches. A variety of authors
have employed the finite element method to accurately predict in-plane stress distribution, which is subsequently
utilized to address the buckling problem. Zienkiewicz [30] and Cook [31] have effectively outlined a method for
determining the buckling strength of plates.

This involves initially addressing the linear elastic problem for a reference load, followed by solving the
eigenvalue problem to identify the smallest eigenvalue. The product of this eigenvalue and the reference load
yields the critical buckling load of the structure. A comprehensive examination of the evolution of plate finite
elements over the last 35 years was provided by Yang et al. [32]. A significant number of studies on the buckling
analysis of composite plates found in the literature are typically conducted alongside vibration analyses. These
studies are grounded in two-dimensional plate theories, which can be categorized into classical and shear
deformable types. Classical plate theories (CPT) fail to consider shear deformation effects, leading to an
overestimation of the critical buckling loads for thicker composite plates, as well as for thinner ones exhibiting
higher anisotropy. The majority of shear deformable plate theories typically rely on an assumption regarding the
displacement field, which involves five unknown displacement components. Since three of these components
align with those in CPT, the extra components are multiplied by a specific function of the thickness coordinate
and incorporated into the displacement field of CPT to account for shear deformation effects. Considering these
functions as linear and cubic forms results in the development of the uniform or Mindlin shear deformable plate
theory (USDPT) [33], as well as parabolic shear deformable plate theories (PSDPT) [34]. Various forms were
also utilized, including hyperbolic shear deformable plate theory (HSDPT) [35] and trigonometric or sine
functions shear deformable plate theory (TSDPT) [36]. Due to the inability of these shear deformation theories to
meet the continuity conditions across multiple layers of composite structures, the zig-zag or corrugated plate
theories proposed by Di Sciuva [37] and Cho and Parmeter [38] were introduced to address interlaminar stress
continuities. Recently, Karama et al. [39] introduced a novel exponential function, specifically the exponential
shear deformable plate theory (ESDPT), to describe the displacement field in composite laminated structures.
This approach aims to accurately represent the shear stress distribution throughout the thickness of these
composite structures. The authors also conducted a comparison of their findings for both static and dynamic
problems of composite beams against the sine model. The theory applied in this study falls within the category of
displacement-based theories. Extensions of these theories that incorporate the linear terms in z in u and v, along
with only the constant term in w, to address higher-order variations and laminated plates, are detailed in the
research conducted by Yang, Norris and Stavsky [40], Whitney and Pagano [41], and Phan and Reddy [42]. This
theory, known as first-order shear deformation theory (FSDT), posits that the transverse planes, initially normal
and straight to the mid-plane of the plate, are assumed to remain straight but may not necessarily remain normal
after deformation. As a result, a shear correction factor is utilized in this theory to adjust the transverse shear
stress, which remains constant throughout the thickness.This study assumes that the composite media are devoid
of imperfections, including initial geometrical distortions of the structure, as well as material and constructional
flaws such as broken fibers, delaminated areas, cracks in the matrix, foreign inclusions, and small voids resulting
from suboptimal selection of fibers or matrix materials and manufacturing defects. Consequently, it is assumed
that the fibers and matrix exhibit perfect bonding.

II. BOUNDARY CONDITIONS
Consider a thin plate of length a, breadth b, and thickness h as shown in Figure 1a, subjected to in — plane loads
and as shown in Figure 1b.
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Figure 1
The analyses presented in this paper have been conducted with the assumption that the plate is subjected to either
identical or varying support conditions along its four edges. The five sets of edge conditions utilized in this study
are categorized as clamped — clamped (CC), simply — simply supported (SS), clamped — simply supported (CS),
clamped — free (CF), and simply supported — free (SF), as presented in table 1 below.
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Table 1 Boundary conditions

Boundary Plate dimensions in y — coordinate | Plate dimensions in x — coordinate
Conditions x=0,x=a y=0,y=0»b

S8 w=y=0 w=¢=0

CS w=g¢p=9=0 w=¢p=0

CF w=¢=1p=0 -

SF w=1¢y=0 -

III.  VALIDATION OF FE PROGRAM
Upon examination of table 4.2, it becomes apparent that the forecast of the buckling loads made by the
current research is more comparable to the one made by Reddy J. N. [43]. It should be brought to your attention
that the current analysis does not take into account the connection that exists between bending and extensions. A
much significant coupling effect may be seen in antisymmetric angle-ply laminates that have a limited number of
layers. When there are a considerable number of layers, the coupling effect becomes insignificant, as is the case
with the eight-layer laminate that is being compared in the table.

Table 2 Buckling load for simply supported (SS) plate for different moduli and aspect ratios

Aspect Ratio Modular Ratio Uniaxial Compression Biaxial Compression
a/b E{/E, 10 25 10 25

0.5 Present 24.348 55.790 19.480 44.630

Ref. [43] 23.746 53.888 18.999 43.110

1.0 Present 18.124 42.690 9.062 21.345

Ref. [43] 17.637 41.166 8.813 20.578

1.5 Present 18.977 44.476 6.170 14.383

Ref. [43] 18.565 43.091 6.001 13.877

Iv. NUMERICAL RESULTS

It was chosen to conduct a study case and provide findings of buckling loads for cross-ply symmetrically
laminated composite plates with a thickness of 0/90/90/0 and 0/90/0. These results will serve as benchmarks for
other researchers to employ in their own investigations.

A number of parameters, including the aspect ratio, the boundary conditions, and the modulus ratio, have
a significant impact on the buckling stresses that are imposed on the plates. Due to the restricted area that is
supplied by this publication, it is not possible to provide the large quantity of data that has been created which
cannot be presented. You may find the findings in the tables 3, 4, 5, and 6 that are located below.

Table 3 Buckling load for 0/90/90/0 plate with different boundary conditions and aspect ratios
(F’=Pﬂz{E1h3). Elr/EZ =40, 612 = 0. SEZ and Vi2 = 0.25

(a) Uniaxial loading

a/b CccC o CSs CF SF

0.5 2.8999 0.7355 28116 2.8816 0.7354
1.0 3.3568 0.8823 2.9888 2.9860 0.8777
1.5 5.1730 1.4268 3.3877 3.3576 1.3822

(b) Biaxial loading

a/b CC Ss CS CF SF

0.5 1.0827 0.4213 1.0022 0.9852 0.4207
1.0 1.3795 0.4411 1.0741 1.0372 0.4354
1.5 1.6367 0.4391 1.2466 1.1473 0.4372
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Table 4 Buckling load for 0/90/90/0 plate with different boundary conditions and aspect ratios
(ﬁ= Paz/Elhs). E-]_’/Ez = 5, G-]_z = OSEZ and Viz = 0.25

(a) Uniaxial loading

a/b CcC SS CS CF SF
0.5 3.1453 0.8598 3.0821 3.0789 0.8556
1.0 4.3829 1.3969 3.5498 3.4952 1.3294
1.5 8.3429 29125 4.7780 4.4925 2.5354
(b) Biaxial loading
a/b CcC Ss CS CF SF
0.5 1.8172 0.6877 1.6838 1.6578 0.6874
1.0 2.2064 0.6985 1.8328 1.8125 0.5990
1.5 2.8059 0.8962 1.7618 1.6983 0.8953

Table 5 Buckling load for 0/90/0 plate with different boundary conditions and aspect ratios (—
PQZXE1h3). Elf!Ez = 5, GIZ =0. SEZ and Viz = 0.25

(a) Uniaxial loading

a/b CC ss CS CF SF
0.5 3.3624 0.9142 3.3112 4.2781 0.9105
1.0 43977 1.3969 3.7376 3.6940 1.3439
1.5 7.7135 2.6763 4.7942 4.5828 2.4048
(b) Biaxial loading
a/b CcC SS CS CF SF
0.5 1.7380 0.6871 1.6337 1.5690 0.6872
1.0 2.1744 0.6984 1.7113 1.6820 0.6986
1.5 2.5075 0.8235 1.7622 1.6814 0.8239
Table 6 Buckling load for 0/90/0 plate with different boundary conditions
(P = Pa?/E h3). E;/E; = 40, Gy, = 0.5E, and vy, = 0.25
(a) Uniaxial loading
a/b CC SS CS CF SF
0.5 2.7304 0.8011 2.6555 2.6435 0.8010
1.0 3.3700 0.8823 3.2149 3.2142 0.8809
1.5 41817 1.1421 3.4017 3.3947 1.1313
(b) Biaxial loading
a/b CcC Ss CS CF SF
0.5 0.7529 0.3325 0.7201 0.7143 0.3319
1.0 0.9511 0.3489 0.7932 0.7803 0.3478
1.5 1.1763 0.3514 0.8099 0.7940 0.3472
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V. CONCLUSIONS

The development of a finite element model has been done with the intention of accomplishing the
objective of calculating the buckling loads of laminated plates that have a rectangular cross-section. This was
something that had to be done in order to ensure that there was consistency. The buckling loads are explored and
validated by the process of comparison, which involves comparing them to prior research that has been published
in the relevant literature in the past. The reason that this is done is to guarantee that the approach that is currently
being used produces correct results, which is the reason why this is done. There were other comparisons that were
carried out, and the results that were supplied by the ANSYS software as well as the findings from the tests were
compared with all of the other findings. The comparisons were carried out in more detail. With a high degree of
concordance with the data that is not only available but also readily accessible, the finite element technique that
was utilized demonstrates that it is dependable. This is shown by the fact that it has a high degree of alignment
with the data.
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