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Abstract:By combining finite element modelling and artificial neural network, this paper proposes a novel 

approach using ANN for single stage prediction of severity and location of damage in structures. The study 

utilizes FEM for simulating crack type damage of varying severity at various critically stressed locations of the 

structure. Various modal response data such as vibration frequencies, mode-shapes and frequency response 

functions, corresponding to the considered damage scenarios are synthetically generated from the FE model 

and used for training the Artificial Neural Network model. 

Recent studies on damage detection utilizing machine learning algorithms and modal response data of 

structures, justify the use of frequencies and mode shapes as good damage indicators. However, traditional 

literature in SHM remarks frequencies and mode shapes to be less sensitive damage features. Utilizing the 

proposed model, the paper first takes a relook into this issue. The paper further explores the use of various other 

modal properties of the structure such as frequencies, mode-shapes,mode shape curvatures and frequency 

response functions as potential damage indicators for training and testing of ANN. Model regression coefficient 

(R) was seen to be less effective in assessing model accuracy in prediction of damage severity and location. 

Hence the paper proposes two additional matrices for assessing ANN model performance in damage detection. 

Data scarcity resulting from the deployment of a limited number of sensors over a structural member is seen to 

affect the performance of data driven models such as ANN. The study addresses this issue through use of 

appropriate computing techniques such as Lagrange based function approximation over modal response 

measurements from discrete sensor locations and k-fold cross validation based resampling technique.The 

potential of the resampling technique to improve the damage sensitivity of noise-contaminated vibration 

signatures is also demonstrated. Early damages of the order of 5% severity, could be detected with an error less than 2% 

using algorithms devised in this paper. 
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I. Introduction 
The era of vibration-based damage detection began when natural frequencies and mode shapes became 

competent vibration signatures, expecting them to project the location of damages in structures (Farrar et al. 

(2001), Worden et al. (2000), Ruocciet al. (2011)). Later, these indicators were deemed less sensitive to 

damages (Farrar et al. (2013)) which led to the exploration of more vibration signatures such as Frequency 

Response Functions (FRFs). Artificial Neural Networks (ANN) is a major subfield of Machine Learning that 

can handle nonlinear interactions and complex behaviour among input and output parameters in a system 

without any prior knowledge about the system and the same has been extensively used in solution of 

engineering problems including damage detection in the past. For a data driven model such as ANN, to predict 

both damage severity and location of damage, requires sufficient quantity of structure response data 

corresponding to damages of various severity at various locations of structure for training the model. A recent 

review on ANN based damage detection is presented by Alain and Ponciano (2022). 

In the absence of field data, vibration responses of a structure corresponding to various damage 

scenarios are either obtained through numerical simulations or experimentations. Subsequently, a suitable 

machine learning model, say, ANN, is trained and tested using the data and is subsequently used to predict the 

possible location and severity of any damage in the structure. Recently, there seems to be a renewed interest in 

using frequencies and mode shapes, with many authors reporting successful employment of these two damage 

indicators for training learning algorithms (Bakhary (2008)). However, such studies were based on simulated 

data with a discrete spring-mass idealization of structures, with damages modelled as a uniform reduction in 

stiffness over an element length. 
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The first part of this paper takes a relook into the problem by using modal data from a more refined 

structure and damage models. The paper proceeds further by utilizing mode shape curvatures and FRFs as 

training inputs for ANN models for damage prediction. In the process, the paper addresses two critical issues 

associated with using vibration data in ANN-based damage detection. They are (i) the requirement of a large 

input layer for ANN when FRF is used as training data and (ii) sensor deficiency resulting in the shortage of a 

sufficient number of mode shape ordinates. 

 

II. Methodology 
Structure model and damage simulation 

A portal frame structure (Fig. 1(a)) having predominant flexure vibration modes is selected for the 

study. All frame members are 150 mm x 200 mm in cross-section and of concrete material having elastic 

properties E = 25,000 MPa and ν = 0.2. FE model of the structure is created in ABAQUS 2017. The entire 

structure is discretized using 8-noded brick elements of size 25mm. Each member in the structure ispartitioned 

into suitable segments (3 in this case), as shown in Fig. 1(a), to assist damage localization. In all these segments, 

single localized cracks are simulated at critically stressed faces of the beam and columns. All degrees of 

freedom on the nodes at the base of two columns are arrested, simulating clamped boundary conditions. 

 

 

 

(a) Division of the portal frame into 9 segments (b) Location of single cracks in each of nine segments 

in various damage scenarios 

Fig. 1 The structure model 

 

Each crack is 3 mm wide and 100mm deep in the initial stage (Fig. 2(a)). The depth of crack is varied, 

keeping the width constant to simulate different extents of damage for each damage location. Fig. 1(b) shows 

the location of cracks simulated in various damage scenarios. In all, 90 damage instances (9 damage locations 

and 10 damage extents at each location) are considered. Responses of the structure were captured for each of the 

damage instances. 

 

  
(a) Typical crack on one column of the portal frame (b) Special meshing scheme adopted for crack zone 

Fig. 2 Damage simulation 

  

An improper FE mesh can affect the stiffness of the structure model and mask the frequency changes 

resulting from damage. Hence special care is exercised during the meshing stage to develop a mesh-independent 

structure model. For this, each damage zone is sub-partitioned into three, with the zone adjacent to the crack 

being fine-meshed using 5 mm size 8-noded brick elements and the segment farther from the crack zone being 
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meshed using a coarser mesh of 25 mm size. Finally, the zone in between was meshed using tetrahedral 

elements, as shown in Fig. 2(b). 

 

Data generation for damage detection 

 

Frequencies and mode shapes 

Frequencies and mode shapes corresponding to the first 10 vibration modes of the structure model were 

used in ANN models for training and testing (Fig.3).To simulate the condition of data scarcity in field 

investigations, the present study utilized modal ordinates from midpoint nodes of each segment of the FE 

model(S1 to S11 in Fig. 3(d)). These nodes possibly denote the potential sensor locations in the case of an 

experimental study. 

   
 

(a) Mode 1 (b) Mode 2 (c)        Mode 3 (d) modal ordinate extraction 

locations (S1 to S11) 

Fig.3. First three vibration modes of portal frame and locations from where mode shape ordinates were extracted 

 

FRF-based damage indicators 

FRF- based ANN models have been utilized in the past for the damage assessment of structures 

(Jayasundaraet al. (2020), Maia et al. (2002), Bandara (2013)). FRF as a vibration signature can be easily 

captured with the aid of a couple of sensors, and the same can also be simulated in an appropriate FE modelling 

environment. However, the heavily populated FRF data demands a huge configuration for the ANN input layer, 

leading to iteration divergence while training and testing, along with computational inefficiency (Bandara 

(2013)). Hence, mathematically intensive techniques like Principal Component Analysis (PCA) are employed 

for the dimensionality reduction of massive FRF data when used for training ANN (Abdeljaberet al. (2016)). 

But, as the structure being monitored becomes more and more complex, the size of FRF data will also increase, 

resulting in the ineffectiveness of PCA due to the loss of valuable damage information. Padilet al. (2020) 

addressed this issue using a non-probabilistic ANN model and conducting an interval analysis to root out the 

uncertainties after PCA application. Alternatively, this paper proposes the use of local peaks in FRF data for 

network training, thus reducing the massiveness of FRF data. 

Frequency Response Functions corresponding to all simulated damage scenarios were generated by 

performing a mode-based steady-state analysis of the structure model. The local extrema of FRF data were 

identified using the „find peaks‟ function in signal processing toolbox of MATLAB. Fig. 4 shows the distinct 

peaks (indicated in red and yellow at appropriate locations) identified from a typical FRF signal (indicated as a 

green line). The peaks thus consolidated were considered as inputs for network training. 

 
Mode shape curvature-based damage indicators 

A variety of modal data pre-processing techniques were proposed in previous vibration-based damage 

detection studies to enhance the damage predictability of mode shapes. This includes defining damage indices 

based on mode shapes (Maia et al. (2002)), estimation of curvatures and squared curvatures (Nguyen et al. 

(2021), Rucevskis and Wesolowski (2010)), etc. Notably, numerical estimation of mode shape derivatives for 

central difference scheme-based curvature estimation demands responses to be captured from a sufficiently large 

number of locations/sensors to reduce errors in estimation of curvatures. For structures with multiple members, 

this increased demand makes the procedure expensive and computationally intensive. 
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Fig.4. Peaks identified from a typical FRF signal 

 

To overcome this, the present study utilized a curve-fitting approach with a Lagrange polynomial fit 

made over the modal coordinate data from discrete locations resembling sensor locations in a field 

test(Fig.3(d)).  Subsequently, symbolic differentiation of the polynomial was carried out using MATLAB to 

obtain the modal curvatures. The Lagrangian polynomial approximation, for the j
th

 vibration mode ∅𝑗  using n 

modal coordinates, is represented as: 

∅𝑗 =   𝑁𝑖∅𝑖 ,𝑗
𝑛
𝑖=1        (1) 

with the Lagrange shape function corresponding to the i
th

 location 𝑁𝑖  is given by: 

𝑁𝑖 =
 𝑥−𝑥1  𝑥−𝑥2 … 𝑥−𝑥𝑖−1  𝑥−𝑥𝑖+1 …(𝑥−𝑥𝑛 )

 𝑥𝑖−𝑥1  𝑥𝑖−𝑥2 … 𝑥𝑖−𝑥𝑖−1  𝑥𝑖−𝑥𝑖+1 ..(𝑥𝑖−𝑥𝑛 )
     (2) 

 
Where, 𝑥1 , 𝑥2, . . 𝑥𝑛  denote the location of modal coordinate data i.e., sensor position in field investigations, ∅𝑖 ,𝑗  

denotes the j
th

 modal ordinates at i
th

 location. 

After Lagrangian polynomial fit over the mode shape coordinates, the mode shape curvatures were 

estimated using the symbolic differentiation (MATLAB). This helps in addressing the error in numerical 

differentiation due to lack of sufficient number of modal coordinate data. Alternatively, additional modal data 

could be generated from the Lagrangian polynomial fit to various mode shapes coordinates made over each 

member and utilize the same for numerical differentiation using the following central difference approximation 

given by 

 
𝜕2∅

𝜕𝑥2 =
∅𝑖+1,𝑗 −2∗∅𝑖 ,𝑗 +∅𝑖−1,𝑗

ℎ2                                (3) 

 

where i denotes the node number, j denotes the mode number and h the uniform spacing of nodes. 

The whole procedure of Lagrange interpolation and estimation of mode shape curvatures was 

implemented in the MALTAB environment. The absolute difference between the curvature in each damage 

instance and mode shape curvature in the undamaged state was considered as the input for ANN model. Ability 

to evaluate the curvature function at any number of locations for better accuracy is the major advantage of this 

refined strategy. 

Noise contaminated FRFs as damage indicators 

A major issue concerning the damage sensitivity of vibration signatures in field investigations is the 

interference of measurement noise. Hence the damage detection efficiency of developed algorithms using noisy 

data needs to be investigated. Various studies have been conducted to analyse the effect of variable noise levels 

in structural responses (Cao et al. (2014)) and hence are not revisited here. This paper intends to project the 

ability of resampling techniques to surpass the poor damage sensitivity of noise-contaminated vibration 

signatures, specifically FRFs. Noise-free FRFs obtained from simulations were contaminated by adding 

Gaussian White Noise with a signal-to-noise ratio (SNR) fixed at 10 dB. The local peaks identified from these 

noise-contaminated FRFs were considered for ANN training and testing. 
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ANN architecture 

Previous studies on damage detection using structure models with multiple members, attempted to 

subdivide the structure into various segments and employ distinct ANN models for each segment for better 

accuracy in damage detection (Abdeljaberet al. (2016), Jayasundaraet al. (2020)). Researchers thus have 

attempted to handle the problem of localization and quantification of damage extent as a two-stage process. 

Instead, this paper proposes a single-stage ANN model capable of simultaneous localization and quantification 

of damages in the entire structure. 

 
Fig.5 Optimal ANN architecture used in the study 

 

A two-layer feedforward neural network (for addressing regression problems), using Levenberg 

Marquardt algorithm for regularization (More (1977)), was employed for training and testing. The optimal 

network configuration- 10 neurons in a single hidden layer- was obtained based on a trial-and-error process.  

Fig. 5 depicts the optimal ANN architecture used in this study. The input vector [∅] presents the training inputs 

corresponding to each damage indicator.  Generally,  ∅𝑖  represents input corresponding to the i
th

 input neuron 

where,i varies from 1 to n (number of training samples representing a damage instance). Though the damage 

indicators used to feed the ANN models vary, the basic ANN architecture remains the same throughout the 

paper. The output vector was carefully defined to return two types of neurons: one to support damage 

localization for each of the segments (9 segments in this case) and the second to support damage quantification 

(one for the damaged segment only) of the problem. Hence the neurons PSEG-1 to PSEG-9 were assigned for 

damage localization and the tenth neuron (ID) was assigned for damage quantification. From the available 

training dataset, 70% of the samples were employed for training, 15% for validation, and 15% for testing 

purposes. 

The ANN model performance was evaluated based on the correlation coefficient (R value) obtained 

from regression plots after training and testing. As a measure of model performance, R values were found to be 

misleading (Li (2017)). Hence, two additional metrices were also considered in this paper to evaluate the 

damage sensitivity of various ANN models. 

 

Damage sensitivity measures 

The damage sensitivity of each damage indicator was assessed using the following three performance metrics: 

(1) Accuracy in terms of correlation coefficient (R-value) in both training and testing: The correlation 

coefficient between two variables is a measure of their dependence for which a value of unity indicates a good 

correlation.  

(2) Sensitivity of the damage indicator in terms of localization of damaged zone or segment: This metric was 

accounted for in terms of the Normalised Damage Modulus (NDM) for each zone or segment of a structural 

member, defined as: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐷𝑎𝑚𝑎𝑔𝑒 𝑀𝑜𝑑𝑢𝑙𝑢𝑠  𝑁𝐷𝑀 =   
𝑃𝑆𝐸𝐺−𝑖

𝑃𝑆𝐸𝐺(𝑚𝑎𝑥 )

  ;  0 ≤ 𝑁𝐷𝑀 ≤ 1    (4) 
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Here,  𝑃𝑆𝐸𝐺−𝑖  denotes the output of the i
th

 output neuron from the ANN model or the possibility of damage in the 

i
th

 segment, where i varies from 1 to number of segments (9 in this study), and  𝑃𝑆𝐸𝐺(𝑚𝑎𝑥 ) is the maximum value 

among 𝑃𝑆𝐸𝐺−1 to 𝑃𝑆𝐸𝐺−9 obtained in a particular training operation. NDM =1 indicates the presence of a damage 

in the segment and NDM = 0 indicates absence of damage. 

(3) Sensitivity of the damage indicator in terms of the minimum extent of damage that can be quantified: This 

metric is recorded in terms of percentage error in predicting the damage extent in each of the zones or segments 

of the structural member, defined by: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (𝐸) =
𝐼𝐷
′  − 𝐼𝐷

𝐼𝐷
× 100                             (4) 

Where, 𝐼𝐷
′  is the damage severity predicted by the network (output of the 10

th
 neuron) and 𝐼𝐷  is the damage 

severity originally simulated in the FE model (or damage severity from a known location in case of 

experimental data). 

Implementation of k-fold Cross-validation 

Researchers have recommended the use of resampling techniques to enhance the generalization ability 

of data-driven models when they are fed with datasets of a limited population (Almustafa and Nehdi (2020)). k-

fold cross-validation is a popularly adopted resampling technique in a variety of machine learning 

problems.(Almustafa and Nehdi (2020), Huang and Burton (2019), Mangalathu and Jeon (2019), Marcot and 

Hanea (2020)). The same was used as the resampling technique in the present damage detection study using 

modal data. 

K-fold cross-validation (CV) involves randomly dividing the dataset into k folds or groups of samples 

of nearly equal size. The first fold is treated as the test set, and the remaining folds will be treated as training 

sets upon which the model is fit. The procedure will be repeated k times, wherein a different fold is treated as 

the test set in each iteration. The optimal value of k was established as 5 in a sensitivity analysis using variable 

values of k. The optimal value of k was arrived at considering trainingaccuracy (R-value), the standard deviation 

of accuracy, and normalized CPU computation time. Repeated k-fold cross-validation was performed (10 times) 

and the mean and standard deviation of observations were estimated to ensure if consistent model performance 

is achieved. 

 

III. Resultsand Discussions 

Performance of ANN models before the implementation of k-fold CV 

 
To quantify the significance of resampling especially in the context of scarce data, typical of structural health 

monitoring of civil engineering structures, and also to signify the efficacy of k-fold CV as a potential resampling 

tool in context of vibration data, a comparison of the results from developed models with and without k-fold 

cross validation was made.  

 

ANN models based on frequencies and mode shapes 

The ANN model based on frequencies achieved a training accuracy of 0.9986 (R value) and a testing 

accuracy of 0.9936 (Fig. 6). The ANN model based on mode shapes achieved a training accuracy of 0.7894 and 

a testing accuracy of 0.7957. Moreover, mode shape dataset being smaller in the number of samples and larger 

in the number of input neurons, exhibited an overfitting tendency.  

With respect to R-value, though the performance of frequency-based ANN seems to be better than 

mode shape-based ANN, both failed to predict the location of damage accurately in most of the damage 

instances. Fig. 7(a) shows the plot of Normalised Damage Moduli (NDM) for various segments corresponding 

to simulated damage of severity 50% in segment 3. A closer look into the values of NDM reveals that the 

frequency-based ANN failed to predict the correct location and gave a false peak at segment 7. For the same 

scenario, the mode shape-based ANN model too gave a false peak at segment 5 (Fig. 7(b)).   

The direct use of frequencies and mode shapes as good damage indicators for the training and testing of 

learning algorithms hence seems questionable. The designation of frequencies and mode shapes as good indicators in 

many literature could be attributed to the fact that the same were derived from discrete spring-mass structural idealizations, with 

damages modelled as reduction in stiffness for a single element. However, derived from the more realistic structure and damage 

models using FEM, frequencies and mode shapes do not qualify as good indicators. 

 



Vibration Based Damage Detection using Localized Crack-type Damage Models and ANN 

DOI: 10.9790/1684-2002015066                               www.iosrjournals.org                       56 | Page 

 
Fig. 6Regression plots obtained in training from frequency-based ANN model for the case of damage severity 

50% in segment 3. 

 

 
 

(a) frequencies 

 
 

(b) mode shapes 

Fig. 7Prediction of damage locationfrom frequency-based and mode shape based ANN models for the case of 

damage severity 50% in segment 3 

 
Hence the possibility of using Frequency response functions (FRFs) and mode shape curvatures as damage 

indicators for network training is explored next. 

 

ANN models based on FRFs and mode shape curvatures 

Training and testing of ANN model based on FRFs, achieved a training accuracy of 0.9842 (R value) and a low 

testing accuracy of 0.0751 (Fig. 8(a)) where as the one based on absolute curvatures achieved an accuracy of 

0.8628 in training and 0.6985 in testing (Fig. 8(b)).  

 



Vibration Based Damage Detection using Localized Crack-type Damage Models and ANN 

DOI: 10.9790/1684-2002015066                               www.iosrjournals.org                       57 | Page 

 
(a) ANN model based on FRFs 

 

 
(b) ANN model based on mode shape curvatures 

Fig. 8Regression plots obtained in model training & testing 

 
However, a randomness was noted in testing accuracy when training was repeated. Fig. 9 shows the variability 

of testing R values in 10 subsequent trials when the ANN model based on FRF was subjected to training and 

testing. 

 

 
Fig. 9 Variation in training & testing accuracies of ANN model based on FRFs in 10 subsequent trials 

Though the training accuracy was almost consistent, the testing accuracy was very low in the 2
nd

, 8
th

 

and 10
th

 trials, which indicates a poor correlation. The testing set has overestimated the model performance in 5
th

 

and 7
th

 trials, in which training accuracy is relatively low. The coefficient of variation (CoV) associated with 

testing accuracies in these 10 trials was estimated and it was as high as 9.24% and 7.604% respectively, for the 

ANN model based on FRFs and mode shape curvatures. This throws light into a major issue faced by almost all 

data-driven models like ANN with a limited number of training data. The process of learning in an ANN model 

involves the division of the input dataset into training and testing sets. In datasets with a limited number of 

samples, the least populated test set need not represent the entire dataset, which can affect the generalization 

ability of the entire ANN model. This is usually reflected in either of the following ways:  

(1) A variability in testing R values obtained in subsequent training trials 

(2) Very low value of testing accuracy 

(3) Overestimation of testing R-value compared to training R-value  



Vibration Based Damage Detection using Localized Crack-type Damage Models and ANN 

DOI: 10.9790/1684-2002015066                               www.iosrjournals.org                       58 | Page 

Due to these issues, many false peaks occurred in the NDM plots in Fig. 10, which shows the damage location 

prediction by the FRF-based ANN model for 9 damage locations and ten distinct damage scenarios for each 

location corresponding to damage extents in the range 5 to 50 percent. 

 
Fig. 10 Prediction of damage location using FRF-based ANN model prior to application of k-fold CV(actual 

damage in segment 1). 

Data scarcity is typical of civil engineering problems, and solving it without increasing the dataset size is a 

challenge to researchers. Though transitioning to deeper networks with enhanced learning abilities might solve 

this issue, this paper attempts to improve the scenario using a resampling technique. 

 

Performance of ANN models after the implementation of k-fold CV 

Thus far, the choice of training and testing samples in this paper was random. The resulting performance of 

ANN models were inferior as the models were deficient in generalization. k-fold CV was performed in this 

study to assess the generalization ability of ANN models and to obtain a consistent model performance. Table.1 

shows the performance of ANN models in training and testing before and after k-fold application. Frequency-

based ANN achieved an average overall accuracy of 0.446 with a standard deviation of 0.1516 after applying k-

fold. The mode shape-based ANN achieved an average accuracy of 0.740 with a standard deviation of 0.1957, 

after applying k-fold CV.  

R value obtained for frequency-based and mode shape-based ANNs prior to k-fold application were 

comparatively higher. However, those models failed in damage prediction, proving that the R values might be 

overestimated. 

 
Table 1:Results of ANN training & testing before & after k-fold application 

 Before k-fold CV application After k-fold CV application 

Damage indicator 
Training accuracy         

(R value) 

Testing accuracy    (R 

value) 

Mean model accuracy in 

10 trials 

Standard deviation of 

model accuracy 

Frequencies 0.9986 0.9935 0.4460 0.1516 

Mode shapes 0.7894 0.7957 0.740 0.1957 

FRF 0.9842 0.0752 0.920 0.0160 

Mode shape Curvatures 0.8628 0.6985 0.980 0.017 

 

Even though k-fold CV does not completely eliminate overfitting in an ANN model, the low R value obtained 

for frequency-based ANN model is a more realistic estimate of the model performance. The damage sensitivity 

of these ANN models, discussed in subsequent sections better explains this. 

ANN models based on FRFs and mode shape curvatures exhibited overall accuracies of 0.8092 and 0.8690 

prior to k-fold application. This improved to 0.92 and 0.98, respectively, post k-fold application. Mode shape 

curvature-based ANN model achieved an overall accuracy comparable to that of FRFs in training and testing. 

Consistent R values achieved through k-fold application are appreciable, as observed from the low standard 

deviation in each case. The performance of mode shape curvature-based ANN is promising since mode-based 
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techniques were less preferred than FRFs in previous works, as they were time-consuming and less sensitive 

(Maia et al. (2002)). The damage sensitivity of various ANN models used in this study are discussed next. 

 

Sensitivity of various ANN models 

The sensitivity of a damage indicator to damage is an essential measure of its reliability. The present study 

quantifies sensitivity as the minimum depth of crack or the minimum damage extent (in terms of percentage of 

the depth of a member) that the damage indicator can locate and predict through the proposed ANN models.  

 
Damage sensitivity of frequency-based ANN model 

Sensitivity in terms of damage localization is demonstrated with the help of 3D bar graphs (Fig. 11). Each row 

represents a particular damage instanceand columns represents the damage location in terms of segment number. 

The bar height represents the Normalized Damage Moduli (NDM).  

 
Fig. 11 Prediction of damage location using frequency-based ANN model after application of k-fold cross 

validation (actual damage simulated at segment 3 

The damage location remains the same in all damage instances, with its severity varying from 5 to 50 

percent. The segment with the peak value of NDM (unity) indicates the true damage location. The prediction of 

damage location by a resampled frequency-based ANN model, with the actual damage being simulated at 

segment 3, is shown in Fig. 11. A false prediction of damage location in segment 4 (red bar) is seen in fifth row. 

A similar false peak is also seen in the 7
th

 row (black bar). The severity of damage in these cases were 25% and 

35% respectively. Among the damage cases studied, the minimum damage that could accurately be located by 

frequency-based ANN is only 40%. 

A comparison of actual damage severity and the model prediction for various damage cases 

corresponding to resampled frequency-based ANN model is shown in Fig. 12. The firm (red) line denotes the 

percentage error in predicting a particular damage extent. Error in predicting minor damages can be seen as a 

serious drawback of frequency-based ANN model. In Fig. 11, it can be seen that a damage of the order of 50% 

was predicted by the model with an error as high as 11.13%.  

 

 
Fig. 12Test for sensitivity: error in damage severity prediction by ANN model using resampled frequencies as 

damage indicators, each damage case representing a damage extent in segment 3 
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The above result substantiates that, a higher R value for the model need not mean better model 

performance. The accuracy of frequency-based ANN given by k-fold CV emphasises its low sensitivity to minor 

damages as observed in the above figures. 

 

Damage sensitivity of mode shape-based ANN model 

Appreciable improvement in the damage sensitivity of mode shape-based ANN model after k-fold CV 

applicationcan be observed in Fig. 13. NDM values were obtained as unity at the exact locations of damage 

itself, i.e., at segment 4. Mode shape-based ANN exhibited better sensitivity compared to frequencies, with the 

minimum damage predicted being 35%, with an error of 1.81% (Fig. 14). 

 
Fig. 13Prediction of damage location using ANN model based on resampled mode shapes (actual damage at 

seg.4) 

 

 
Fig. 14 Test for sensitivity: error in damage severity prediction by ANN model using resampled mode shapes as 

damage indicators, each damage case representing a damage extent in segment 4. 

 

Damage sensitivity of FRF-based ANN model 

 

Fig. 15 presents the prediction of damage location by a resampled FRF-based ANN model, with the 

actual damage being simulated at segment 7. NDM values were obtained as unity at the exact locations of 

damage itself, post training and testing. 

The FRF-based ANN model was able to predict a damage of severity as low as 5% with an error of 

1.9% (Fig. 15). The least damage considered in this study for simulating damage in the FE model was 5% and 

the FRF-based ANN model succeeded in predicting the damage with minimum error. NDM value peaked at the 

exact location of damage alone as well without any false alarm. 
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Fig. 15 Prediction of damage location using ANN model based on resampled FRFs (actual damage at segment 

7.) 

 

 
Fig. 16Test for sensitivity: error in damage severity prediction by ANN model using resampled FRF peaks. 

 

Damage sensitivity of mode shape curvature-based ANN model 

ANN model damage prediction using resampled mode shape curvatures as damage indicators, for 9 

damage instances, with actual damage location being segment 2, is shown in Fig. 17. Though false peaks were 

found in the plot obtained for mode shape-based ANN in Fig. 13, they are negligible in magnitude for mode 

shape curvature-based ANN in Fig. 17. It is interesting to note that resampling combined with pre-processing of 

mode shapes (to obtain its curvatures) could transform less damage-sensitive modal data into a structured and 

sensitive one. The role of curve fitting techniques in enhancing their damage predictability is also undeniable.  
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Fig. 17Prediction of damage location using ANN model based on resampled absolute mode shape 

curvatures with actual damage location being segment 2 

 
Fig. 18Test for sensitivity: error in damage severity prediction by ANN model based on resampled 

mode shape curvatures, each damage case representing a damage extent in segment 2 
 

The ANN model based on mode shape curvatures performed better than FRF-based ANN in terms of 

damage extent prediction as well. The model was able to predict a damage of severity as low as 5% with an 

error of 1.64% (Fig. 18). This improvement in the predictability of mode shape curvatures was achieved using a 

limited number of training samples and a minimum number of sensors i.e., mode shape data sampling locations. 

The damage detection model devised in this paper proved to be efficient in locating and predicting even minor 

damages in the structure. 

 

Effect of measurement noise 

The low-test accuracy of 0.6643 in the regression plots (Fig. 19) obtained from ANN model using 

noise-contaminated FRFs for training, clearly signifies its contamination. With the implementation of k-fold 

CV, the overall accuracy of ANN model based on FRFs with noise, improved to 0.97, with a standard deviation 

as low as 0.007. Damage sensitivity of resampled noise-contaminated FRFs-based ANN model in terms of 

damage localization and quantification is presented in Fig. 20 and Fig.21. 
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Fig. 19 Regression plots obtained in training and testing ANN model based on noise-contaminated FRF 

 

 
Fig. 20Prediction of damage location using ANN model based on resampled FRFs with SNR 10 dB 

with actual damage simulated at segment 2 

Damage originally simulated at segment-2 of the structure model and varied in severity from 5 to 50% 

was accurately located by the ANN model using FRFs with noise (Fig. 20). Absolute peaks in all the rows are 

predominant, and the magnitude of NDM at all other segment locations is negligible. For the same damage 

instances, the percentage error in predicting the damage severity is presented in Fig. 21. With the minimum 

damage simulated in this context being 5%, and the percentage error recorded in predicting this damage being 

2.414%, it is evident that the ANN model based on noise-contaminated FRFs achieved a damage sensitivity 

comparable with noise-free damage indicators discussed in this paper.  
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Fig. 21 Error in prediction of damage severity using ANN model based on resampled FRFs with SNR 10 dB 

with actual damage simulated at segment 2. 

 

IV. Conclusions 

A unique single-stage ANN model which utilizes various modal test data, for the simultaneous 

identification of damage location and severity in structures is proposed. The proposed ANN model comprises of 

a hidden layer with ten neurons, and the output layer consists of (n+1) neurons, with n representing the number 

of segments the structure is divided for the sake of damage localization. One output neuron is assigned per 

segment for locating damage in each of the segments in the structure model. One additional neuron is assigned 

for severity estimation, which gives the percentage error in predicting the damage severity in each scenario. This 

facilitated simultaneous localization and quantification of damage in the entire structure model. Though being 

widely used, the model R-value was observed to be insufficient as a marker of model performance. 

Consequently, two additional performance indices were introduced in the paper viz. the NDM and the 

percentage error to quantify the damage sensitivity of ANN models. Modal data for training and testing of ANN 

was simulated using 3D finite element models with damage simulated as discrete cracks. A special meshing 

strategy was followed to ensure mesh-independent modal parameters. Alternatively, realistic modal data from 

field observations can also be used to train the proposed model. 

The low sensitivity of frequencies and mode shapes to structural damage has been widely reported in 

the early literature on vibration-based damage detection. But recent ANN-based studies on damage detection 

accepting frequencies and mode shapes as training data recommendthe use of these data. Such observations, in 

fact, were based on modal data generated using discrete spring-mass idealization of structures, with damage 

simulated as a uniform reduction of entire storey stiffness. 

This paper initially revisited the suitability of using raw frequencies and mode shapes as vibration 

signatures for training ANN-based models for damage localization and quantification. Despite the high value of 

training accuracies, the performance of ANN models based on frequencies and mode shapes was observed to be 

low in damage prediction. False predictions were noticed in most of the damage scenarios. This observation 

from the present study based on refined damage models contradicts the observations in recent studies on 

machine learning-based damage detection which reports frequencies and mode shapes as good indicators. It is 

worth noting that shear frame building models combined with discrete spring-mass idealizations for the same 

and spring stiffness reduction-based damage models could have contributed to arriving at such conclusions. 

The paper subsequently considered FRFs and mode shape curvatures derived from thedeveloped FE 

structure models as damage indicators. Peak-picking was used as an alternative to the PCA-based 

dimensionality reduction of FRFs. To address the accuracy issues related to limited modal ordinates resulting 

from minimum sensor deployment and numerical differentiation for estimation of mode-shape curvatures, a 

Lagrangian polynomial fit was made over the sampled modal ordinate data and symbolic differentiation was 

performed using MATLAB to obtain mode shape curvatures. Instead of symbolic differentiation, numerical 

differentiation can also be performed using additional modal data generated from Lagrangian polynomial fits to 

reduce numerical errors associated with differentiation on limited data.  

The scarcity of structural response data resulting from the limited deployment of sensors is a major 

issue associated with monitoring of civil engineering structures. To simulate such an experimental scenario in 

the current numerical investigation, modal response data from a single location from each segment of the 

structural element (representative of the sensor location in field investigation) alone was utilized as input data 

for network training. This data scarcity affected the model performance in the form of an overfitting tendency. 

This was reflected as a higher testing accuracy relative to training accuracy as the training was repeated using 

randomly selected test sets from the same dataset. In all, the Coefficient of Variation associated with testing 
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accuracies was as high as 9.24% and 7.604% respectively for ANN models based on FRFs and mode shape 

curvatures. 

To circumvent the adverse effects of data scarcity, this paper proposes the use of k-fold cross-validation 

to resample the vibration signatures for ANN training. Notably, there is a drastic improvement in the overall 

accuracies (R values) of ANN models based on FRFs and mode shape curvatures from 0.8092 and 0.8690 to 

0.92 and 0.98 respectively. This revised strategy could eliminate false damage predictions by the above models.  

For all damage scenarios, the Normalised Damage Modulus (NDM) peaked at the exact location of the damage 

alone. The proposed ANN models could even quantify a crack of order as low as 5%, with errors as low as 1.9% 

and 1.64% respectively using FRFs and mode shape curvatures as input. This improvement in damage 

predictability of FRFs and mode shape curvatures achieved using a dataset of limited population is a major 

highlight of this paper.  

It is worth noting at this juncture that, even after the implementation of k-fold cross-validation, the 

performance of ANN models based on frequencies and mode shapes was very low, the error in prediction being 

of the order of 63%. False predictions of damage locations were also observed using the models. 

The paper also investigated the sensitivity of the proposed models in the prediction of damage location 

and severity in a noisy environment. FRF data was artificially contaminated with Gaussian random noise having 

SNR 10. The proposed ANN model based on FRF was able to exactly predict the damage location and very low 

extent of damage, of the order of 5%, representative of early-stage damages, with error less than 2.5%. 

The present study utilized simulated vibration data for demonstrating the efficacy of the developed 

model. Alternatively, measured data from field investigations can be employed for training the proposed model. 

The focus of this study was to make data more efficient and systematic to address its scarcity, rather than 

concentrating on the model architecture.  

The novelty of the paper lies in the following aspects.  

(1) Damage simulation: traditional approach of damage simulation involves stiffness reduction for an appreciable 

length of the structural member. The present study uses a 3D finite element model for the structure, damages 

modelled as discontinuity of definite dimension depending on the extent of damage to simulate damages in the 

form of structural cracks. A special meshing strategy is used to ensure mesh independence of modal properties 

of the structure. 

(2) Use of FRF local peaks alone for network training to address the issue of ANN training arising from the huge 

dimensionality of the FRF matrix. 

(3) Use of curve fitting technique over mode shape information from limited locations to reduce the error 

associated with numerical differentiation for estimation of modal curvatures.  

(4) Use of a unique single-stage ANN model for simultaneous localization and quantification of damage for the 

entire structure. 
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