
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)
e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 19, Issue 6 Ser. III (Nov. – Dec. 2022), PP 01-07

www.iosrjournals.org

DOI: 10.9790/1684-1906030107 www.iosrjournals.org 1 | Page

Implementation of the algorithm of the TUC method for

fatigue cycle counting

Manuel López Godínez1, Samuel Alcántara Montes2
, Marco A. Gutiérrez

Villegas3, Esiquio Martín Gutiérrez Armenta4
1,2(Mechanical Engineering, SEPI ESIME Zacatenco/Insituto Politécnico Nacional, México)

3,4(Mechanical Engineering, Unidad Azcapotzalco/ Universidad Autónoma Metropolitana, México)

Abstract: The Rainflow fatigue counting algorithm was formalized by Rychlik through the counting method

called Top Level-up cycle (TUC). In this work, the programming of the TUC is proposed, complementing it with

the Rainflow Matrix, where the cycles of greater amplitude are summarized, those that cause greater damage to

the material.

Background: The material life-time assessment of any structural body in service has been the main purposes of
the fatigue of materials. The Palmgrem-Miner is a well known model that estimates the material damage given

the Stress-Time data. The aforementioned model depends on the failing number of cycles obtained in laboratory

tests to build the S-N diagrams used for the cycle counting necessary for this model. The Rainflow cycle

counting method is used and it was mathematically formalized by Rychlik, who proposed a new cycle counting

definition which we implemented in R language programming.

Materials and Methods: We have used random Stress-Time data against laboratory Stress-Time data, because

the main purpose of the Rainflow cycle counting is the classification of the stresses amplitudes found along the

time series Stress-Time, however the TUC method also is used to match the results between both counting cycle

methods. Furthermore, the Rainflow Matrix was implemented to visualize the greatest and lesser amplitudes.

Key Word: Rainflow, TUC, Rainflow Matrix.

--
Date of Submission: 10-12-2022 Date of Acceptance: 24-12-2022

--

I. Introduction
 The evaluation of the remaining useful life of a structure in service (residual life) has been one of the

main purposes of material fatigue. One of the best known models to estimate the accumulated damage caused by

the initiation of the crack suffered by the material due to fatigue is the Palmgren-Miner rule in which one of its

parameters involves the number of cycles N that the material undergoes at the failure given a certain stress

value. The stress cycle is a concept that depends on the cycle counting method used1. To find N, it is required to

classify the cycles by fatigue through various cycle counting algorithms, the most used is the Rainflow
algorithm2; however, it had not been given mathematical meaning until Rychlik proposed it and developed an

equivalent algorithm called the Top-level Up Cycle (TUC)3. Its definition starts from the fact that the Stress-

Time history takes it from zero but in this work it is considered different from zero so that it takes any window

of the history, likewise the Rainflow Matrix algorithm was adapted to graphically visualize the loads of greater

and lesser amplitude.

II. Rychlik’s formal definition of the Rainflow algorithm
Originally, the formal Rychlik Rainflow algorithm definition for cycle counting3,4, givenany Stress-

Time history window, is taken from the origin to a certain time T, that is, in the interval [0, 𝑇+], but in this

work the window is made variable by modifying the Rychlik algorithm so that the interval becomes [𝑇−, 𝑇+].

Redefinition of Rychlik’s algorithm

Let f be a continuous function of time t, in the interval𝑡 ∈ [𝑇−, 𝑇+]. Let 𝑓𝑚𝑎𝑥(𝑡)be a local maximum at

𝑡 ∈ [𝑇−, 𝑇+]with the times 𝑡− and 𝑡+ defined in equations (1) and (2).

𝑡− = {

𝑠𝑢𝑝{𝑠 ∈ [𝑇−, 𝑡) if 𝑓(𝑠) > 𝑓𝑚𝑎𝑥(𝑡)}

𝑇− if 𝑓(𝑠) ≤ 𝑓𝑚𝑎𝑥(𝑡) ∀𝑡 ∈ [𝑇−, 𝑡)

∄ 𝑖𝑓 𝑇− = 𝑡

(1)

Implementation of the algorithm of the TUC method for fatigue cycle counting

DOI: 10.9790/1684-1906030107 www.iosrjournals.org 2 | Page

𝑡+ = {
𝑖𝑛𝑓{𝑠 ∈ (t, 𝑇+] if 𝑓(𝑠) ≥ 𝑓𝑚𝑎𝑥(𝑡)}

𝑇+ if 𝑓(𝑠) < 𝑓𝑚𝑎𝑥(𝑡) ∀𝑡 ∈ (𝑡, 𝑇+]

∄ if 𝑇+ = 𝑡

(2)

Let mt
− and mt

+ be the points in the intervals [𝑡−, 𝑡) and (t,  t+] defined in equation (3).

𝑚𝑡

−(𝑠) = min{𝑓(𝑠); 𝑡− < 𝑠 < 𝑡}

𝑚𝑡
+(𝑠) = min{𝑓(𝑠); 𝑡 < 𝑠 < 𝑡+}

(3)

The variable 𝑚𝑡(𝑠) is defined in equation (4).

𝑚𝑡(𝑠) = {
𝑚á𝑥{𝑚𝑡

−, 𝑚𝑡
+} If 𝑡+ < 𝑇+ó 𝑓(𝑡) = 𝑓(𝑇+)

𝑚𝑡
+ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

TUC Method
In Rychlik's TUC method, it formalizes the amplitudes 𝐻−(𝑡)and𝐻+(𝑡) according to equation (5).

𝐻−(𝑡) = 𝑓𝑚𝑎𝑥(𝑡) − min{𝑓(𝑠); 𝑡−𝑠 < 𝑡}

𝐻+(𝑡) = 𝑓𝑚𝑎𝑥(𝑡) − min{𝑓(𝑠); 𝑡 < 𝑠 < 𝑡+}
(5)

From equations (3) and (5) equation (6) is obtained:

𝑚𝑡

−(𝑠) = min{𝑓(𝑠); 𝑡−𝑠 < 𝑡}

𝑚𝑡
+(𝑠) = min{𝑓(𝑠); 𝑡 < 𝑠 < 𝑡+}

(6)

Hence, the amplitudes can be rewritten as follows in equation (7):

𝐻−(𝑡) = 𝑓𝑚𝑎𝑥(𝑡) − 𝑚𝑡
−(𝑠)

𝐻+(𝑡) = 𝑓𝑚𝑎𝑥(𝑡) − 𝑚𝑡
+(𝑠)

(7)

Rules for cycle identification
Rychlik established the following rules to identify the full and half cycles considering the amplitudes

defined in the TUC method.

Rule 1. The count of a complete cycle is established, if any of the conditions established in equation (8)

are met.

If 𝐻−(𝑡) ≤ 𝐻+(𝑡) 𝑎𝑛𝑑 𝑇− < 𝑡− , or, If 𝐻−(𝑡) > 𝐻+(𝑡) 𝑎𝑛𝑑 𝑡+ < 𝑇+ (8)

The amplitude of the cycle is defined in equation (9).

𝐻(𝑡) = min(𝐻−(𝑡), 𝐻+(𝑡)) (9)

Using expression (4), we can rewrite the amplitude of the cycle from expression (9), as follows in equation (10).

𝐻(𝑡) = 𝑓𝑚𝑎𝑥(𝑡) − 𝑚𝑡(𝑠) (10)

Rule 2. A half-cycle count is set if 𝑓(𝑡) is at the far right or far left of the Stress-Time [𝑇−, 𝑇+] history

window. The left or right amplitudes are: 𝐻−(𝑡) or𝐻+(𝑡) respectively.

Rule3.The counting of two half cycles with amplitudes is established: 𝐻−(𝑡) and 𝐻+(𝑡), in other cases

that do not comply with Rules 1 and 2.

Implementation of the Rychlik method for counting cycles

The Rychlik cycle counting algorithm was programmed in R language. Figure 1 shows the flowchart to

implement the TUC algorithm.

Implementation of the algorithm of the TUC method for fatigue cycle counting

DOI: 10.9790/1684-1906030107 www.iosrjournals.org 3 | Page

Fig. 1 Flowchart of the TUC algorithm.

In addition, the Rainflow Matrix5 was built, in order to group those cycles which ranges are tension or

compression. With Algorithm 1 the bins are obtained in such a way that they depend on the maximum amplitude

of the Stress-Time history and with Algorithm 2 the Rainflow Matrix is built.

Algorithm 1. Algorithm for the creation of bins in the load time series (Stress-Time).

Input:

Loads, Effort-Time history filtered only with valleys and peaks

 nBins, Number of bins

Output:

Bins, Bin Range Arrangement

1 maxCarga ← maximum value of the time load series

2 minCarga ← minimum value of the time load series

3 Maximum amplitude of the time load series

4 maxAmp ← maxCargas − minCargas

5 Bin range size

6 BinT am ← maxAmp/nBins

7 mediaBinT am ← BinT am/2

8 Creation of each i-th bin (iBins)

9 for i in 0:nBins+1 do

10 Create the first bin

11 if i == 1 then
12 Lower bound of the first bin

13 iBin[1] ← minCarga − mediaBinT am

14 Upper bound of the first bin

15 iBin[2] ← minCarga − mediaBinT am

16 Creation of each i-th bin

17 else

18 Lower bound of the i-th bin

19 iBin[1] ← Bins[, 2][i − 1]

20 Upper bound of the i-th bin

21 iBin[2] ← iBin[1] + BinT am

22 Adds the i-th iBin to the Bins array

Implementation of the algorithm of the TUC method for fatigue cycle counting

DOI: 10.9790/1684-1906030107 www.iosrjournals.org 4 | Page

23 Bins.append(iBin)

Algorithm 2. Cycle frequency algorithm for each bin in the Time Load series.

Input:

Bins, Bin Range Arrangement

cycles, Array of counted cycles by Rychlik's redefinition

Output: nBinsMatrix, Rainflow Matrix nBins × nBins

1 Iteration over each i-th Cycle (iCycle) to determine which bin it belongs to

2 for iCycle in 0:cycles.length do

3 Half and full cycles are included in the cycles array.
filter out those that meet Rules 1 or 3

4 if cycles[iCycle]['T ipoRegla'] == 1 or

 cycles[iCycle]['T ipoRegla'] == 3 then

5 if cycles[iCycle]['T ipoRegla'] == 1 then

6 Setting of the Begin and End i-th cycle

7 if cycles[iCycle]['s'] < cycles[iCycle]['t'] then

8 cycleBegin ← cycles[iCycle]['mt(s)']

9 cycleEnd ← cycles[iCycle]['fmax(t)']

10 else

11 cycleBegin ← cycles[iCycle]['fmax(t)']

12 cycleEnd ← cycles[iCycle]['mt(s)']

13 if cycles[iCycle]['T ipoRegla'] == 3 then
14 The ranges of both media are compared in fmax(t) if they are equal,

 then it is taken as a cycle for the matrix

16 if cycles[iCycle]['izquierda'] == cycles[iCycle]['derecha']

then

17 cycleBegin ← cycles[iCycle]['mt(s)']

18 cycleEnd ← cycles[iCycle]['fmax(t)']

19 Obtaining the Start and End of the Bin with respect to the Start and Endof the i-the cycle

20 for i in 1:nBins do

21 if (Bins[i]['CotaInferior'] ≤ cycleBegin) &&

 (cycleBegin < Bins[i]['CotaSuperior']) then

22 fromBin ← i
23 if (Bins[i]['CotaInferior'] ≤ cycleEnd) &&

 (cycleEnd < Bins[i]['CotaSuperior']) then

24 toBin ← i

25 Count the cycle frequency in the Bin for the Rainflow Array

26 nBinsMatrix[fromBin, toBin] ← 1 + nBinsM atrix[fromBin, toBin]

Through the following example, the cycles counted between both Rychlik algorithms and the original

Rainflow algorithm are compared through the Vibration software5 programmed in Fortran.

III. Cycle Counting Example
Table no 1 sows the Stress-Time history5from cycle counting is performed by using both programs:

TUC method and Vibration software6.

Table no 1: Stress-Time history5

Time

Stress

Time

Stress

1 1 11 0.3

2 4.8 12 4.8

3 2.2 13 2.2

4 5.7 14 5.7

5 1 15 2.7

6 3.8 16 5.7

Implementation of the algorithm of the TUC method for fatigue cycle counting

DOI: 10.9790/1684-1906030107 www.iosrjournals.org 5 | Page

7 0.3 17 0.3

8 5.7 18 4.8

9 0.3 19 1

10 3.8

Fig. 2Stress-Time hostory plot from Table no 1.

Fig. 3Cycles obtained by the TUC method programmed in R.

Fig. 4 Cycles obtained from Vibration software6.

Fig. 3 and Fig. 4 show that 9 cycles are obtained; take into account that the full cycles and half cycles are not

grouped by the Vibration software6 shown in Fig. 4.

With the cycles obtained (Fig. 3), the Rainflow Matrix implemented in R with the proposed variant is obtained,

validating it with respect to the matrix obtained with the Siemens software5 (Fig. 5 (a) and (b)).

Implementation of the algorithm of the TUC method for fatigue cycle counting

DOI: 10.9790/1684-1906030107 www.iosrjournals.org 6 | Page

Fig. 5 Rainflow Matrix. (a) Modified algorithm results, (b) Original algorithm of the Siemens Software5.

Tensile and compressive stress regions
The Rainflow Matrix allows visualizing the tension and compression stresses that the material

undergoes during the Stress-Time history. To visualize them, more data is required in the Stress-Time history7,

by generating the Rainflow Matrix and then plotting them as shown in Fig. 6 where the regions of greater and

lesser damage are visualized.

Fig. 6 Regions of greater and lesser amplitudes.

In Fig. 6, shows the graph where cycles of greater amplitude (greatest damage) and the cycles of lesser

amplitude indicated by the green rectangle (less damage) are represented with red boxes.

IV. Conclusion
The TUC cycle counting method proposed by Rychlik was slightly modified to take any window in the

Stress-Time history and count the cycles in that window. The counted and grouped cycles are used to obtain the

Rainflow Matrix whose algorithm was slightly modified to avoid moving the peaks and valleys and leave the
history unaltered. If the information is obtained with this type of algorithm, a prediction can be made, to know if

the material is going to fail. The SIMCENTER Test lab by Siemens is a commercial software which calculates

Implementation of the algorithm of the TUC method for fatigue cycle counting

DOI: 10.9790/1684-1906030107 www.iosrjournals.org 7 | Page

the Rainflow matrix, results are matched between the aforementioned software and the one adapted in the TUC

method by the Rychlik´s redefinition.

References
[1]. Standard practices for cycle counting in fatigue analysis. American Society for Testing and Materials, E 1049-85, 1997

[2]. Murakami, Y. The Rainflow Method in Fatigue. Butterworth Heinemann, 1991

[3]. Rychlik, I. A new definition of the rainflow cycle counting method. Int. J. Fatigue, 9, 119–121, 1987

[4]. Igor Rychlik. Extremes, rainflow cycles and damage functionals in continuous random processes. I Department of Mathematical

Statistics, University of Lund. Box 118, S-22100 Lund, 1994

[5]. Siemens Simcenter Testing, Rainflow counting, SIMCENTER Testlab Desktop Neo. Retrieved from

https://community.sw.siemens.com/s/article/rainflow-counting

[6]. Vibration data, Consulting and educational services in acoustics, 2010, Shock and vibration analysis. Retrieved from

https://vibrationdata.com/

[7]. Azamfar, M. & Moshrefifar, M. Moshrefifar and Azamafar method. A new cycle counting method for evaluating fatigue life,

Elsevier, International Journal of Fatigue, 69, pp 2–15, 2014

Manuel López Godínez, et. al. “Implementation of the algorithm of the TUC method for fatigue

cycle counting”. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 19(6), 2022,

pp. 01-07.

https://community.sw.siemens.com/s/article/rainflow-counting
https://vibrationdata.com/

	Manuel López Godínez, et. al. “Implementation of the algorithm of the TUC method for fatigue cycle counting”. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 19(6), 2022, pp. 01-07.

