# EDXRF and TXRF Analyses of Heavy Metal Pollution in Thika River Sediments, Water and Flora

Moywaywa Ben Asiago<sup>1</sup>, Michael J. Mangala<sup>1</sup> and David Maina <sup>1</sup>Institute of Nuclear Science and Technology, University of Nairobi, Kenya

## Abstract

The levels of heavy metals, namely Mn, Cu, Zn, Ni, Pb in water, flora and sediments along the Thika River, Kenya were studied in September 2015, to investigate their distribution and to determine the extent of pollution. The levels of selected heavy metals were determined using total X-ray fluorescence for water samples and energy dispersive x-ray fluorescence for sediment and algae samples. In general, the concentration levels of heavy metals in water samples ( $\mu g l^{-1}$ ) were; Mn (53.5 - 605), Cu (< 10 - 303), Zn (22 - 325), Ni (<15-77), Pb(<10 - 84) while those in sediment samples ( $mg kg^{-1}$ ) were; Mn (2230 - 8659), Cu (51 - 115), Zn (153 - 432), Ni(67 - 172), Pb (32 - 177). Similarly, the levels of heavy metals in Cladophora ( $mg kg^{-1}$ ) were Mn (3719 - 21200), Cu (65 - 129), Zn (153 - 434), Ni (35 - 235), Pb (17-72). Statistical analyses also revealed that there was a significant difference in heavy metal concentrations between the three media for all elements studied. Based on enrichment factors, geoaccumulation indices, pollution load index and contamination factors, all sampled sediments were generally contaminated with Pb, Cu, Zn, Mn and Ni to a moderate degree, thus requires intervention to curb on the rising levels of pollutants. Statistically significant interrelationship was observed between sediments and Cladophora, which supports the idea that, Cladophora is an appropriate bio-indicator for heavy metal pollution.

Keywords: heavy metal, Cladohphora, geoaccumulation index, heavymetal

Date of Submission: 19-05-2022 Date of Acceptance: 03-06-2022

# I. Introduction

In general, recent rapid increases in population growth and industrialization have resulted in high demand for water, both for industrial and domestic uses across the world. However, in most developing countries, this population growth has not been accompanied by provision of sustainable quality water supplies and quality sanitation services (Rahman, 2011). Thika Town, Kenya, exemplifies a town that has undergone rapid industrial growth while its population has risen remarkably from 4,500 people reported in 1948 to 165, 342 people in 2009 (*Kenya Open Data Survey, 2014*).

The Thika River traverses Thika's industrial, residential and agricultural zones where these pollutants are introduced in the river waters along its profile with the possibility of heavy metal contamination- a potential threat to human health for the inhabitants. In some sections of the river, raw sewage, industrial effluents from nearby industries and municipal wastewater are directly released into the river (Gathua, 2015). Untreated effluents are released into the river without due consideration of their pollutants. The river water is further polluted by industrial and household wastes; human excreta and industrial effluents from industrial establishments such as textile factories, tanneries, garages and food processing factories (Odira, 1991).

Sediments act as a sink to such pollutants by accumulating them over time; consequently, they provide means through which toxicity is introduced to the food chain.

Some aquatic plants such as algae, found in sediments, absorb metals to their cellular structures (Kelly and Whitton, 1995). The amount of accumulated heavy metals depends largely on the degree of contamination of the sediments. Thus the level of heavy metals in such plants is an indicator of the level of contamination in the sediments. Few studies have been conducted on Thika river pollution. Mwangi (1988) investigated the effect of agricultural, domestic and industrial on the quality of the Thika-Chania River system and observed that the river was less polluted except for the isolated cases of chloride and iron pollution. Odira, (1991), investigated the pollution profile of Thika River and noted high pollution (3200 mg/l of suspended solids) in areas located close to the Thika Cotton Mills and Delmonte (K) Ltd. The study emphasized the need to ensure that the industries discharging their effluents directly into the river adhere to effluent standards. However, the study did not assess the extent of pollution.

This study investigated the levels of heavy metal contamination in Thika River water, sediments and algae, and their inter-relationships and determined the extent of contamination for evaluation of possible health hazards.

### Sample Collection

# II. Methodology

Sediment, water and *Cladophora* samples were collected from Thika River, which traverses Thika town (01 ° 03'S 37 ° 05E), Kenya. The study area is the river's profile that begins at (01.02023°S, 037.06724°E) under the bridge adjacent to the Blue Post Hotel and extends over a span of 13 Km to (01.04943°S, 037.15179°E) (Figure 1).

Selected plant species (*Cladophora*), water and surface river sediments samples were each collected at 32 selected sampling points. The samples were identified and labeled W01 - W32, A01 - A32 and S01 - S32 for the water, *Cladophora* and sediment samples, respectively. Each water sample was immediately acidified by spiking with a drop of concentrated hydrochloric acid. The elevation and geographical coordinates of each sampling point was determined using hand held global positioning system (GPS) of model Garmin Etrex 10. Sampling was done in September 2015 just before the onset of the short rains.



Figure 1: Sampling locations along the Thika River

# Sample Preparation and Analysis

Approximately half litre of each water sample was filtered using WHATMAN number 42 filter papers to remove suspended solids. For each sample, three sub samples were prepared by pipetting aliquots of 20 ml of the sample into three separate vials and  $10\mu$ l of Ga solution added as an internal standard solution (1000 ppm). The mixture was then shaken to achieve homogeneity and an aliquot of 10  $\mu$ l of each standardized sub sample transferred to a clean carrier, dried at 50° C, and analyzed with TXRF for heavy metal content.

Algae samples were dried to constant weight and crushed in a mortar and pestle to fine powder (~  $100\mu$ m) after sieving. Approximately 0.3 - 0.5 g of the homogenized mixture was then transferred to a die assembly, carefully positioned on a hydraulic press and pressure applied at between 5 - 8 tons for 3 - 5 minutes to ensure the powder was fully compressed into a pellet of 2.5 cm diameter. Pressure on the hydraulic press was then released slowly and the die assembly removed and subsequently disassembled to remove the pellet. The mass of the pellet was determined using an electronic balance and recorded. Triplicates of sample aliquots in form of pellets were prepared for EDXRF analyses for heavy metal content (International Atomic Energy Agency, 1997).

Sediment samples were dried to constant weight and crushed in a mortar and pestle to fine powder (~  $100\mu$ m) after sieving. Approximately 1.6 g of the fine sediment powder was mixed with approximately 0.4 g of starch binder and the mixture thoroughly mixed to achieve homogeneity. Approximately 0.3 - 0.5 g of the

homogenized mixture was then transferred to a die assembly, carefully positioned on a hydraulic press and pressure applied at between 5 - 8 tons for 3 - 5 minutes to ensure the powder was fully compressed into a pellet of 2.5 cm diameter. Pressure on the hydraulic press was then released slowly and the die assembly removed and subsequently disassembled to remove the pellet. The mass of the pellet was determined using an electronic balance and recorded. Triplicates of sample aliquots in form of pellets were prepared for EDXRF analyses for heavy metal content (International Atomic Energy Agency, 1997).

The enrichment factor was computed using the relation  $\text{EF} = \left[\frac{C_n}{C_{ref}}\right] / \left[\frac{B_n}{B_{ref}}\right]$  where  $C_n$  is the content of

the examined element in the examined environment;  $C_{ref}$  is the content of the examined element in the reference environment;  $B_n$  is the content of the reference element in the examined environment;  $B_{ref}$  is the content of the reference element in the reference element (Ravichadran et al., 1995; Buat-Menard and Chesselet, 1979). In this study, the background level suggested by Taylor and McLennan (2001) for Fe (40000  $mg kg^{-1}$ ) was used. Table 1 shows five possible degree of contamination categories that can be obtained based on the use of enrichment factor.

 Table 1: Five possible degrees of contamination categories that can be obtained based on the use of enrichment factor

| Range of Enrichment Factor | Category of Contamination        |
|----------------------------|----------------------------------|
| EF < 2                     | Deficiency to minimal enrichment |
| 2 < EF < 5                 | Moderate enrichment              |
| 5 < EF < 20                | Significant enrichment           |
| 20 < EF < 40               | Very high enrichment             |
| EF > 40                    | Extremely high enrichment        |

The geoaccumulation index, according to Müller (1969) is given by  $I_{geo}^m = \ln[C_m^s/(1.5 \times C_m^b)]$  where  $C_m^s$  is the heavy metal concentration of each element, m, in the sample while the factor 1.5 minimizes the impact of possible changes in background values,  $C_m^b$ , which may arise from lithogenic changes in soils. The world rock averages as proposed by Taylor and McLennan (2001) were used as background concentrations. The geoaccumulation index consists of 7 categories as shown in Table 2;

| Value               | Category | Description                               |  |  |  |  |
|---------------------|----------|-------------------------------------------|--|--|--|--|
| $I_{geo}^m > 5$     | 6        | Extremely contaminated                    |  |  |  |  |
| $4 < I_{geo}^m > 5$ | 5        | Strongly to extremely contaminated        |  |  |  |  |
| $3 < I_{geo}^m > 4$ | 4        | Strongly contaminated                     |  |  |  |  |
| $2 < I_{geo}^m > 3$ | 3        | Moderately to strongly contaminated       |  |  |  |  |
| $1 < I_{geo}^m > 2$ | 2        | Moderately contaminated                   |  |  |  |  |
| $0 < I_{geo}^m > 1$ | 1        | Uncontaminated to moderately contaminated |  |  |  |  |
| $I_{geo}^m = 0$     | 0        | Uncontaminated                            |  |  |  |  |

Table 2: Categories of Geoaccumulation Indices and their Descriptions

Contamination factor is obtained by the ratio  $CF = [C_{metal}]/[C_{background}]$  where  $C_{metal}$  is the heavy metal concentration of each element while  $C_{background}$  is the background concentration of the heavy metal (Tomlinson et al., 1980). The world surface rock average as proposed by Taylor and McLennan (2001) were used as background concentrations.

The modified degree of heavy metal contamination in sediments is given by  $mC_d = \frac{1}{N} \sum_{i=1}^{N} CF_i$  where N represents the total number of elements analyzed. The degree of contamination,  $C_d$ , is the algebraic sum of all contamination factors  $C_d = \sum_{i=1}^{N} CF_i$  (Tomlinson et al., 1980).

The contamination factor is determined to provide the magnitude of the degree of contamination in the sediment samples. The contamination factor and degree of contamination values are assessed on the basis of four descriptive categories as given in table 3 below:

 Table 3: Categories of contamination factors and degree of contamination categories and their descriptions

| accerptions |                           |                                      |  |  |  |
|-------------|---------------------------|--------------------------------------|--|--|--|
| CF          | $C_d$                     | Description                          |  |  |  |
| CF < 1      | <i>C</i> <sub>d</sub> < 6 | Low degree of contamination          |  |  |  |
| 1 < CF < 3  | 6 < C <sub>d</sub> < 12   | Moderate degree of contamination     |  |  |  |
| 3 < CF < 6  | 12 < CF < 24              | Considerable degree of contamination |  |  |  |
| CF > 6      | $CF \ge 24$               | Very high degree of contamination    |  |  |  |

The modified degree of contamination values are assessed based on seven descriptive categories as given in table 4 below:

| $mC_d$ categories           | Description                             |
|-----------------------------|-----------------------------------------|
| <i>mC<sub>d</sub></i> < 1.5 | Nil to very low degree of contamination |
| $1.5 \le mC_d < 2$          | Low degree of contamination             |
| $2 \le mC_d < 4$            | Moderate degree of contamination        |
| $4 \le mC_d < 8$            | High degree of contamination            |
| $8 \le mC_d < 16$           | Very high degree of contamination       |
| $16 \le mC_d < 32$          | Extremely high degree of contamination  |
| $mC_d \ge 32$               | Ultra high degree of contamination      |

 Table 4: Categories of modified degree of contamination factors and their descriptions

The pollution load index (PLI) is given by;  $PLI = (CF_1 \times CF_2 \times CF_3 \times ... \times CF_N)^{1/N}$  where N refers to the number of metals under study while CF is a contamination factors determined as shown above. When PLI < 1, the sediment is not polluted while PLI = 1 indicates presence of heavy metals at only their baseline levels. When PLI > 1, the sediment is polluted, hence the need for intervention to curb it (Tomlinson et al., 1980).

Analysis of variance, ANOVA, was used in this study to establish whether a difference exists in the mean heavy metal concentrations between the three media. The statistical relationship of heavy metal concentration between the three media was determined using Pearson correlation analysis.

### III. Results And Discussion

The results for the validation of the accuracy and precision of the analytical methods used in this study are given in Table 5 and 6. The results of the levels of elements of interest in the three media as well as their interrelationships are also presented and the extent of heavy metal pollution in these media discussed.

### Results of Analysis of Standard Reference Material (SRM) (IAEA09-PTXRF)

The accuracy of the EDXRF method used in this study was determined by analyzing PTXRF-IAEA09 river clay certified reference material from the International Atomic Energy Agency (IAEA) for the elements of interest. The results of analyses of the SRM using EDXRF spectroscopy are presented in Table 5. In general, there was no significant statistical difference between the experimental values and the certified values for all elements with estimated accuracy  $\leq 10\%$ .

| Element | Experimental values | Certified values | Relativestandarddeviation (%) |
|---------|---------------------|------------------|-------------------------------|
| Mn      | $1065 \pm 80$       | 940 - 1060       | +9                            |
| Fe      | $29750 \pm 1550$    | 28700 - 30700    | +3                            |
| Ni      | $30.6 \pm 9.7$      | 35.5 - 40.3      | -10                           |
| Cu      | $17.8 \pm 3.8$      | 18.1 - 22.2      | -1                            |
| Zn      | $76 \pm 12.4$       | 88.4 - 103.8     | -10                           |
| Pb      | $36.6 \pm 2.8$      | 33.47 - 40.33    | +7                            |

Table 5: Results of PTXRF-IAEA09 river clay certified reference material analyses by EDXRF method (mg/Kg); n = 3, X +SD

#### **Results of Analysis of Multi Element Standard**

The KB multielement standard from Bernd Kraft GmbH was analyzed for Mn, Fe, Co, Ni, C and Zn to assess the accuracy of the TXRF procedure used for analyses of water samples in this study. The standard was a mixture of different metals having a concentration of 10 ppm each. Two metals, Cu and Co, were used interchangeably as internal standards. The results of the mean experimental values were compared with expected values to assess the accuracy of the method used in this study to analyses liquid samples. The |t| values obtained in this test fell below the critical value (2.45) hence there was no evidence of occurrence of systematic errors. This implies that there were no significant differences in the results of measurements (p < 0.05) (Miller & Miller, 2010).

Table 6: Results of multi-element certified reference material (KB 10ppm) analysis by TXRF, X ±SD

| Element | Experimental values (mg/l) |              |  |  |  |
|---------|----------------------------|--------------|--|--|--|
|         | Cu                         | Со           |  |  |  |
| Mn      | 9.84 - 0.11                | 9.52 - 0.34  |  |  |  |
| Fe      | 12.74 + 1.93               | 12.51 + 1.77 |  |  |  |
| Со      | 10.34 + 0.24               | 10.00 + 0.00 |  |  |  |
| Ni      | 10.16 + 0.11               | 9.83 - 0.12  |  |  |  |

| Cu | 10.00 + 0.00 | 9.67 - 0.23  |
|----|--------------|--------------|
| Zn | 11.50 + 1.06 | 11.12 + 0.79 |
| Pb | 10.55 + 0.39 | 10.55 + 0.39 |
| t  | 1.83         | 1.14         |

# Limits of Detection for solid form samples by EDXRF and water Samples by TXRF

The lower limits of detection of the elements under study were determined and a mean value obtained by averaging all the values obtained for all the sampled points. Table 7 shows the variation of lower limits of detection with increasing atomic number for both methods used in this study.

# Table 7: Lower Limits of Detection for Heavy Metal Elements during EDXRF and TXRF Analysis Element Atomic Number Lower Limits of Detection

| Liciacia  | fitolilie f tulioef |              |                           |  |
|-----------|---------------------|--------------|---------------------------|--|
|           |                     | EDXRF(mg/kg) | <b>TXRF</b> ( $\mu g/l$ ) |  |
| Lead      | 82                  | 10           | 10                        |  |
| Zinc      | 30                  | 15           | 10                        |  |
| Copper    | 29                  | 19           | 10                        |  |
| Nickel    | 28                  | 24           | 15                        |  |
| Iron      | 26                  | 67           | 25                        |  |
| Manganese | 25                  | 95           | 30                        |  |

### **Heavy Metal Concentration Levels**

Water Samples

The results of TXRF analyses of water samples are presented in Table 8.

Table 8: Results of TXRF analyses of water samples ( $\mu g \Gamma^1$ ), n=3,  $\overline{X}\pm SD$ 

| Element | Mn             | Fe             | Ni             | Cu             | Zn             | Pb             |
|---------|----------------|----------------|----------------|----------------|----------------|----------------|
| W1      | 53.5 ± 8.0     | $630\pm60$     | < 15           | 12.5 ± 2       | $35.0 \pm 2.0$ | < 10           |
| W2      | $76.0 \pm 2.0$ | 962 ± 31       | < 15           | < 10           | $27.0\pm1.0$   | < 10           |
| W3      | 87.0 ± 2.0     | $1378 \pm 33$  | $24.0\pm4.0$   | $16.0 \pm 2.0$ | $48.0\pm6.0$   | < 10           |
| W4      | 110 ± 12       | $1818\pm59$    | < 15           | $28.0\pm4.0$   | $47.0\pm4.0$   | $15.0 \pm 6.0$ |
| W5      | 221 ± 19       | $7919 \pm 109$ | <15            | $24.0 \pm 3.0$ | $64.0\pm3.0$   | 62.0 ± 18      |
| W6      | 203 ± 35       | 2534 ± 126     | $29.0\pm4.0$   | < 10           | $69.0\pm6.0$   | $17.0 \pm 5.0$ |
| W7      | 222 ± 4.0      | $2808 \pm 323$ | < 15           | 12.5 ± 2.0     | $70.0 \pm 2.0$ | 13.0 ± 5.0     |
| W8      | 160 ± 15       | $954\pm46$     | 21.0 ± 3.0     | 82.0 ± 7.0     | $56.0 \pm 8.0$ | < 10           |
| W9      | $605 \pm 75$   | $3309\pm359$   | < 15           | $14.0 \pm 2.0$ | $157\pm6.0$    | < 10           |
| W10     | 201 ± 6.0      | $1547 \pm 52$  | $20.0\pm2.0$   | $23.0\pm3.0$   | $61.0\pm9.0$   | < 10           |
| W11     | $148 \pm 18$   | $2924\pm464$   | 21.0 ± 3.0     | $30.0 \pm 5.0$ | $45.0 \pm 5.0$ | < 10           |
| W12     | 213 ± 21       | 7290 ± 141     | < 15           | < 10           | 33.0 ± 3.0     | < 10           |
| W13     | 246 ± 17       | $1699 \pm 289$ | < 15           | $44.0\pm5.0$   | $57.0\pm 6.0$  | < 10           |
| W14     | 276 ± 12       | $1872\pm63$    | < 15           | $29.0\pm4.0$   | $112\pm6.0$    | $55.0\pm7.0$   |
| W15     | 226 ± 3        | $3668 \pm 423$ | < 15           | 35.0 ± 1.0     | $163 \pm 3.0$  | < 10           |
| W16     | 429 ± 35       | $5430\pm589$   | < 15           | $21.0 \pm 3.0$ | $75.0 \pm 4.0$ | $16.0 \pm 5.0$ |
| W17     | 306 ± 35       | $2155\pm43$    | < 15           | 17.0 ± 2.0     | 34.0 ± 1.0     | 13.0 ± 4.0     |
| W18     | 244 ± 29       | $3171\pm236$   | < 15           | < 10           | $63.0\pm4.0$   | 12.0 ± 5.0     |
| W19     | 297 ± 31       | $3152\pm365$   | $15.0 \pm 2.0$ | 115 ± 8.0      | $22.0\pm1.0$   | < 10           |
| W20     | 384 ± 9.0      | 9784 ± 1382    | < 15           | $66.0 \pm 7.0$ | 38.0 ± 5.0     | < 10           |
| W21     | 450 ± 21       | 8072 ± 1079    | $22.0\pm2.0$   | $56.0\pm 6.0$  | $46.0\pm8.0$   | 12.0 ± 4.0     |
| W22     | 100 ± 16       | $2055\pm118$   | < 15           | 303 ± 33       | $68.0 \pm 20$  | < 10           |
| W23     | 304 ± 40       | 4321 ± 134     | < 15           | 12.0 ± 1.0     | $27.0\pm3.0$   | < 10           |
| W24     | 188 ± 18       | $5152\pm750$   | < 15           | 32.0 ± 4.0     | $325\pm30$     | $14.0 \pm 5.0$ |
| W25     | 309 ± 12       | $4119\pm655$   | $45.0\pm5.0$   | $153 \pm 11$   | $48.0\pm3.0$   | $20.0 \pm 5.0$ |

DOI: 10.9790/1684-1903031627

| EDXRF and TXRF | F Analyses of Heavy | Metal Pollution in | Thika River Sediments, | Water and Flora |
|----------------|---------------------|--------------------|------------------------|-----------------|
|----------------|---------------------|--------------------|------------------------|-----------------|

| MEAN | 179        | 1499           |                |                | 94             |              |
|------|------------|----------------|----------------|----------------|----------------|--------------|
| MAX  | 605 + 26   | 9784 + 198     | 77 + 13        | 303 + 33       | 325 + 30       | 840+30       |
| MIN  | 53.5 ± 12  | 630 ± 21       | < 15           | < 10           | 22.0 ± 1.0     | < 10         |
| W32  | 210 ± 8    | $2369 \pm 326$ | $57.0 \pm 4.0$ | $100 \pm 4.0$  | $300 \pm 5.0$  | 49.0 ± 16    |
| W31  | 140 ± 5    | $2097 \pm 264$ | < 15           | <10            | $64.0 \pm 8.0$ | < 10         |
| W30  | 239 ± 10   | $1426\pm190$   | 77.0 ± 13      | $13.0 \pm 7.0$ | 69.0 ± 11      | 84.0 ± 3.0   |
| W29  | 249 ± 23   | $2257 \pm 234$ | 22.0 ± 10      | $56.0 \pm 11$  | $76.0 \pm 8.0$ | < 10         |
| W28  | 144 ± 20   | 2261 ± 391     | < 15           | $16.0 \pm 1.0$ | 73.0 ± 10      | $22.0\pm7.0$ |
| W27  | 224 ± 29   | $2602 \pm 296$ | $20.0\pm 6.0$  | $61.0 \pm 2.0$ | 79.0 ± 13      | < 10         |
| W26  | $205\pm16$ | $2852\pm254$   | $19.0\pm5.0$   | $15.0 \pm 2.0$ | $58.0 \pm 4.0$ | < 10         |

The concentration of Mn in water samples ranged from  $53.5 \pm 12\mu g l^{-1}$  to  $605 \pm 26 \mu g l^{-1}$  while the overall mean concentration was  $179 \mu g l^{-1}$ . In general, Mn concentration levels in all water samples analyzed were above the EPA and WHO limits (50  $\mu g l^{-1}$ ) for drinking water. The high concentration levels observed at site 09 may be attributed to the close proximity of the Thika Cloth Mills Factory, whose waste waters may find its way into the river ecosystem.

The results of Cu concentrations in all water samples analyzed were below the WHO minimum levels  $(2000 \ \mu g \ l^{-1})$ . However, 13% of the samples exceeded the WHO limit  $(100 \ \mu g \ l^{-1})$  and NEMA guidelines. The maximum Cu concentration  $(303 \pm 33 \ \mu g \ l^{-1})$  was recorded at site 22. The potential sources of contamination impacting this site include dust from mining activities in the quarry and wear of brake pads on vehicles plying the nearby road.

The Zn concentrations ranged from  $22 \pm 1.0 \,\mu g \, l^{-1}$  to  $325 \pm 35 \,\mu g \, l^{-1}$  with an overall mean concentration of  $94 \,\mu g \, l^{-1}$ . The potential sources for a relatively high Zn concentration levels recorded at site  $24 \, (325 \pm 35 \,\mu g \, l^{-1})$  include; the use of fertilizers and pesticides in the cultivation of pineapples by Delmonte (K) Ltd and combustion of fuel from the nearby road (Karageorgis, 2009).

The Ni concentrations ranged from  $< 15 \ \mu g \ l^{-1}$  to  $77 \pm 13 \ \mu g \ l^{-1}$ . The Ni concentrations in three water samples (W25, W30 and W32) tested exceeded the WHO limit ( $20 \ \mu g \ l^{-1}$ ). The potential sources of high Ni levels at site 30 include; sewage from the nearby Thika Landless Estate, and combustion of diesel and fuel oil from vehicles plying along the nearby road (Clayton and Clayton, 1994; Clarkson, 1988).

The Pb concentrations ranged from  $< 10 \ \mu g l^{-1}$  to  $84.0 \pm 3.0 \ \mu g l^{-1}$  in 44% of the samples were above the WHO limits for drinking water ( $10 \ \mu g l^{-1}$ ) and water supporting aquatic life ( $5.8 \ \mu g l^{-1}$ ). The concentrations were notably high at points 05, 14 and 30 where values of ( $62 \pm 18 \ \mu g l^{-1}$ ), 55  $\pm 7 \ \mu g l^{-1}$  and  $84 \pm 30 \ \mu g l^{-1}$  respectively were obtained. The potential sources of pollution at site 05 include; municipal waste, direct dumping of solid waste from neighbouring residential areas (Kiboko, Kimathi and Thika landless Estates) and release of industrial effluents from Booth Extrusion Limited, Thika Cloth Mills, Bulley's Tannery (Mahler et al., 2006).

The Fe concentrations in water ranged from  $630 \pm 21\mu g l^{-1}$  at site 01 to  $9784 \pm 198\mu g l^{-1}$  at site 20 with an overall mean concentration of  $1499\mu g l^{-1}$ .

Algae Samples

Table 9 shows the levels of heavy metal concentration in algae samples. The heavy metal concentration levels generally occurred in the order Mn > Zn > Ni > Cu > Pb.

| Table 9: Results of EDARF analyses of Clauophora samples (mg kg ), $n = 3, \pm 5D$ |                 |                   |               |                 |               |                |
|------------------------------------------------------------------------------------|-----------------|-------------------|---------------|-----------------|---------------|----------------|
| Element                                                                            | Mn              | Fe                | Ni            | Cu              | Zn            | Pb             |
| A01                                                                                | $11800\pm849$   | $112350\pm5727$   | $139 \pm 6.0$ | $123 \pm 13$    | $178 \pm 11$  | $38.0 \pm 5.0$ |
| A02                                                                                | 21200 ± 781     | 149933 ± 5608     | $182 \pm 30$  | $104 \pm 27$    | 190 ± 2.0     | 41.0 ± 2.0     |
| A03                                                                                | $16600 \pm 707$ | $144000 \pm 6788$ | 235 ± 35      | $72.0 \pm 12.0$ | 153 ± 13      | $48.0\pm9.0$   |
| A04                                                                                | 10965 ± 687     | 120700 ± 7353     | 136 ± 15      | 86.0 ± 10       | 181 ± 22      | $42.0 \pm 8.0$ |
| A05                                                                                | 9628 ± 517      | 122700 ± 5370     | 134 ± 35      | 73.0 ± 17       | $183 \pm 2.0$ | 40.0 ± 3.0     |
| A06                                                                                | 10333 ± 961     | 131333 ± 7677     | 215 ± 14      | 89.0 ± 12       | 197 ± 14      | 46.0 ± 7.0     |
| A07                                                                                | 8179 ± 251      | 111550 ± 7141     | 92.0 ± 7.0    | 71.0 ± 11       | 238 ± 27      | 46.0 ± 3.0     |
| A08                                                                                | 5055 ± 144      | 116267 ± 2886     | 154 ± 25      | 110 ± 19        | 434 ± 17      | $72.0 \pm 8.0$ |

Table 9: Results of EDXRF analyses of *Cladophora* samples ( $mg kg^{-1}$ ),  $n = 3, \pm SD$ 

| A09  | 5807 ± 104      | $124200 \pm 3041$ | $163 \pm 11$   | $80.0 \pm 10$  | $216\pm5.0$   | 41.0 ± 2.0     |
|------|-----------------|-------------------|----------------|----------------|---------------|----------------|
| A10  | $3890 \pm 77$   | $114667 \pm 3523$ | $145 \pm 35$   | $65.0 \pm 12$  | $216\pm14$    | $46.0 \pm 6.0$ |
| A11  | $3719\pm32$     | $107000 \pm 8773$ | $107 \pm 37$   | $88.0 \pm 8.0$ | $208\pm7.0$   | $41.0 \pm 2.0$ |
| A12  | $4117\pm186$    | $112950\pm9405$   | $195\pm28$     | $79.0\pm7.0$   | $226\pm18$    | $51.0 \pm 2.0$ |
| A13  | $4085\pm239$    | $117700 \pm 4728$ | $146 \pm 32$   | $82.0\pm24$    | $214\pm14$    | $47.0 \pm 4.0$ |
| A14  | $4799 \pm 225$  | $138200 \pm 4504$ | $192 \pm 18$   | 111 ± 18       | $178\pm5.0$   | $49.0 \pm 6.0$ |
| A15  | $5550\pm389$    | 153667 ± 12365    | $198 \pm 7.0$  | 129 ± 20       | $194 \pm 8.0$ | $52.0 \pm 5.0$ |
| A16  | $9507\pm404$    | $50033\pm2307$    | $40.0 \pm 3.0$ | $80.0\pm2.0$   | $163 \pm 8.0$ | $17.0 \pm 2.0$ |
| A17  | $5832\pm370$    | $80067\pm2150$    | 82.0 ± 10      | $75.0 \pm 11$  | $173 \pm 13$  | $42.0\pm2.0$   |
| A18  | $7278 \pm 467$  | $74900\pm4603$    | $41.0\pm7.0$   | $78.0\pm4.0$   | $166 \pm 5.0$ | 33.0 ± 1.0     |
| A19  | 4545 ± 101      | $26750 \pm 1202$  | 35.0 ± 2.0     | 92.0 ± 2.0     | $175 \pm 1.0$ | 19.0 ± 1.0     |
| A20  | $5867\pm261$    | $159000 \pm 4942$ | $213\pm 6.0$   | $109 \pm 4.0$  | $206 \pm 14$  | 59.0 ± 7.0     |
| A21  | $6089 \pm 315$  | $106233 \pm 3859$ | $143 \pm 41$   | $94.0\pm5.0$   | 257 ± 10      | 39.0 ± 5.0     |
| A22  | 11633 ± 379     | 109167 ± 3884     | $145 \pm 6.0$  | $74.0 \pm 7.0$ | $200 \pm 3.0$ | 34.0 ± 3.0     |
| A23  | 9926 ± 385      | $137967 \pm 2854$ | $225 \pm 36$   | 119 ± 11       | $217 \pm 10$  | 52.0 ± 2.0     |
| A24  | $7875\pm549$    | 143933 ± 11316    | $217 \pm 38$   | 129 ± 24       | $203\pm4.0$   | $50.0 \pm 6.0$ |
| A25  | 11567 ± 231     | $138633\pm987$    | $227 \pm 30$   | 120 ± 7.0      | $226\pm16$    | 59.0 ± 3.0     |
| A26  | 5990 ± 117      | $134200 \pm 2443$ | $179 \pm 30$   | 99.0 ± 7.0     | $200\pm5.0$   | $56.0 \pm 2.0$ |
| A27  | $7875\pm550$    | 143933 ± 11316    | $216 \pm 38$   | 129 ± 24       | $203\pm4.0$   | $50.0 \pm 4.0$ |
| A28  | 12400 ± 152     | 136133 ± 731      | $184 \pm 28$   | $88.0\pm9.0$   | $199 \pm 9.0$ | 45.0 ± 2.0     |
| A29  | $12467 \pm 301$ | 133967 ± 3050     | $162 \pm 3.0$  | $87.0\pm 6.0$  | $206\pm9.0$   | $50.0 \pm 1.0$ |
| A30  | $10267 \pm 102$ | 134867 ± 5018     | $176 \pm 9.0$  | $97.0 \pm 7.0$ | $190\pm9.0$   | 51.0 ± 1.0     |
| A31  | $7063 \pm 564$  | $127833 \pm 8328$ | $196 \pm 14$   | $89.0 \pm 9.0$ | $203\pm18$    | $47.0 \pm 4.0$ |
| A32  | 9409 ± 255      | $130733 \pm 5180$ | $200 \pm 5.0$  | 105 ± 5.0      | 208 ± 10      | $47.0\pm4.0$   |
| MIN  | 3719 ± 243      | 26750 ± 763       | 35 ± 15        | 65.0 ± 21      | 153 ± 14      | 17.0 ± 3.0     |
| MAX  | 21200 ± 781     | 159000 ± 5800     | 235 ± 34       | 129 ± 30       | 434 ± 22      | 72.0 ± 6.0     |
| MEAN | 8478            | 120174            | 155            | 95             | 206           | 45             |

EDXRF and TXRF Analyses of Heavy Metal Pollution in Thika River Sediments, Water and Flora

In general, the Mn concentration levels in *Cladophora* ranged from  $3719 \pm 243mg \text{ kg}^{-1}$  at site 11 to  $21200 \pm 781 mg \text{ kg}^{-1}$  at site 02, while the overall mean concentration was  $8478 mg \text{ kg}^{-1}$ . Other sampling sites with similarly high Mn concentrations include 03, 28 and 29 with  $16600 \pm 350 mg \text{ kg}^{-1}$ ,  $12400 \pm 467 mg \text{ kg}^{-1}$  and  $12467 \pm 633 mg \text{ kg}^{-1}$ , respectively. The high Mn levels recorded at site 02 and 03 may be attributed to atmospheric deposition of exhaust fumes from automobile using the busy Thika-Meru highway. The use of agrochemicals in the cultivation of crops may be potential causes of the relatively high Mn concentration levels in sites 28 and 29 (Agency for Toxic Substances and Disease Registry, 2012).

The Cu concentrations  $(mg \text{ kg}^{-1})$  in *Cladophora* ranged from  $65 \pm 21$  at site 10 to  $129 \pm 30$  at sites 24 and 27. The concentration  $(mg \text{ kg}^{-1})$  is also high in samples A15  $(129 \pm 28)$ , A01  $(123 \pm 24)$ , A25  $(120 \pm 28)$  and A23  $(119 \pm 26)$ . The overall mean concentration for Cu in these samples was  $95mg \text{ kg}^{-1}$ . The potential pollutants at site 24 and 27 include automobile brakes. At site 23, the potential sources of pollution include raw sewerage and effluent from leather industries. Mining activities at the quarries located approximately 50 metres inland is also a potential source of pollutants at this site (Agency for Toxic Substances and Disease Registry, 2004).

The Zn concentrations ( $mg kg^{-1}$ ) in algae ranged from  $153 \pm 14$  at point 03 to  $434 \pm 22$  at sampling point 08 with the overall mean concentration being 206  $mg kg^{-1}$ . The potential sources of high Zn concentration level in algae at this site include mining activities from a nearby quarry, and industrial waste from the Thika Cloth Mills (Agency for Toxic Substances and Disease Registry, 2005).

The Ni concentration levels in algae ranged from  $35 \pm 15 \text{ mg kg}^{-1}$  at site 19 to  $235 \pm 34 \text{ mg kg}^{-1}$  at site 03 with an overall mean concentration of 155 mg kg<sup>-1</sup>. Other high concentration levels of  $215 \pm 38 \text{ mg kg}^{-1}$ , 213  $\pm 31 \text{ mg kg}^{-1}$ , 225  $\pm 32 \text{ mg kg}^{-1}$ , 217  $\pm 32 \text{ mg kg}^{-1}$  and 227  $\pm 43 \text{ mg kg}^{-1}$  were recorded at sites 06, 20, 23 and 24 and 25 respectively. Point 06 was characterized by nearby anthropogenic activities; such as farming (bananas

and pineapples) and open garage situated approximately 300 m from the river. Human waste, garage waste and agrochemicals from farming activities were possible causes for high Ni concentration levels in these samples (Mbuvi *et al.*, 2013). Besides, there were active mining activities in a nearby quarry; as potential point sources of heavy metal river pollution. Industrial waste (point 23) and agrochemicals from cultivation of bananas, kales as and pineapples (point 25 and 27) are possible causes of high Nickel levels.

The Pb concentration levels in *Cladophora* ranged from  $17 \pm 3 \text{ mg kg}^{-1}$  at point 16 to  $72 \pm 6 \text{ mg kg}^{-1}$  at sampling point 08 with an overall mean concentration of 45 mg kg<sup>-1</sup>. The potential contributors of higher Pb concentration levels include direct dumping of Pb containing wastes from nearby residential areas. *Sediment Samples* 

Table 10 shows the results of heavy metal concentrations in sediment samples. The heavy metal concentration levels generally occurred in the order Mn > Zn > Ni > Cu > Pb.

| Samples | Mn             | Fe                 | Ni            | Cu             | Zn            | Pb             |
|---------|----------------|--------------------|---------------|----------------|---------------|----------------|
| S01     | $8659 \pm 215$ | $131966 \pm 3000$  | $154 \pm 32$  | $107 \pm 30$   | $160 \pm 11$  | $46.0\pm4.0$   |
| S02     | 5341 ± 141     | $127800\pm4600$    | $145 \pm 32$  | 68.0 ± 15      | $161 \pm 16$  | $42.0\pm 6.0$  |
| S03     | $6417\pm356$   | $106533\pm2887$    | $121 \pm 36$  | $62.0\pm10$    | $154 \pm 14$  | $43.0\pm1.0$   |
| S04     | $7001 \pm 326$ | $126733 \pm 7830$  | $137 \pm 5.0$ | $81.0 \pm 17$  | $175 \pm 15$  | $43.0\pm3.0$   |
| S05     | $4399 \pm 403$ | $107667 \pm 7815$  | $156 \pm 45$  | $70.0 \pm 23$  | $171 \pm 17$  | $49.0\pm7.0$   |
| S06     | $5155\pm284$   | $107200\pm4828$    | $114\pm27$    | $65.0\pm19$    | $176 \pm 13$  | $42.0\pm2.0$   |
| S07     | $4136 \pm 341$ | $118267 \pm 6120$  | $116 \pm 23$  | $82.0 \pm 18$  | $330 \pm 20$  | $90.0 \pm 5.0$ |
| S08     | 3665 ± 99      | $115967 \pm 1501$  | $118 \pm 18$  | $107 \pm 22$   | $432 \pm 17$  | $110 \pm 7.0$  |
| S09     | $4380 \pm 202$ | $117667 \pm 1504$  | $144 \pm 40$  | $66.0 \pm 25$  | $167 \pm 2.0$ | $51.0 \pm 5.0$ |
| S10     | $4815 \pm 158$ | $97367 \pm 2532$   | $84.0\pm22$   | $63.0 \pm 16$  | $155 \pm 12$  | $38.0\pm4.0$   |
| S11     | $5119 \pm 186$ | $104767 \pm 5052$  | $149\pm40$    | $82.0 \pm 26$  | $182 \pm 22$  | $44.0\pm2.0$   |
| S12     | $2795\pm207$   | $100100 \pm 6483$  | $85.0\pm29$   | $62.0 \pm 27$  | $153 \pm 15$  | $36.0 \pm 3.0$ |
| S13     | $3097 \pm 295$ | $126800 \pm 4279$  | $156 \pm 18$  | $78.0 \pm 24$  | $156 \pm 5.0$ | $37.0 \pm 3.0$ |
| S14     | $4686 \pm 206$ | $121967 \pm 6390$  | $155 \pm 21$  | $84.0 \pm 6.0$ | $174 \pm 13$  | $78.0 \pm 6.0$ |
| S15     | $2901 \pm 67$  | $103200 \pm 3061$  | $110 \pm 13$  | $63.0 \pm 31$  | $167 \pm 10$  | $32.0 \pm 1.0$ |
| S16     | $4433\pm215$   | 77635 ± 1955       | 101 ± 16      | $75.0 \pm 15$  | $225\pm8.0$   | $47.0 \pm 3.0$ |
| S17     | $4025\pm200$   | $99100 \pm 2645$   | $81.0 \pm 17$ | $70.0 \pm 6.0$ | $155 \pm 12$  | $49.0\pm5.0$   |
| S18     | $6902\pm202$   | $96267 \pm 1150$   | $72.0 \pm 20$ | $70.0 \pm 15$  | $161 \pm 7.0$ | $42.0\pm3.0$   |
| S19     | $4977 \pm 155$ | $108500 \pm 3439$  | $107 \pm 34$  | $85.0\pm12$    | $162 \pm 3.0$ | $45.0\pm1.0$   |
| S20     | $4263\pm84$    | $105800 \pm 12225$ | $93.0\pm17$   | $90.0 \pm 21$  | $166 \pm 18$  | $44.0\pm3.0$   |
| S21     | $4540\pm33$    | $101167 \pm 2182$  | $123\pm43$    | $92.0\pm10$    | $155\pm16$    | $44.0\pm5.0$   |
| S22     | $5602\pm318$   | $114700 \pm 6601$  | $118 \pm 54$  | $51.0 \pm 40$  | $168 \pm 16$  | $54.0\pm5.0$   |
| S23     | $6403\pm260$   | $99700 \pm 819$    | $107 \pm 18$  | $80.0\pm6.0$   | $176 \pm 9.0$ | $39.0\pm2.0$   |
| S24     | $3036 \pm 144$ | $110333 \pm 8254$  | $112 \pm 36$  | $100 \pm 25$   | $337 \pm 10$  | $90.0 \pm 5.0$ |
| S25     | $4221 \pm 116$ | $109300 \pm 3439$  | $121 \pm 27$  | $115 \pm 14$   | $396 \pm 31$  | $177 \pm 10$   |
| S26     | $4775 \pm 329$ | $113350 \pm 4850$  | $166 \pm 20$  | 81.0 ± 25      | $184 \pm 7.0$ | $54.0 \pm 2.0$ |
| S27     | $2230\pm28$    | $130733 \pm 4105$  | $134 \pm 43$  | $64.0 \pm 39$  | $161 \pm 13$  | $52.0 \pm 2.0$ |
| S28     | $6604 \pm 234$ | $97967 \pm 4285$   | $122 \pm 22$  | $80.0 \pm 37$  | $172 \pm 6.0$ | $53.0 \pm 4.0$ |
| S29     | $6567 \pm 400$ | $103500 \pm 5345$  | $100 \pm 29$  | $66.0 \pm 15$  | $182 \pm 14$  | $49.0\pm4.0$   |
| S30     | $4626 \pm 91$  | $107400 \pm 3843$  | $67.0 \pm 20$ | $87.0 \pm 20$  | $163 \pm 4.0$ | $47.0 \pm 5.0$ |
| S31     | $4532 \pm 90$  | $112700 \pm 1414$  | $118 \pm 21$  | 85.0 ± 35      | $188 \pm 13$  | $36.0 \pm 4.0$ |
| S32     | 5211 ± 357     | $130733 \pm 9335$  | $172 \pm 11$  | $75.0 \pm 24$  | $172 \pm 13$  | $53.0 \pm 4.0$ |
| MIN     | $2230 \pm 154$ | 77635 ± 6900       | 67 ± 26       | 51.0 ± 40      | $153 \pm 15$  | 32.0 ± 6.0     |
| MAX     | 8659 ± 436     | 131966 ± 6100      | $172 \pm 34$  | $115 \pm 22$   | $432 \pm 21$  | $177 \pm 11$   |
| MEAN    | 4817           | 109198             | 119           | 78             | 198           | 56             |

Table 10: Results of EDXRF analyses of sediment samples ( $mg kg^{-1}$ ), n = 3,  $\overline{X} \pm SD$ 

The Mn concentration levels in sediment samples ranged from  $2230 \pm 154 \text{ mg kg}^{-1}$  at site 27 to  $8659 \pm 436 \text{ mg kg}^{-1}$  at site 01 while the overall mean concentration was  $4817 \text{ mg kg}^{-1}$ . Point 01 is located under a bridge nearby the Blue Post hotel along the busy Thika - Meru highway and is susceptible to atmospheric deposition of exhaust fumes from automobile using the nearby road as the potential source of high Mn concentration levels (Agency for Toxic Substances and Disease Registry, 2012).

The lowest Cu concentration was  $51 \pm 26 \text{ mg kg}^{-1}$  at point 22 while the highest concentration was 115  $\pm 22 \text{ mg kg}^{-1}$  at sampling point 25. Point 25 was characterized by intensive pineapple farming a few metres inland and therefore susceptible to agrochemicals carried by surface runoffs as the potential pollutants (Agency for Toxic Substances and Disease Registry, 2004).

The Zn concentration levels ranged from  $153 \pm 16 \text{ mg kg}^{-1}$  at site 12 to  $432 \pm 21 \text{ mg kg}^{-1}$  at point 08. The high Zn levels at site 08 indicates the possible source of pollutants from nearby Thika Cloth Mills (TCM)

and mining activities from nearby quarry (Agency for Toxic Substances and Disease Registry, 2005). Heavy metal accumulation at this site is exacerbated by presence of stagnant water.

The Ni concentration levels in sediments ranged from  $67 \pm 26 \text{ mg kg}^{-1}$  at site 30 to  $172 \pm 34 \text{ mg kg}^{-1}$  at site 32 while the overall mean concentration was 119 mg kg<sup>-1</sup>. Nickel is a common pollutant from the repeated usage of phosphate fertilizers in soil (Mortvedt, 1995). The high Nickel concentration levels noted in this study may be attributed to the use of commercial phosphate fertilizers in the nearby Delmonte pineapple farm and raw sewage from the nearby residential units in the adjoining land.

The Pb levels ranged from  $39 \pm 5 \text{ mg kg}^{-1}$ , at point 23, to  $177 \pm 11 \text{ mg kg}^{-1}$ , at point 02, while the overall mean concentration was 56 mg kg<sup>-1</sup>. Major potential contributors to high Pb concentrations include mining activities at the nearby quarry and dumping of solid waste (Agency for Toxic Substances and Disease Registry, 2007).

In general, the concentrations of Mn, Cu, Zn, Ni and were highest in *Cladophora* in all sampling locations except a few isolated cases.

### Relationship of Heavy Metal Distributions in Water, Algae and Sediments

Table 11 summarizes the results of analysis of variance (ANOVA) of heavy metal concentration levels in the three media. The mean elemental concentrations relationships between the three media significantly differ from one another; Zn (F (175) >  $F_{crt}$  (3.09)), Cu (F (156) >  $F_{crt}$  (3.09)), Mn (F (100) >  $F_{crt}$  (3.09)), Ni (F (57) >  $F_{crt}$  (3.11)), Pb (F (50) >  $F_{crt}$  (3.11)).

| Table 11: Summary of Results of Analysis of Variance of Heavy Metal Concentrations in W | Vater, |
|-----------------------------------------------------------------------------------------|--------|
| Cladophora and Sediments                                                                |        |

| Element   | Source of variation | 22       | aı | MS       | r   | P-value  | F Critical |  |
|-----------|---------------------|----------|----|----------|-----|----------|------------|--|
| Zinc      | Between Groups      | 871235   | 2  | 435618   | 175 | 3.23E-32 | 3.09       |  |
|           | Within Groups       | 231963   | 93 | 2494     | -   | -        | -          |  |
|           | Total               | 1103198  | 95 | -        | -   | -        | -          |  |
| Copper    | Between Groups      | 407444   | 2  | 203722   | 156 | 1.78E-30 | 3.09       |  |
|           | Within Groups       | 121165   | 93 | 1303     | -   | -        | -          |  |
|           | Total               | 528609   | 95 | -        | -   | -        | -          |  |
| Manganese | Between Groups      | 1.16E+09 | 2  | 5.78E+08 | 100 | 7.65E-24 | 3.09       |  |
|           | Within Groups       | 5.4E+08  | 93 | 5809583  | -   | -        | -          |  |
|           | Total               | 1.7E+09  | 95 | -        | -   | -        | -          |  |
| Nickel    | Between Groups      | 3095384  | 2  | 1547692  | 57  | 4E-16    | 3.11       |  |
|           | Within Groups       | 2170263  | 93 | 27128    | -   | -        | -          |  |
|           | Total               | 5265648  | 95 | -        | -   | -        | -          |  |
| Lead      | Between Groups      | 37964    | 2  | 18982    | 50  | 1.3E-14  | 3.11       |  |
|           | Within Groups       | 29885    | 78 | 383      | -   | -        | -          |  |
|           | Total               | 67849    | -  | -        | -   | -        | -          |  |

Table 12 shows the results of Pearson Correlation Analysis of heavy metal concentration among the three media. Generally, strong correlation in heavy metal concentration was found between sediments and algae for most elements; Mn (r = 0.4679), Pb (r = 0.3684), Cu (r = 0.7542), and Zn (r = 0.6142). This supports the assertion that algae grow on sediments and are appropriate bio-indicators for heavy metal pollution.

**Table 12: Results of Pearson Correlation Analysis** 

| Element | Media     | Water   | Algae   | Sediments |
|---------|-----------|---------|---------|-----------|
|         |           |         |         |           |
| Mn      | Water     | 1       |         |           |
|         | Algae     | -0.2840 | 1       |           |
|         | Sediments | -0.1579 | 0.4679  | 1         |
| Ni      | Water     | 1       |         |           |
|         | Algae     | -0.3902 | 1       |           |
|         | Sediments | -0.0658 | -0.0618 | 1         |
| Pb      | Water     | 1       |         |           |
|         | Algae     | -0.0482 | 1       |           |
|         | Sediments | 0.0138  | 0.3684  | 1         |
| Cu      | Water     | 1       |         |           |
|         | Algae     | 0.07663 | 1       |           |
|         | Sediments | -0.0431 | 0.7542  | 1         |
| Zn      | Water     | 1       |         |           |
|         | Algae     | -0.0189 | 1       |           |

| Sediments | 0.3372 | 0.6142 | 1 |
|-----------|--------|--------|---|
|-----------|--------|--------|---|

## **Extent of Heavy Metal Pollution in Sediments**

The extent of heavy metal contamination of sediments collected along the Thika River was determined using pollution indices namely; enrichment factors (EF), geo-accumulation factors ( $I_{geo}$ ), pollution loading indices (PLI) and modified contamination factors.

### **Enrichment Factors**

Figure 2 summarizes the percentage frequency of occurrence of each category of.



Figure 2: Summary of percentage frequency of currency of each category of enrichment for each heavy metal of interest

In general, sediment samples are equally enriched (minimal (EF < 2) – moderate ( $2 \le EF \le 5$ )) with Mn and Cu, but minimally enriched with Ni, Zn and Pb.

# Geo-accumulation Indices $(I_{geo}^m)$

Figure 3 summarizes the percentage frequency of occurrence of each category of geoaccumulation indices. Most sediment samples (97%) are moderately contaminated  $(1 \le I_{geo}^m > 2)$  in Mn while 3% are moderately contaminated. Most sampling locations were unpolluted to moderately polluted with Ni ( $0 \le I_{geo}^m > 1$ ) while 3% of the samples were unpolluted. All sampling locations were unpolluted to moderately polluted with Ni ( $0 \le I_{geo}^m > 1$ ) while 3% of the samples were unpolluted. All sampling locations were unpolluted to moderately polluted with Cu ( $0 \le I_{geo}^m > 1$ ). Most locations (88%), were unpolluted to moderately polluted ( $0 \le I_{geo} > 1$ ) with Zn while 12% were moderately polluted with Zn. Most locations (87%) were unpolluted to moderately polluted with Pb ( $0 \le I_{geo}^m > 1$ ) while locations 13% were moderately polluted ( $1 \le I_{geo}^m > 2$ ).



Figure 3: Summary of percentage frequency of currency of each category of Geoaccumulation indices.

Contamination Factors (CF), Modified Degree of Contamination ( $mC_d$ ) and Pollution Load Indices (PLI). Based on contamination factors and PLI, all sampling locations are polluted. Appendix C summarizes the results of contamination factors (CF), modified degree of contamination ( $mC_d$ ) and pollution load indices (PLI) of sediment samples analyzed in this study.

 Table 14: Summary of the percentage frequency of occurrence of each category Pollution load Index and modified degree of contamination

| Pollution Load Index |            | Modified Degree of Contamination |          |      |           |                |       |  |
|----------------------|------------|----------------------------------|----------|------|-----------|----------------|-------|--|
| Polluted             | Unpolluted | Low                              | Moderate | High | Very high | Extremely high | Ultra |  |
|                      |            |                                  |          |      |           |                | high  |  |
| 100                  | 0          | 9                                | 88       | 3    | 0         | 0              | 0     |  |
|                      |            |                                  |          |      |           |                |       |  |

Based on results of enrichment factors, geoaccumulation indices, pollution load index (PLI), contamination factors and modified degree of contamination, all sampled sediments were generally contaminated with Pb, Cu, Zn, Mn and Ni to a moderate degree.

# IV. Conclusion And Recommendations

The variation of heavy metal levels in water samples ( $\mu g l^{-1}$ ) were as follows: Mn (53.5 - 605), Cu (< 10 - 303), Zn (22 - 325), Ni (< 15-77), Pb (< 10 - 84) with mean concentrations ( $\mu g l^{-1}$ ) of 179 and 94, for Mn and Zn, respectively. Heavy metal contamination levels in water samples, in this study, is variously impacted by; nearby industries, dust from the nearby mining activities and the chemical fertilizers used in the nearby commercial pineapple farms and combustion of fuel from the vehicles plying the nearby roads and therefore unsuitable for drinking.

The variation of heavy metal concentration levels in sediment samples ( $mg kg^{-1}$ ) were as follows: Mn (2230 - 8659), Cu (51 - 115), Zn (153 - 432), Ni (67 - 172), Pb (32 - 177) with mean concentrations of 4817, 119, 78, 198 and 56 for Mn, Ni, Cu, Zn and Pb respectively.

The heavy metal variations in *Cladophora* samples ( $mg kg^{-1}$ ) were as follows: Mn (3719 - 21200), Cu (65 - 129), Zn (153 - 434), Ni (35 - 235), Pb (17 - 72). The mean concentrations ( $mg kg^{-1}$ ) of Mn, Zn, Ni, Cu, and Pb were 8478, 206, 155, 95 and 45 respectively.

There is a significant difference in heavy metal concentration among the three media, following the ANOVA analyses. The levels of heavy metal concentration in sediments and algae generally occurred in the order Mn > Zn > Ni > Cu > Pb but slightly higher in algae in comparison. However, water samples showed a slightly different order in concentration levels (Mn > Zn > Cu > Ni > Pb).

There is strong correlation between sediments and algae for most elements; Mn (r = 0.4679), Pb (r = 0.3684), Cu (r = 0.7542), and Zn (r = 0.6142). This supports the assertion that algae grow on sediments and are appropriate bio-indicators for heavy metal pollution monitoring.

Based on results of enrichment factors, geoaccumulation indices, pollution load index (PLI), contamination factors and modified degree of contamination, all sampled sediments were generally contaminated with Pb, Cu, Zn, Mn and Ni to a moderate degree, hence requires intervention to curb on the rising levels of pollutants.

### Recommendations

In summary, the study recommends the following measures for mitigation of pollutants in these environmental media:

a) There is need to create public awareness to the residents using the river water for domestic purposes on the status of pollution levels;

b) There is need for environmental protection agencies such as NEMA to establish necessary intervention measures to curb the rising levels of pollutants in the river; For instance, introduce bamboo plants along the banks of this river to help in its detoxification;

c) There is need to critically evaluate the actual components of industrial and municipal waste discharges into the Thika River;

d) Further studies should be carried out to determine the other sources; organic and inorganic, that contribute to the pollution of the river ecosystem.

#### References

- [1]. Rahman, (2011). Assessment of Heavy Metal Contamination of Sediments of Some Polluted Rivers. A Thesis submitted in partial Fulfillment of the Requirements for the degree of Master of Science in Civil and Environmental Engineering, pg. 7-119
- [2].
   Kenya Open Data Survey 2014. 2009 Census Volume 1Table 3 Rural and Urban Population.

   <https://www.opendata.go.ke/Population/2009-Census-Vol-1-Table-3-Rural-and-UrbanPopulati/e7c7-w67t/1>.
   Accessed

   22/08/2016
   Accessed
- [3]. Gathua, N. (2015). "Gatuaganya residents decry pollution of Chania River." <a href="http://www.hivisasa.com/kiambu/environment/79222">http://www.hivisasa.com/kiambu/environment/79222</a>>.
- [4]. Odira, P.M.A. (1991). 'Pollution Profile of Thika River.' 17<sup>th</sup> WEDC Conference: Infrastructure, Environment, water and People, pg. 285-288
- [5]. Kelly, M.G. & Whitton, B.A. (1995). The trophic diatom index: a new index for monitoring eutrophication in the rivers. *Journal of Applied Phycology*, 7: 433-44
- [6]. Mwangi, G. K. (1988). The Effect of Industrial, Domestic and Agricultural Effluents on the Quality of the Waters of Thika-Chania River Systems
- [7]. International Atomic Energy Agency TECH-DOC-950. (1997). Sampling, Storage and Sample Preparation Procedure for X-ray Fluoreascence Analysis of Environmental Materials. IAEA.Austria, Vienna. pg. 15-36
- [8]. Ravichadran, M., Baskaran, M., Santschi, P. H. & Bianchi, T. (1995). History of trace metal pollution in Sabine-Neches Estuary, Beaumont, Texas. Environmental Science and Technology. 29:1495 1503
- [9] Eust-Menard, P. & Chesselet, R. (1979). Variable influence of atmospheric flux on the trace metal chemistry of oceanic suspended matter. *Earth and Planetary Science Letters*. (42) 398-411
- [10]. Taylor, S. R. and McLennan, S. M. (2001). Chemical composition and Element Distribution in the Earth's Crust. Pg. 698-719 <a href="https://mafiadoc.com/chemical-composition-and-element-distribution-in-59c9a5e61723dde180db8e7d.html">https://mafiadoc.com/chemical-composition-and-element-distribution-in-59c9a5e61723dde180db8e7d.html</a>. Accessed 22/08/2016
- [11]. Tomlinson, D. L., Wilson, J. G. Harris, C. R. and Jeffrey D. W. (1980). Problem in the assessment of Heavy metals levels in estuaries and the formation of a pollution index, *HelgolanderMeeresuntersuchungen*, 33(1): 566-575
- [12]. Miller, J. N. & Miller, J. C. (2010). Statistics and Chemometrics of Analytical Chemistry. Harlow: Pearson education Limited
- [13]. Karageorgis, A. P., Katsanevakis, S. &Kaberi, H. (2009).Use of Enrichment Factors for the assessment of heavy Metal Contamination in the Sediments of Koumoundourou Lake, Greece. *Water air soil pollut*.Springer, (204), p243-258.
- [14]. Clayton & Clayton. (1994). Patty's Industrial hygiene Toxicology, 4<sup>th</sup> Ed. A Wiley-Interscience Publication. New York. pg. 2157-2173 Ed
- [15]. Clarkson, T. W. (1988). Biological Monitoring of Toxic Metals. Plenum Press, New York, pg. 265-282
- [16]. Mahler, B. J. (2006). Van Metre, P. C. & Callender, E. (2006). Trends in metals in urban and reference lake sediments across the United States, 1970 to 2001. Environmental Toxicology and Chemistry, 25(7), 1698-1709
- [17]. [17] Agency for Toxic Substances and Disease Registry (ATSDR). (2012). Toxicological Profile for Manganese: potential for Human Exposure, Atlanta, GS: U.S. Department of Health and Human Services. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=102&tid=23
- [18]. Agency for Toxic Substances and Disease Registry (ATSDR). (2004). Toxicological profile for Copper. Atlanta, GS: U.S. Department of Health and Human Services. https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=206&tid=37
- [19]. Agency for Toxic Substances and Disease Registry (ATSDR). (2005). Toxicological Profile for Zinc. Atlanta, GS: U.S. Department of Health and Human Services. <a href="https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=302&tid=54>">https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=302&tid=54></a>
- [20]. Mbuvi, H. M., Murungi, J., & Chengo, K. (2013). Speciation of Chromium and Nickel in Open-Air Automobile mechanic Workshop Soils in Ngara, Nairobi, Kenya
- [21]. Mortvedt, (1995). Heavy metal Contaminants in inorganic and organic fertilizers. *Fertilizer Research*. Kluwer Academic Publishers. 43(3): 55-61
- [22]. Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Toxicological Profile for Lead: Public health Statement. Atlanta, GS: U.S. Department of Health and Human Services. <a href="https://www.atsdr.cdc.gov/PHS/PHS.asp?id=92&tid=22>">https://www.atsdr.cdc.gov/PHS/PHS.asp?id=92&tid=22></a>