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Abstract 
Fluids can be classified from different perspectives. From the perspective of fluid behavior under the influence 

of shear stress, the fluids can be classified into Newtonian and non-Newtonian fluids. Newtonian fluid is a 

material in which shear stress without yield stress (at zero shear rate is zero shear stress) is only a linear 

function of shear rate and in this material shear stress to shear rate is called viscosity. In non-Newtonian fluids 

one of the two Newtonian fluid conditions (zero yield stress condition or shear stress linearity condition in terms 

of shear rate) or both conditions are not met simultaneously. In other words, it can be said that a non-

Newtonian fluid is a fluid in which either the shear stress diagram is nonlinear in shear rate or if the diagram is 

linear it does not cross the origin of the coordinates. 

In this study, the study of non-Newtonian fluid flow in a rectangular cross-section channel for sudden 

discontinuity is investigated. The expansion coefficient is assumed to be 3 and the fluid flow is investigated in 

two-dimensional steady state. For numerical simulation, Poly flowcommercial software, which is a subset of 

Ennis software, is used specifically to simulate non-Newtonian fluids. For different Reynolds, Weissenberg and 

Beta numbers, the vortex length has been measured in different conditions and the influence of the mentioned 

parameters on the vortex length has been investigated. Finally, contours of the flow lines are presented to 

determine the vortex length using them. It should be noted that the non-Newtonian fluid discussed in this study 

was selected from the type of oldroyd B fluid. 
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I. Introduction 
Non-Newtonian fluid mechanics has been the subject of much interest by researchers since the late 

19th century. And in those years the basic theories of this science were built. Among non-Newtonian fluids, 

viscoelastic fluids have received much attention due to their many applications and have been the subject of 

much research. Non-Newtonian fluids are widely used in military, medical, and industrial activities, which have 

long been the focus of attention. The science of studying non-Newtonian fluid flow has become known as 

rheology today, and because of the specific properties of such fluids, different and unexpected behaviors of such 

fluids occur. The purpose of this study was to investigate the viscoelastic fluid flow and its heat transfer in pipes 

with local expansion, mathematical modeling, its solution and then analyzing and evaluating the existing 

solution. 

Fluid flow is particularly important in plate divergent transforms. These transformations have relatively 

simple geometries and relatively complex flow patterns. 

In examining Newtonian fluid flow within the geometry of sudden expansion, preliminary research has 

been conducted in the form of experimental work by Durst et al.[1] , Cherdron et al. [2] and Ouwa et al.[3] By 

examining the flow downstream of the symmetric two-dimensional sudden expansion, they showed that for low 

Reynolds numbers, the flow remained symmetric, but for larger Reynolds numbers, asymmetric conditions for 

the vortices created rotational zones of different sizes. When the flow in the symmetric divergent plate 

transforms loses its symmetry, it produces vortices of different lengths. Such a phenomenon that results in the 

production of asymmetric vortices is called Bifurcation Phenomena. If the vortex length is plotted in terms of 

Reynolds, this phenomenon is clearly visible. 

Numerical study of the flow for 3: 1 expansion ratio by Fearn et al. [4] and Durst et al. [5] has resulted 

in finding a critical Reynolds number for the flow transfer from symmetric to asymmetric state and also plotted 

diagram. . Numerical investigation of the relative impact of expansion on the vortex bifurcation phenomenon for 

Newtonian fluid has been carried out by Battaglia et al. [6] and Allerborn et al. They observed stability 
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improvement by using symmetric resolution in their studies by reducing the expansion ratio. The study of 

bifurcation phenomena for sudden plate expansion flow at larger expansion ratios was studied by Revuelta [8]. 

Also in their study, Abbott and Kline[9]  investigated asymmetric turbulent flows through symmetric 

plate-plane ducts. The instability structure of the multi-branch phenomenon has also been studied by Mizushima 

and Shiotani [10] using nonlinear analysis. 

Oliveira[11] , Ternik et al. [12], using numerical simulation, obtained a critical Reynolds number based 

on upstream altitude and mean channel inlet velocity of 54. Using a quadratic finite difference method in the 

investigation of sudden divergent intra-channel flow with a 3: 1 expansion ratio in Drake's study, a critical 

Reynolds number of 53.3 is reported. Hawa and Rusak[14] reported a critical Reynolds number of 53.8 using the 

linear stability analysis method and the finite difference method on the flow function and the vortices function 

for a 3: 1 sudden expansion ratio. And in this geometry Mishraand Jayaraman[15] have obtained a critical 

Reynolds value in their research by applying the finite element method and Continuation–Perturbation method. 

The range of Reynolds numbers and divergence ratios is broader in the study by Dagtekin and Unsal 
[16] in the field of Newtonian fluids for divergence. In this study, Reynolds ranges from 0.1 to 500 and the 

divergence ratio is in the range of 1.5 to 500. In this research, the vortices have been investigated in both plane 

and axial symmetry states. Scottand Mirza [17] also examined in their research the Newtonian fluid flow in plate 

divergence. By solving the two-dimensional Navier-Stokes equations using finite element method, they show 

that the vortices change linearly with Reynolds in plate divergent conversion. 

Oliveira et al. [18] obtained the eddy length and pressure drop coefficient in various states by 

numerically solving the Newtonian fluid flow in a symmetric plate-plane divergence for the expansion ratios of 

1.5 to 4 and in the range of 0.5 to 200 Reynolds. . As can be seen from their research, the vortex length has a 

direct relationship with the Reynolds number, and at all divergence ratios, the vortex length increases with 

increasing Reynolds number. At low Reynolds numbers, increasing the conversion ratio decreases the vortex 

length, and at high Reynolds numbers, increasing the conversion ratio increases the vortex length. Also Schreck 

and Schafe [19] studied the flow field in sudden expansion using the finite volume method and investigated the 

influence of different expansion rates on the vortex length. 

Shapiraet al. [20] investigated the phenomenon occurring along the vortex by analyzing the linear 

stability for the symmetric flow in a sudden plate expansion. Durstet al. [21] also investigated the empirical and 

numerical study of the sudden expansion with a 1: 2 expansion ratio, the vortex length and their length 

difference. In their research Fletcher et al. [22] studied the effect of the type of input velocity profile on the flow 

parameters by examining the flow in the symmetric sudden expansion. 

Pinho et al. [23] also showed in their investigations of sudden plate expansion currents that for low 

Reynolds numbers, the velocity distribution at the expansion section level slightly detracts from its parabolic 

profile. Hawa and Rusak[24] studied the effect of channel geometry asymmetry on the behavior of these 

currents. 

In recent decades, asymmetric flow of non-Newtonian fluids in symmetrical plate divergence has been 

the focus of many researchers. The purpose of most research in this area is to find the critical Reynolds number 

at different divergence ratios and to investigate the vortex length. In non-Newtonian fluid flow, the flow 

changes that result in changes in the intensity and size of the bridges are also dependent on the non-Newtonian 

fluid properties in addition to the Reynolds number. For this reason, most of the studies use either the 

generalized Reynolds number or the modified Reynolds number, which incorporates non-Newtonian fluid 

properties. Bell and Surana [25] studied the flow of non-Newtonian fluid at an asymmetric sudden expansion 

with a 1: 2 expansion ratio. In their research using the power law model, for Reynolds number 10, they 

investigated the dependence of vortex size and length on the index value. Ternik [26] investigated the effects of 

non-Newtonian properties on the transition from symmetric to asymmetric flow in the sudden divergence ratio 

of 1: 3. His model, power dilution fluid, and power index and Reynolds range are considered in the range of 0.6 

to 1 and 10 to 150, respectively. Ternik's results [26] show that fluid dilution behavior (reduction of power 

index) on one hand reduces the flow pressure drop in divergent transformations and on the other hand increases 

the critical generalized Reynolds number. In other words, the fluid dilution behavior causes the flow to be 

asymmetric at higher speeds. In his research, he presented a diagram that clearly shows the dilution of fluid 

pressure. Manica et al. [27], using the finite difference numerical method, investigated the non-Newtonian fluid 

flow with a power model (0 <n <2) to convert a sudden divergence to a 1: 3 expansion ratio and n each power 

index. Reynolds has reported a crisis. Due to the range of power indices n in this study, both dilution and 

thickening behavior have been investigated and the results show that dilution behavior (n <1) delayed the 

phenomenon of bifurcation and for concentrated state Humidity is the result of the opposite. Neofytou [28] 

reported the critical Reynolds number values 33 and 44 by numerical analysis of the non-Newtonian fluid flow 

for the power model and the quadratic model, respectively. His results also show that the extension length and 

pressure drop are greater for the concentrated fluid than for the Newtonian fluid. Terniket al [29] studied non-
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Newtonian fluid flow with these two models and reported a critical Reynolds number and plotted a multilevel 

diagram for studying the vortex length. Paket al.[30] investigated empirically the effect of non-Newtonian and 

viscoelastic properties on vortex lengths at conversion ratios of 2 and 2.667 by empirically investigating 

viscoelastic fluid flow in axial symmetric divergent conversion. The results show that for laminar flow regime, 

the vortex length in viscoelastic fluid is less than Newtonian fluid and in turbulent flow regime, the viscoelastic 

fluid vortex length is several times more than Newtonian fluid. The Reynolds number is also defined as the 

generalized Reynolds number in the study to include the power index n. Norouzi et al. [31] investigated the 

laminar and incompressible flow of viscoelastic fluid in two-dimensional plate divergence with gradual 

expansion at 30, 45, 60, and 90 ° expansion angles and 1: 3 expansion ratio. They studied the symmetric and 

asymmetric vortex lengths over a wide range of Reynolds and Weissenberg numbers using a nonlinear Fine-

Tanner model to simulate viscoelastic fluid stress terms. Cruz et al. [32] calculated the Nusselt number and non-

Newtonian fluid friction coefficients in direct channels using the generalized Newton, Carreau-Yasuda, 

HerschelBulkley, Bingham and linear form PTT models. Jalali et al. [33] numerically simulated the developed 

and non-isothermal viscoelastic fluid flow inside the medial canal using a simplified PTT rheological model. 

They calculated the temperature distribution and the Nusselt number for values of −10 ≤ 𝐵𝑟 ≤ 10, assuming 

the properties of the viscoelastic fluid to be temperature dependent. The results presented by them show that the 

Nusselt number decreases with increasing Br content. Baptista et al. [34] numerically simulated the non-

Newtonian fluid flow between two parallel plates and inside the tube using a power model and a constant 

temperature boundary condition and calculated the Nusselt number for different values of the power law.Alves 

et al. [35] investigated the flow of Newtonian and viscoelastic fluid inside a tube with constant and uniform 

boundary conditions using the method used by Cruz et al[32]. Norouzi [36] developed an analytical solution for 

the heat transfer of viscoelastic fluid inside the axial tube using the PTT rheological model and calculated the 

Nusselt temperature and number at different positions. Letelier et al [37] used the generalized PTT model to 

analytically simulate the Graetzproblem for direct-channel viscoelastic fluid. They studied secondary stream 

formation, temperature and Nusselt number. Shahbani-Zahiri et al. [38] numerically simulated the heated and 

cooled viscoelastic flow within a two-dimensional channel with sudden expansion. They addressed the impact 

of tennis on overall casualties. 

 

II. Governing equations 
The general equation governing the flow of a fluid of type oldroyd B can be illustrated as follows: 

ρ
dV

dt
=  −∇P + divS + J × B + r                                                                 (1) 

divV = 0                                                                                               (2) 
In the above relation V = (u, v, w) denotes velocity field and ρ denotes fluid density and P represents hydrostatic 

pressure. r is also known as Darcy's resistance to OL fluid, and S represents the additional stress tensor defined 

for OL fluid as follows [13]: 

 1 + λα
Dα

Dtα
 S =  μ(1 + θβ

Dβ

Dt β
)A1           (3) 

In the above relation µ expresses the dynamic viscosity of fluid, λ denotes rest time and θ denotes delay time. 

Also α and β are computational parameters such that 0≤α≤β≤1. The A1, also known as the first Rivlin-Ericksen 

tensor, is defined as follows: 

A1 =  ∇V + (∇V)T                  (4) 
In the above relation∇ it represents the gradient operatorand T represents the inverse of the matrix. We also 

have: 
Dα S

Dtα
=  

D α S

D tα
+  V. ∇ S − S(∇V)T                  (5) 

D α f(t)

D tα
=  

1

Γ(1−α)

d

dt
  t − ξ −α f t dξ

T

0
,      0 < 𝛼 < 1                (6) 

In the above relation Γ is the expression of the gamma function. When α = β = 1, equation (3) denotes the 

equation governing the first-order oldroyd B fluid. If we put λ = θ = 0 in the first order oldroyd B relation, we 

arrive at the same classical Navier-Stokes equations. 

The Maxwell equation can also be written as follows: 

divB = 0, curlB =  μm J, curlE =  −
∂B

∂t
        (7) 

In the above relation J is the instantaneous density and B represents the magnitude of the magnetic fluxes into 

the fluid stream as shown below: 

B =  B0 + b                                                                                         (8) 
In relation (8), B0 and b represent the magnetic field applied and created by the flow of fluid, respectively. 

Also μm  represents the magnetic permeability and finally E represents the electric field. It should be noted that 

no voltage is applied to the cysteine and no dipole event occurs so E = 0 can be omitted b. The effect of Hall's 

phenomenon can also be seen as follows: 
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J ×
we te

B0
 J × B =  σ[E + V × B ×

1

ene
∇Pe)       (9) 

In the above relation we  is the cyclotron frequency of the electrons and te is the collision time of the electrons. σ 

is the electrical conductivity, e is the electric charge, ne the electron density and Pe the electron pressure. It 

should be noted that no thermoelectric and ion slip effects have been observed in this respect [12]. 

The two most important parameters that will be used in this research are the Weissenberg number and the beta 

number. In fact, the Weissenberg number is defined as the ratio of the force of an elastic property to the force of 

a fluid viscosity that can be mathematically written as follows: 

Wi =  ƛγ (10)  

In the above relationƛ the material characteristic time (time of stress relief) and γ  are the shear rate of flow. The 

relaxation time for the stress is very small for Newtonian fluids (less than 10
-6

 to10
-4

  seconds) and for large 

numerical elastic solids (greater than 100 seconds). The smaller the Weissenberg number for a material, the 

more likely it is that it will flow. When the Weissenberg number is zero, the fluid behaves similar to the 

Newtonian fluid behavior. 

The beta number can also be defined as follows: 

β =  
ɳmo

ɳo
(11)  

In the above relationɳmo  the viscosity of the soluble material is at zero shear rate. Alsoɳo  is total viscosity of the 

solution at zero refraction rate is calculated as follows: 

ɳo =  ɳN + ɳmo (12)  

In the above relation, ɳN  represents the solvent viscosity. 

 

III. Problem assumptions 
In the present study, the problem geometry is considered as two-dimensional and incompressible fluid flow. The 

range of Reynolds numbers used in the present study for the laminar flow regime is briefly summarized as the 

main assumptions considered in this study. 

1. The flow is two-dimensional and smooth. 

2. The viscoelastic fluid is incompressible. 

3. A constant temperature is assumed so that the current is not temperature dependent. 

4. Reynolds is considered to be within the range of a slow flow regime. 

5. The effects of gravitational acceleration and volume forces have been avoided. 

 

IV. Geometry of the problem 
The problem geometry consists of two channels with a square cross-section that are in contact with 

each other. The side length of the channel cross-sectional area is considered to be smaller and the length of the 

cross-sectional area of the channel is considered to be larger. A schematic view of the channel being considered 

in this project with its dimensions can be seen in Figure (1). 

 
figure 1. Schematic view of the investigated channel 

 

V. Boundary conditions 
The channel input will use the input speed boundary condition. We know that the channel input can be 

considered as a uniform input speed. At the outlet of the channel, since the fluid is assumed to be discharged 

into the environment, then the use of the outlet boundary condition is a reasonable and accurate pressure. It 

should be noted that in this case the output pressure gauge is zero. In the case of canal walls, the term non-slip 

fluid on the wall should also be used, which assumes that the velocity of the fluid on the wall is equal to the 

velocity of the wall, and in this case, since the channel wall is constant, it can be said that the fluid velocity on 

the wall is Channel will be zero. 

The problem solving algorithm in poly flow software is illustrated in Figure (2). 

https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
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figure 2. General problem-solving structure with PolyFlow software 

 

VI. Solution independence from mesh 
To ensure the independence of the solution from the mesh and to ensure that the meshes are sufficiently 

selected and smaller, and to reduce the size of most meshes, despite the increased computational costs, they do 

not have a significant effect on the output response, the vortex lengths formed for the three Different types of 

patches will be examined. Table 1 shows the number of elements considered in each case along the length of the 

formed vortices. The percentage of relative error is also calculated. 

 

Table 1. Examine the number of elements and the length of the vortex and relative error for different milling 

states 
Case Number of elements vortex length relative percentage error 

1 48000 4.94 1.2% 

2 108000 4.9 0.4% 

3 432000 4.88 - 

 

As shown in Table (1), by increasing more than four-fold the elements from the second state to the 

third state, only 0.4% of the vortex length changes, which is a very small amount. Therefore, the latter is 

regarded as the basic one. 

Next, we will calculate the vortex lengths for the different modes of beta, Weissenbergand Reynolds 

and arrange them in a table. It should be noted that throughout the calculations we will consider the total density 

constant and equal to 750 Kg / s as well as the total viscosity constant and equal to 0.01. 

 

VII. Results 
In the first case, we consider beta equal to 0.1 and Reynolds number 1, and we calculate the vortex 

length for 5 different Weissenbergnumbers, which are presented in Table (2). The velocity contours of these 

modes are also shown in Figures (3), respectively. 

 

Table 2. Vortex lengths per beta equal to 0.1, Reynolds equals 1, and different Weissenberg 
No. Weissenberg vortex length 

1 0.05 1.45 

2 0.1 0.9 

3 0.15 0.75 

4 0.2 0.56 

5 0.25 0.34 

 

At very small Weissenbergnumbers, the Newtonian fluid exhibits behavior, so the velocity contour at 

small Weissenberg numbers is very similar to the Newtonian fluid velocity contour. But for large 

Weissenbergnumbers the condition of expansion is established, and the larger the Weissenbergnumber, the fluid 

flow takes longer to reach the condition of expansion. As the Weissenbergnumber increases, the first and second 

https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
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critical Reynolds number also decreases. As a result, the vortex length also decreases with increasing 

Weissenbergnumbers. 

In the latter case the beta equals 0.1 and the Reynolds number is 100 and is calculated for the 5 different 

Weissenbergnumbers shown in table (3). 

 

Table 3. Beta vortex lengths equal to 0.1, Reynolds equals 100, and different Weissenberg 
No. Weissenberg vortex length 

1 0.05 3.91 
2 0.005 5.50 
3 0.0005 5.54 
4 0.00005 5.56 
5 0.000005 5.57 

 

 

 
Figure 3. Vortex length per Reynolds one and a. Beta equal to 0.1 and Weissenberg equal to 0.05 b. Beta for 0. 

and Weissenbergfor 0.1 c. Beta equal to 0.1 and Weissenberg0.15 d. The beta is 0.1 and the Weissenbergis 0.2. 

Beta equals 0.1 and Weissenbergequals 0.25 

 

In the third case the beta is 0.9 and the Reynolds number is 100 and the vortex length is calculated for 5 

different Weissenbergnumbers as shown in Table (4). 

 

 

https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA


Numerical investigation of non-Newtonian fluid flow in channels with local expansion 

DOI: 10.9790/1684-1706021121                                 www.iosrjournals.org                                            17 | Page 

Table 4. Vortex lengths per beta equal to 0.9 and Reynolds equals 100 and different Weissenberg 
No. Weissenberg vortex length 

1 5 5.43 
2 2 5.5 
3 0.2 5.54 
4 0.5 5.56 
5 0.005 5.57 

 

The fourth beta is 0.9 and the Reynolds number is 1 and is calculated for 5 different Weissenberg vortex lengths 

as shown in Table 5. 

 

Table 5. Vortex lengths per beta equal to 0.9 and Reynolds equals 1 and different Weissenberg 
No. Weissenberg vortex length 

1 0.005 2.43 
2 2.5 2.9 
3 5 2.34 
4 7.5 2.28 
5 10 1.44 

 

In the fifth case, Weissenberg equals 0.5 and Reynolds number 1, and is calculated for 5 different beta vortex 

lengths as shown in Table 6. 

 

Table 6. Vortex lengths for Weissenberg equals 0.5 and Reynolds equals 1 and different beta 
No. Beta number vortex length 

1 0.1 0.34 
2 0.3 0.8 
3 0.5 1.5 
4 0.7 2.1 
5 0.9 2.39 

 

In the sixth case, Weissenbergequals 0.005 and Reynolds number 1, and is calculated for 5 different beta vortex 

lengths, which are presented in Table 7. 

 

Table 7. Vortices for Weissenberg equals 0.005 and Reynolds equals 1 and different beta 
No. Beta number vortex length 

1 0.1 2.34 
2 0.3 2.41 
3 0.5 2.44 
4 0.7 2.45 
5 0.9 2.47 

 

In the seventh case, Weissenberg equals 0.05 and Reynolds number 100, and is calculated for 5 different beta 

vortex lengths as shown in Table (8). 

 

Table 8. Weissenberg vortex lengths 0.05 Reynolds equals 100 and different beta 
No. Beta number vortex length 

1 0.1 3.93 
2 0.3 4.91 
3 0.5 5.12 
4 0.7 5.31 
5 0.9 5.56 

 

As can be seen, the length of the gaps has increased with increasing beta. 

In the eighth state, Weissenbergequals 0.0005 and Reynolds number 100, and is calculated for 5 different beta 

vortex lengths as shown in Table 9. 
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Table 9. Vortices for Weissenbergequals 0.0005 and Reynolds equals 100 and different beta 
No. Beta number vortex length 

1 0.1 5.5 
2 0.3 5.57 
3 0.5 5.58 
4 0.7 5.59 
5 0.9 5.6 

 

As can be seen, the length of the gaps has increased with increasing beta. 

In the eighth state, Weissenberg equals 0.0005 and Reynolds number 100, and is calculated for 5 different beta 

vortex lengths as shown in Table 9. 

 

Table 9. Vortices for Weissenberg equals 0.0005 and Reynolds equals 100 and different beta 
No. Beta number vortex length 

1 0.1 5.5 
2 0.3 5.57 
3 0.5 5.58 
4 0.7 5.59 
5 0.9 5.6 

 

In Weissenberg's ninth case, the beta is 0.005 and the beta is 0.1, and the vortex length is calculated for 6 

different Reynolds numbers given in Table 10. 

 

Table 10. Vortex lengths for Weissenberg equals 0.005 and beta equals 0.1 and different Reynolds 
No. Reynolds number vortex length 

1 100 5.5 
2 80 5.36 
3 60 5.1 
4 40 4.9 
5 20 4.5 

 

In Fig. 4, the vortex length is plotted in different conditions. 
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Figure 4. Vortex lengths per a. Beta equal to 0.1 and Reynolds equal to 1 and different Weissenbergb. Beta 

equal to 0.1 and Reynolds equal to 100 and Weissenbergdifferent c. Beta equal to 0.9 and Reynolds equal to 100 

and Weissenbergd. Beta equals 0.9 and Reynolds equals 1 and Weissenberge. Weissenbergequals 0.5 and 

Reynolds equals 1 and different beta f. Weissenbergequals 0.005 and Reynolds equals 1 and different beta g. 

Weissenbergequals 0.05 Reynolds equals 100 and different beta h. Weissenbergequals 0.0005 and Reynolds 

equals 100 and different beta i. Weissenbergequals 0.005 and beta equals 0.1 and different Reynolds j. 

Weissenberghas 5 and beta of 0.9 and various Reynolds 

 

VIII. Conclusion 
By comparing the vortex length when Reynolds number is set to 100 and Reynolds number is set to 1, 

we can conclude that in both cases the beta number is constant. The vortex length also increases with increasing 

Reynolds number. In fact, as the Reynolds number increases, the inlet velocity increases and some of this 

kinetic energy must be depreciated after a sudden expansion. As the energy dissipation occurs by the vortices 

formed, the vortices have to be longer in order to depreciate more energy. By increasing the beta number, the 

fluid properties completely deviate from the Newtonian fluid state and favor the behavior of non-Newtonian 

fluids. As can be seen, the vortex length does not change with the increase of the beta number and thus the 

viscosity. Because viscosity does not affect the amount of turbulence. 

In the sound with the beta constant and the Reynolds number constant, with the increase of the 

Weissenbergnumber, the vortex length decreases with increasing shear stress. As the shear stress increases, the 

kinetic energy loss increases and the kinetic energy decreases during the vortex. 

When the Weissenbergand Reynolds number is constant and the beta is increased because the fluid 

behavior becomes more non-neutron and the viscosity also increases, the vortex length increases. 
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For the case of Weissenberg0.005, the vortex length for different beta was increased by increasing beta, 

while for Weissenbergwas 0.005, the vortex length was increased to 0.005. The different beta is almost the 

same. 

Compared to the seventh and eighth states, when Reynolds was 100 and Weissenbergwas 0.05, the 

wavelengths of the wavelets in different beta were reduced by decreasing the Weissenbergnumber to 0.0005, but 

the wavelengths in the lower beta were more pronounced but slightly smaller. There are differences. 

Therefore, it can be briefly stated that in non-Newtonian fluid flow, the vortex length is directly related 

to the Reynolds number and increases with the Reynolds number. The vortex length also increases with 

increasing beta. But the vortex length is inversely proportional to the Wisenberg number, with the Wisenberg 

number decreasing as the vortex length decreases, which is more pronounced at high Reynolds numbers. At 

very small Wisenberg numbers the fluid behavior is Newtonian. 

 

Reference 
[1]. Durst F., Melling A., Whitelaw J. H., (1974), “Low Reynolds number flow over a plane symmetric sudden expansion”, J. Fluid 

Mechanics, Vol. 64, pp. 111–128. 

[2]. Cherdron W., Durst F., Whitelaw J. H., (1978), “Asymmetric flows and instabilities in symmetric ducts with sudden expansions”, J. 

Fluid Mechanics, Vol. 84, pp. 13– 31. 
[3]. Ouwa Y., Watanabe M., Asawo H., (1981), “Flow visualization of a twodimensional water jet in a rectangular channel”, Jpn. J. 

Appl. Phys, Vol. 20, pp. 243–247. 

[4]. Fearn R. M., Mullin T., Cliffe K. A. , (1990), “Nonlinear flow phenomena in a symmetric sudden expansion”, J. Fluid Mechanics, 
Vol. 211, pp. 595–608 

[5]. Durst F., Pereira J. C. F., Cliffe K. A., (1993), “The plane symmetric sudden expansion flow at low Reynolds number”, J. Fluid 

Mechanics, Vol. 248, pp. 567. 
[6]. Battaglia F., Tavener S. J., Kulkarni A. K., Merkle C. L., (1997), “Bifurcation of low Reynolds number flows in symmetric 

channels”, J. AIAA, Vo. 35, pp. 99–105. 

[7]. Allerborn N., Nandakumar K., Raszillier H., Durst F., (1997), “Further contributions on the two-dimensional flow in a sudden 
expansion”, J. Fluid Mechanics, Vol. 330, pp. 169. 

[8]. Revuelta A., (2005), “On the two-dimensional flow in a sudden expansion with large expansion ratios”, Phys. Fluids Vol. 17, No. 

028102. 
[9]. Abbott D. E., Kline S.J., (1962), “Experimental investigation of subsonic turbulent flow over single and double backward facing 

steps”, J. Basic Eng. Trans. ASME, Vol. 84,No. 317. 

[10]. Mizushima J., Shiotani Y., (2000), “Structural instability of the bifurcation diagram for two-dimensional flow in a channel with a 
sudden expansion”, J. Fluid Mechanics, Vol. 420,No. 131. 

[11]. Paulo J. Oliveira,(2003), “Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries”, J. Non-Newtonian 

Fluid Mech. Vol.114, pp.33–63. 

[12]. Ternik P., Marn J., Zunic Z., (2006), “ Non-Newtonian fluid flow through a planar symmetric expansion: shear-thickening fluids”, 

J. Non-Newtonian Fluid Mechanics, Vol. 135, pp. 136–148. 

[13]. Drikakis D., (1997), “Bifurcation phenomena in incompressible sudden expansion flows”, j. Phys. Fluids, Vol. 9, pp. 76–86. 
[14]. Hawa T., Rusak Z., (2001), “The dynamics of a laminar flow in a symmetric channel with a sudden expansion”, J. Fluid Mechanics, 

Vol. 436, pp. 283–320.  
[15]. Mishra S., Jayaraman K., (2002), “Asymmetric flows in planar symmetric channels with large expansion ratio”, Int. J. Numer. 

Methods Fluids, Vol. 38, pp. 945–962.  
[16]. Dagtekin I., Unsal M., (2011), “Numerical analysis of axisymmetric and planar sudden expansion flows for laminar regime”. Int J 

Numer Meth Fluids 65: 1133– 1144. 
[17]. Scott P.S., Mirza F.A., (1986), “A finite element analysis of laminar flows through planer and axisymmetric abrupt expansions”. 

Computers & Fluids 14(4): 423-432.  
[18]. Oliveira P.J., Pinho F.T., Schulte A., (1998), “A general correlation for the local loss coefficient in Newtonian axisymmetric sudden 

expansions”. Int J of Heat and Fluid Flow 19: 655-660.  

[19]. Schreck E., Schafer M., (2000), “Numerical study of bifurcation in hreedimensional sudden channel expansions”. Comput. Fluids 
29(583).  

[20]. Shapira M., Degani D., Weihs D., (1990), “Stability and existence of multiple solutions for viscous flow in suddenly enlarged 

channels”. Comp.Fluids 18: 239– 258.  
[21]. Durst F., Pereira J. C. F., Tropea C., (1993), “The plane symmetric sudden expansion flow at low Reynolds numbers”. J Fluid Mech 

248(567).  
[22]. Fletcher D. F., Maskell S. J., Patrick M. A., (1985), “Heat and mass transfer computations for laminar flow in an axisymmetric 

sudden expansion”. Comp Fluids 13: 207–221.  
[23]. Pinho F. T., Oliveira P. J. , Miranda J. P., (2003), “Pressure losses in the laminar flow of shear-thinning power-law fluids across a 

sudden axisymmetric expansion”. Int J of Heat and Fluid Flow 24: 747–761.  
[24]. Hawa T., Rusak Z., (2000), “Viscous flow in a slight asymmetric channel with a sudden expansion”. Phys Fluids 12: 22-57.  
[25]. Bell B. C., Surana K. S., (1994), “p-Version least squares finite element formulation for two-dimensional incompressible non-

Newtonian isothermal and nonisothermal fluid flow”. Int J Numer Methods Fluids 18: 127–162.  
[26]. Ternik P.,(2009), “Planar sudden symmetric expansion flows and bifurcation phenomena of purely viscous shear-thinning fluids, J. 

Non-Newtonian Fluid Mech. Vol.157, pp. 15–25. 

[27]. Manica R., De Bortoli A. L., (2004), “Simulation of sudden expansion flows for power-law fluids”, J. Non-Newtonian Fluid Mech. 
Vol. 121, pp.35–40.  

[28]. Neofytou P., (2006), “Transition to asymmetry of generalised Newtonian fluid flows through a symmetric sudden expansion”, J. 

Non-Newtonian Fluid Mech. Vol. 133 pp. 132–140.  
[29]. Ternik P., Marn J., Zuni Z., (2006), “ Non-Newtonian fluid flow through a planar symmetric expansion: Shear-thickening fluids”, J. 

Non-Newtonian Fluid Mech. Vol. 135, pp. 136–148. 

[30]. Pak B., Cho Y. I., and Choi S. U. S., (1990), “Seperation and reattachment of nonnewtonian fluid flows in a sudden expansion 
pipe”, Journal of Non-Newtonian Fluid Mechanics, Vol. 37, pp. 175-199. 

https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA
https://www.google.com/search?rlz=1C1GGRV_en__831IR831&sxsrf=ACYBGNT28dghsdBNMhftJmR10G9xXQf7Pg:1568727131839&q=Weissenberg+number&spell=1&sa=X&ved=0ahUKEwjJg8X7-9fkAhXEzqQKHQGgDrQQBQgsKAA


Numerical investigation of non-Newtonian fluid flow in channels with local expansion 

DOI: 10.9790/1684-1706021121                                 www.iosrjournals.org                                            21 | Page 

[31]. M. Norouzi, M. M. Shahmardan, A. S. Zahiri, Bifurcation phenomena of inertial viscoelastic fluid flow through gradual expansions, 

Journal of Rheology Acta, Vol. 54, No. 123, pp. 423-435, 2015. 

[32]. Cruz, D. A., P. M. Coelho, and M. A. Alves. "A simplified method for calculating heat transfer coefficients and friction factors in 
laminar pipe flow of non-Newtonian fluids." Journal of Heat Transfer 134.9 (2012): 091703. 

[33]. Jalali, A., et al. "Numerical simulation of 3D viscoelastic developing flow and heat transfer in a rectangular duct with a nonlinear 

constitutive equation." Korea-Australia Rheology Journal 25.2 (2013): 95-105. 
[34]. Baptista, A., M. A. Alves, and P. M. Coelho. "Heat transfer in fully developed laminar flow of power law fluids." Journal of Heat 

Transfer 136.4 (2014): 041702. 

[35]. Alves, M. A., A. Baptista, and P. M. Coelho. "Simplified method for estimating heat transfer coefficients: constant wall temperature 
case." Heat and Mass Transfer 51.7 (2015): 1041-1047. 

[36]. Norouzi, M. "Analytical solution for the convection of Phan-Thien-Tanner fluids in isothermal pipes." International Journal of 

Thermal Sciences 108 (2016): 165-173. 
[37]. Letelier, Mario F., Cristian B. Hinojosa, and Dennis A. Siginer. "Analytical solution of the Graetz problem for non-linear 

viscoelastic fluids in tubes of arbitrary cross-section." International Journal of Thermal Sciences 111 (2017): 369-378. 

[38]. Shahbani-Zahiri, A., et al. "Numerical simulation of inertial flow of heated and cooled viscoelastic fluids inside a planar sudden 
expansion channel: investigation of stresses effects on the total dissipation." Meccanica 53.11-12 (2018): 2897-2920. 

 

Amir haghighatkhah, et. al. “Numerical investigation of non-Newtonian fluid flow in channels 

with local expansion.” IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 

17(6), 2020, pp. 11-21. 


