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Abstract: Beams are structural elements that primarily resist loads applied laterally by bending. They exhibit 

dynamic behaviours and hence the need to predict their dynamic characteristics for proper structural design. In 

the cause of some disturbances, beams start to vibrate which may result to some shear deformation on the 

fundamental frequency. Analysis of shearing effects on beams resulting from vibration is necessary in order to 

know how the member behaves. With this knowledge one can predict and avoid structural element from failure. 

Hence, this paper investigates shearing effects on free transverse vibration of beams. Classical method was 

adopted to determine the natural frequencies of beams with uniformly distributed mass along its length. 

Differential equations were formulated to describe the dynamic behaviour of Euler-Bernoulli beam and for 

when shear effects were considered for elastic beams. These governing equations were solved by applying 

boundary conditions of the beam. The beams considered are; simply supported beams, fixed-ended beams and 

propped cantilever beams. The shear effects on the fundamental natural frequencies of these beams were 

evaluated and result showed that in long beams, shear can be ignored with negligible effects in design whereas 

in short deep beams, the shearing effects are significant and have great influence on the frequency of such 

beam.   
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I. Introduction 
Beams are basic structural members that are widely used in the fields of mechanical, aeronautical, and 

civil engineering. Because the dynamic behaviour of a beam is of great importance in engineering, it is neces-

sary to be able to accurately predict the dynamic characteristics of beams. The free vibration characteristics of 

isotropic beams have been investigated by many researchers. The fundamental vibration behaviour of the slen-

der beams can be studied using the classical Bernoulli–Euler beam theory. However, this theory can lead to a 

significant over-prediction of the natural frequencies when it is used to study either thick beams or the higher-

order vibrational modes. This is because the effects of shear deformation and rotary inertia are ignored in this 

theory. An improved beam theory is the Timoshenko beam theory in which both the transverse shear deforma-

tion and rotary inertia effects are included [1]. He demonstrated the free vibration of laminated beams by using 

the analytical solutions of the governing equations of beams formulated for a generally layered composite beam 

on the basis of third-order shear deformation theory. 

Structural Engineering has been evolving continuously in some areas of emerging significance. This 

area of emerging significance is the shearing effects in free vibration of prismatic beams. Most often, the behav-

iour of structures or structural elements in static mode has been considered. However, there comes the possibil-

ity when the dynamic response of a structure need be considered as result of vibration effects. These effects can 

be from free or forced vibration [2]. Beams are structural elements that primarily resist loads applied laterally by 

bending and exhibit dynamic behaviours that make it very important in engineering, hence the need to predict 

their dynamic characteristics for proper structural design [3]. In a vibrating structure, the dynamic force arises 

from vibration of the element mass of the structure in which the mass and deformation properties are uniformly 

distributed along its length [4]. If the structure is sufficiently flexible, very large forces can be developed as a 

result of apparently small vibratory forces. 

Timoshenko was the first to develop and consider the vibrational theory of shear effects in beam analy-

sis. This theory requires the determination of a well-known shear correction factor, which is the ratio of the 

shear strain within the cross-section to the shear strain at the centre of the section [5] and [6] calculated the shear 

correction factor for a variety of cross-sections of the beams. 

 In Timoshenko beams of rectangular cross-section, the investigation showed that the shear correction 

factor is a factor of the aspect ratio of the beam [7]. Euler-Bernoulli‟s beam theory is the most commonly used 
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because it is simple and provides reasonable engineering approximations for many problems but it slightly over-

estimates the natural frequency of the system. Though the Euler-Bernoulli formulation for a thin beam vibration 

at relatively low frequency is sufficient, the effects of shear as well as rotary inertia are not negligible for thick 

beams or even thin beams that are vibrating at high frequencies [8] [9]. The proneness of a structure to vibratory 

forces is assessed by comparing natural frequencies of the structure with frequencies of the vibratory force, the 

fundamental frequency of a structure being the most important of other frequencies. In analysis of structures 

subjected to static forces only, the forces acting on the structure are in general independent of deformations of 

the structure provided that displacements are small [2]. The fundamental frequencies of the beam types were 

calculated and used to check the shear effect on free vibration of the element and the occurrence of resonance. 

The shearing effects on large amplitude vibration of beams were investigated and showed that shear 

has significant effects on thick and short beams [10] [11]. Zohoor and Kakavand [12], in their work recom-

mended Timoshenko model that shows the significance of shear effects on structures. In practice, it is common 

that these shearing effects can be safely neglected with little or no error for beams of normal proportion or long 

beams and shear included for short deep beams. But in principle, it is better to check these shear effects on 

beams (either long or short) to eliminate any form of failure. This paper shows the effects of shear on long and 

short prismatic beams as it is freely vibrating.  

 

II. System Description and Formulation of Governing Equation 
Considering a beam subjected to action of time dependent loads which will result in dynamic response. 

The cross-section of the beam was small in comparison with its length. Considering the transverse vibration of 

the prismatic beam in x-y plane as in Fig.1, the beam is subjected to time-dependent loads which will result in 

dynamic response. If the load is removed, the beam will commence to vibrate on its own. Since the beam is un-

excited by an external force, the vibration is free. 

 

 
Cutting an element of this beam and showing the free body diagram under free vibration, of length dx, with 

internal and inertial actions upon it as in Fig. 2; 

 

 
 From Fig.2, applying Newton‟s second law of motion, the equilibrium condition of forces in y-

direction when vibrating transversely is;  

 𝜌𝐴
𝜕2𝑦

𝜕𝑡2 =
𝜕𝑉

𝜕𝑥
           1 

Where: 𝜌 is mass density of the beam 

            A is cross-sectional area of the beam. 

   M is moment acting on the beam. 

    V is shear acting on the beam. 

And considering the moment equilibrium condition from centre of gravity of the beam element in Fig.2 gives; 

𝑀 −  𝑀 + 𝜕𝑀 + 𝑉
𝑑𝑥

2
+  𝑉 + 𝜕𝑉 

𝑑𝑥

2
= 0                                       2 

Expanding and solving Eq.2 gives; 
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𝑉 =
𝜕𝑚

𝜕𝑥
                                                                                                3 

From Euler-Bernoulli equation for bending of beam; 

 𝑀 = −𝐸𝐼
𝜕2𝑦

𝜕𝑥2            4 

Referencing Eq. 4, Eq.3 and then substituting into Eq.1 gives the basic partial differential equation governing 

flexural transverse free vibration of a prismatic beam when shear is ignored as; 

𝐸𝐼
𝜕4𝑦

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑦

𝜕𝑡2 = 0               5                                                                                                                  

When shear stress develops on beam as shown in Fig.3, this shear is assumed to be uniformly distributed over 

the cross-section. 

 

 
    

 𝑓𝑟𝑜𝑚 𝑡ℎ𝑖𝑠, 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑠𝑙𝑜𝑝𝑒 ′𝜃′ =
𝑑𝑦

𝑑𝑥
        6 

This slope comprises of bending slope „θb‟ and shear slope „θs‟ acting on the beam, i.e;  

 𝜃 =  
𝑑𝑦

𝑑𝑥
= 𝜃𝑏 + 𝜃𝑠          7 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 ′𝜏 ′ = 𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 ′𝛾′ =
V

GA
        8 

But most times, shear stress is not usually uniformly distributed over the cross-section then, Fig.4; 

 

 
 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠, 𝜃𝑠 =
V

KGA
          9 

Where G = modulus of elasticity in shear 

K = Timoshenko shear coefficient and a factor that depends on the shape of the cross-section. For a rectangular 

cross-section used, k = 0.833. 

Using Eq.7 and Eq.9 and the elementary flexure theory, the modified bending moment expression due to shear 

gives; 

𝑀 = 𝐸𝐼  −
𝜕2𝑦

𝜕𝑥2 +
1

𝐾𝐺𝐴

𝜕𝑣

𝜕𝑥
                                                   10 

Consequently, substituting Eq.3 into Eq.10, gives; 

𝐸𝐼
𝜕2𝑦

𝜕𝑥2 −
𝐸𝐼

𝐾𝐺𝐴

𝜕2𝑚

𝜕𝑥2 + 𝑀 = 0                               11                                                                          

Referring to Eq.1; 

𝜌𝐴
𝜕2𝑦

𝜕𝑡2 =
𝜕𝑣

𝜕𝑥
=

𝜕2𝑚

𝜕𝑥2                    12                                                                                                                         

 

Differentiating Eq.11 twice and substituting Eq.12 and then dividing with „EI′ gives the equations; 
𝜕4𝑦

𝜕𝑥4 −
𝜌

𝐾𝐺

𝜕4𝑦

𝜕𝑥2𝜕𝑡2 +
𝜌𝐴

𝐸𝐼

𝜕2𝑦

𝜕𝑡2 = 0         13 

Equation 13 is the partial differential equation that governs the transverse free vibration of prismatic beams with 

shear effects.  

 

III. Solution of the Equation Of Motion 
 To solve Eq. 13 which is the partial differential equation that governs the transverse free vibration of 

prismatic beams with shear effects, assume that the motion is simple harmonic; 

𝑦 = 𝑦 𝑥, 𝑡 = 𝑌(𝑥)𝑐𝑜𝑠𝜔𝑛 𝑡         15 
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 Where; ωn = Angular or circular frequency. Differentiating Eq. 15 and substituting into Eq.13 gives the 

ordinary differential equation governing the vibration of a beam when shear is considered as; 
𝑑4𝑦

𝑑𝑥4 +
𝜌𝜔𝑛

2

𝐾𝐺

𝑑2𝑦

𝑑𝑥2 −
𝜌𝐴𝜔2

𝑛

𝐸𝐼
𝑦 = 0                16                                                                                                       

Assume that  

  𝛼4 =
𝜌𝐴𝜔2

𝑛

𝐸𝐼
          17 

Referencing Eq.17,  

                𝜔𝑛 =  
𝐸𝐼

𝜌𝐴

𝛼2

          18 

 

Also form Eq.17, 

 𝜌𝜔2
𝑛 =

𝐸𝐼𝛼4

𝐴
          19 

Calling from Eq.16,  

 
𝜌𝜔2

𝑛

𝐾𝐺
=

𝐸𝐼𝛼4

𝐾𝐺𝐴
          20 

From Eq.20, let; 

 
𝐸𝐼

𝐾𝐺𝐴
= 2𝑓2          21 

Where 𝑓 is a factor accounting for shear in the beam; 

 𝑓 =  
𝐸𝐼

2𝐾𝐺𝐴
    And   

𝜌𝜔2
𝑛

𝐾𝐺
= 2𝑓2𝛼4       22 

Using these expressions and substituting into Eq.16 gives; 

 𝑦𝑖𝑣 + 2𝑓2𝛼4𝑦′′ − 𝛼4𝑦 = 0         23 

To solve Eq. 23, assume that 𝑦 = 𝑒𝜆𝑥 , the ordinary differential equation (ODE) becomes; 

𝜆4 + 2𝑓2𝛼4𝜆2 − 𝛼4 = 0          24 

This quadratic equation in „λ‟ gives the solution that λ1,2 = ±β1 and λ3,4 = ±β2i, where i =  −1. 

Finally,  

𝛽1 = 𝛼  1 + 𝑓4𝛼4 − 𝛼2𝑓2 
1 2 

         25 

𝛽2 = 𝛼  1 + 𝑓4𝛼4 + 𝛼2𝑓2 
1 2 

         26 

Then the differential equation will have the general solution as; 

𝑦 𝑥 = 𝐷1
1𝑒𝛽1𝑥 + 𝐷2

1𝑒−𝛽1𝑥 + 𝐷3
1𝑒𝛽2𝑖𝑥 + 𝐷4

1𝑒−𝛽2𝑖𝑥       27 

Since; 

𝑠𝑖𝑛ℎ𝛽𝑥 =  
𝑒𝛽𝑥 −𝑒−𝛽𝑥

2
          And                     𝑐𝑜𝑠ℎ𝛽𝑥 =  

𝑒𝛽𝑥 +𝑒−𝛽𝑥

2
     29 

 

From Eq. 29, it can be shown that; 

𝑒𝛽𝑥 = 𝑐𝑜𝑠ℎ 𝛽𝑥 + 𝑠𝑖𝑛ℎ 𝛽𝑥       And   𝑒−𝛽𝑥 = 𝑐𝑜𝑠ℎ 𝛽𝑥 − 𝑠𝑖𝑛ℎ 𝛽𝑥   30 

The Euler‟s formulae for complex analysis gives; 

𝑒𝛽𝑖𝑥 = 𝑐𝑜𝑠 𝛽𝑥 + 𝑖𝑠𝑖𝑛 𝛽𝑥  And 𝑒−𝛽𝑖𝑥 = 𝑐𝑜𝑠 𝛽𝑥 − 𝑖𝑠𝑖𝑛 𝛽𝑥     31 

Putting Eq.30 and 31 into Eq.27 gives the expression to determine or define the mode shape of a vibrating beam 

when shear is considered as;  

𝑌 𝑥 = 𝐷1 cosh 𝛽1𝑥 + 𝐷2 sinh 𝛽1𝑥 + 𝐷3 cos 𝛽2𝑥 +  𝐷4 sin 𝛽2𝑥     32 

From Eq.11 and Eq.12, 

𝑀 = −𝐸𝐼
𝜕2𝑦

𝜕𝑥2 −
𝜌𝐸𝐼

𝐾𝐺

𝜕2𝑦

𝜕𝑡2           33 

Eq.33 is a partial differential equation. In solving Eq.33, to ordinary differential equation, let‟s say; 

𝑀 𝑥, 𝑡 = 𝑀 𝑥 𝑐𝑜𝑠𝑤𝑛𝑡          34 

𝑌 𝑥, 𝑡 = 𝑌 𝑥 𝑐𝑜𝑠𝑤𝑛𝑡          35 

Substitute Eq.34 and 35 into Eq.33 gives that; 

𝑀(𝑥) = −𝐸𝐼
𝑑2𝑦

𝑑𝑥2 −
𝜌𝐸𝐼𝜔2

𝑛

𝐾𝐺
𝑌         36 

From Eq.22, let; 𝛷 =
𝜌𝜔2

𝑛

𝐾𝐺
 =  2𝑓2𝛼4        37 

Then with Eq. 37 and referencing Eq.36; 

            𝑀 𝑥 = −𝐸𝐼(𝑌′′ +  𝛷𝑌)         38 

 𝑉 𝑥 = −𝐸𝐼(𝑌′′
′ +  𝛷𝑌′)         39 

Eq. 38 and 39 is applied to determine the effects of shear on vibration of any given beam using boundary 

condition of the beam. Generally calling up Eq.32 which is, 
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𝑌 𝑥 = 𝐷1 cosh 𝛽1𝑥 + 𝐷2 sinh 𝛽1𝑥 + 𝐷3 cos 𝛽2𝑥 +  𝐷4 sin 𝛽2𝑥     
  

𝑌′ 𝑥 = 𝛽1𝐷1 sinh 𝛽1𝑥 + 𝛽1𝐷2 cosh 𝛽1𝑥 −  𝛽2𝐷3 sin 𝛽2𝑥 + 𝛽2𝐷4 cos 𝛽2𝑥    40 

 

𝑌′′ 𝑥 = 𝛽1
2(𝐷1 cosh 𝛽1𝑥 +  𝐷2𝑠𝑖𝑛ℎ𝛽1𝑥) −  𝛽2

2(𝐷3 cos 𝛽2𝑥 +  𝐷4 sin 𝛽2𝑥)    41 

 

𝑌′′′ 𝑥 = 𝛽1
3(𝐷1 sinh 𝛽1𝑥 + 𝐷2𝑐𝑜𝑠ℎ𝛽1𝑥) + 𝛽2

3(𝐷3 sin 𝛽2𝑥 −  𝐷4 cos 𝛽2𝑥)    42 

 

Referencing Eq.38 and 39, Eq.41 and 42 which represent the governing equations when shearing effect is 

accounted for in a beam can be written as. 

𝑌′′ 𝑥 = −𝐸𝐼[ 𝛽1
2 + 𝛷)(𝐷1 cosh 𝛽1𝑥 + 𝐷2𝑠𝑖𝑛ℎ𝛽1𝑥 + (𝛷 −  𝛽2

2)(𝐷3 cos 𝛽2𝑥 +  𝐷4 sin 𝛽2𝑥)]  43 

 

𝑌′′′ 𝑥 = −𝐸𝐼[𝛽1(𝛽1
2 + 𝛷)(𝐷1 sinh 𝛽1𝑥 + 𝐷2𝑐𝑜𝑠ℎ𝛽1𝑥) +  𝛽2(𝛷 − 𝛽2

2)(−𝐷3 sin 𝛽2𝑥 +  𝐷4 cos 𝛽2𝑥] 44 

  

IV. Solution of Beam Problems 
 In solving any given beam problem, essential boundary conditions must be applied to the formulated 

equations. For this analysis, the beam cases to consider include; simply supported beam, fixed ended beam, 

propped cantilever beam. 

Simply Supported Beam (SSB) 
The boundary conditions are 

At x = 0;  y(0) = 0  m(0) = 0 

At x = L                y(L) = 0  m(L) = 0 

Fixed Ended Beam (FEB) 

The boundary conditions are 

At x = 0;  y(0) = 0  θ(0) = 0 

At x = L;  y(L) = 0  θ(L) = 0 

Propped Cantilever Beam (PCB) 

The boundary conditions are 

At x = 0;  y(0) = 0  θ(0) = 0 

At x = L;  y(L) = 0  m(L) = 0 

Using the boundary conditions and with Eq. 32, 40, 43 and 44, gives the characteristic equation for the vibration 

of the beam. Consequently, a factor „S‟ that indicates the influence of shear on the beam is obtained as; 

  𝑆 =  
1

 1+
2𝐹2𝑛2𝜋2

𝐿2

          45 

Solving for the numerical values of shear on a beam, let 
𝐹

𝐿
 be a parameter for evaluating shearing influence on 

the frequency, using a rectangular beam for illustration; 

 

 
Fig.5: A rectangular beam section 

 

 𝐼 =  
𝑏ℎ3

12
,         𝐴 = 𝑏h ,  

𝐸

𝐺
= 2 1 + 𝜈  

Where ν = 0.25 is the Poisson‟s ratio, k = 0.833 for a rectangular cross-section   

Dividing Eq.22 with „L‟ and substituting the above derivatives results to: 

    
𝐹

𝐿
= 0.354

𝐻

𝐿
         46 

  Using trial and error method to solve for the value of  
𝐹

𝐿
  and also using Eq.25 and 26 and then 

substituting in the characteristic equation to find out if it is satisfied. The numerical effects of shear on 

rectangular beams are presented in tables below assuming; L = 10m, H = 1m. 
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V. Results 
Table 1: Aspect Ratio (H/L) and Shear Factor (F/L) effects on Beam length 

Length (m) 10 8 6 4 2 1 

H/L ratio 0.100 0.125 0.167 0.250 0.500 1.000 

F/L factor 0.020 0.040 0.060 0.100 0.200 0.400 

 

 
Fig.6: graph of Aspect ratio and Shear Factor on the beam length. 

 

Table 2:  The Factor „S‟ Indicating Shear Influence on the Beams 
 BEAM TYPE 

 SSB PCB FEB 

SHEAR FACTOR „S‟ AT ASPECT RATIO:    

0.100 0.996 0.995 0.995 

0.125 0.985 0.982 0.981 

0.167 0.966 0.961 0.958 

0.250 0.914 0.901 0.895 

0.500 0.748 0.720 0.708 

1.000 0.491 0.459 0.446 

 

 
Fig.7: Chart showing shear influence on the beam with respect to the Aspect ratio. 

       

Table 3: beams fundamental frequencies when shear is ignored. 
 BEAM TYPE 

FUNDAMENTAL FREQUENCY 

 SSB PCB FEB 

Shear ignored 9.869 15.421 22.373 
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            Table 4:  The Beams Fundamental Frequencies with Shear Effects. 
 BEAM TYPE 

FUNDAMENTAL FREQUENCIES WITH SHEAR 

EFFECTS 

 SSB PCB FEB 

Aspect Ratio:    

0.100 9.830 15.343 22.264 

0.125 9.722 15.141 21.945 

0.167 9.534 14.816 21.442 

0.250 9.021 13.896 20.033 

0.500 7.382 11.099 15.829 

1.000 4.846 7.077 9.976 

 

 
Fig.8: graph of shear effects on the Natural Frequency of the beams. 

 

VI. Discussion of Results and Conclusion 
The effect of shear on these beams; simply supported beams, fixed ended beams, propped cantilever 

beams using their fundamental natural frequencies were investigated and the results presented in tables above. 

From Fig.6, it can be observed that as the beam increases in length, shear factor and aspect ratio have significant 

effects on the beam which must be accounted for in the analysis and design of beams. The shear influence on the 

beam becomes stronger as the aspect ratio increases as shown in Fig.7. 

From the results gotten, by applying the shear effects on the natural frequencies as in Fig.8, the natural 

frequencies were significantly affected as aspect ratio increases. For instance, at aspect ratio from 0.25 and 1.0, 

the natural frequencies with shear considered of a fixed ended beam are 20.033 and 9.976 as compared to the 

frequency when shear effects was ignored in table 3. This is applicable in short deep beams or at higher 

frequency modes when a continuous beam vibrates with many nodes in a span implying that shear effects in 

flexure design has great influence on the frequency of such beam.  

In practical structures, higher frequencies are of very little interest and the effects of shearing 

deformation are most times ignored. This is because long beams are mostly used in construction. But for 

stability of structures, majority of design checks for structures subjected to vibration involves calculating its 

natural frequency and comparing with the frequency of the vibratory force acting on the structure to avoid 

resonance as the structure starts vibrating freely. This analysis shows that natural frequencies of vibrating beams 

with shear considered depends on the aspect ratio and slenderness of that beam and should be properly checked 

to prevent resonsnsce.       
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