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Abstract: In this investigation the buckling behavior of single-layered functionally graded nanoplates with 

uneven porosities exposed to hygrothermal loads is modeled for the first time. Using the Eringen’s nonlocal 

elasticity theory with one scale parameters, the small size effect on the buckling behaviour of the functionally 

graded nanoplates is considered. Based on the new first order shear deformation theory the equations of 

equilibrium are obtained from the principle of minimum potential energy. Also, elastic Pasternak foundation is 

adopted to capture the foundation influence on the critical buckling load.  The equations of equilibrium are 

solved for various boundary conditions using Galerkin’s method. The impacts of nonlocal parameter, porosity 

distribution and boundary conditions on the critical buckling load are demonstrated.‚ 
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I. Introduction 
Functionally graded (FG) plates and nanoplates have an inhomogeneous structure and very good 

properties under thermal loadings due to the change of mechanical and thermal properties in the thickness 

direction. FG nanoplates are made from a mixture of ceramic and metal with a change of mechanical properties 

between two surfaces. FG nanoplates as well as other nanostructures have size dependent mechanical properties 

and behaviours. In analyzing their mechanical behaviour a conventional form of continuum mechanic which 

takes into account the influence of size effects is required. The nonlocal theory of elasticity of Eringen’s [1,2] is 

a continuous mechanical model that introduces influence of atomic length scale into the constitutive relations 

via material (nonlocal) parameter. 

Daneshmehr et al. [3] studied the buckling behaviour of FG nanoplates with different boundary 

conditions using the nonlocal elasticity and higher order plate theories. Sobhy [4] investigated the bending 

response, free vibration and mechanical buckling of single-layered FG nanoplate embedded in elastic medium 

using the four-unknown shear deformation theory incorporated in nonlocal elasticity theory. Ansari et al. [5] 

applied nonlocal three-dimensional theory to investigate to free vibration of FG nanoplates resting on elastic 

foundation. Khorshidi and Fallah [6] presented the buckling analysis of FG nanoplate based on nonlocal shear 

deformation theory. Liu et al. [7] performed an analysis of nonlocal vibration and biaxial buckling of double-

viscoelastic FG nanoplate on the basis of nonlocal elasticity theory and the Kelvin model. Shahverdi and Barati
 

[8] investigated the vibration beahaviour of porous functionally graded nanoplates using a general nonlocal 

strain-gradient theory. Barati and Zenkour
 
[9] investigated the wave propagation of nanoporous graded double-

nanobeams based on the general bi-Helmholtz nonlocal strain gradient elasticity. She et al.
 
[10] carried out the 

vibration behaviour of porous nanotubes based on the nonlocal strain gradient theory and refined beam theory 

which includes effects of shear stress. Shafiei and Kazemi [11] used the modified couple stress theory to analyze 

the buckling behaviour of functionally graded porous nano-/micro-scaled beams. Radić [12] examined buckling 

behaviour of double-layered porous FG nanoplates in Pasternak elastic foundation using nonlocal strain gradient 

theory. 

To the authors’ best knowledge, the buckling behaviour of a single-layered FG nanoplates with 

uneven porosities and various boundary conditions has not been studied in the open literature.  

 

II. Theoretical formulation 
2.1 Porosities and thickness dependent material properties of FG nanoplate 

Consider a single-layered FG nanoplate resting on elastic Pasternak foundation with uneven porosities 

distribution of uniform thickness h, length xL  and width 
yL  associated with the z, x and y-axes of the coordinate 

system. The present single-layered FG nanoplate is under in-plane mechanical and hygrothermal  compressive 

load and embedded in Pasternak foundation. 
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Figure1: Configuration of uneven porous single-layered FG nanoplate 

 

 The FG nanoplate is assumed to be composed of mixture of Al and Al2O3 and exposed to hygrothermal 

environment. For uneven distribution of porosities the Young’s modulus E is changed continuously in the 

thickness direction by the following form. 
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where p is the non-homogeneity or power-law index (p is a non-negative parameter) which determine the 

material distribution across the nanoplate thickness. 

 

2.2 New First Order Shear Deformation Theory (NFSDT) 

The present displacement field of new first order shear deformation theory can be expressed as [12] 
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where u , v  and w are the displacement of mid-plane of FG nanoplate along x, y and z-axis respectively,   and 

  is   rotation parameter. 

The position of the physical neutral surface 
0z  can be determined from the condition that the integral of the first 

momentum of elasticity modulus ( )E z  in the direction of z-axis  is equal to zero. 
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Nonzero strains components of the observed nanoplate model can be deduced as  
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(4) 

For the present buckling case the principle of minimum of potential energy it given as 

  0U V                       

(5) 

Where the strain energy is defined by U and work of in-plane loads and elastic foundations is defined by V. 

The virtual strain energy  U  for the new first-order shear deformation theory can be written as 
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Substituting Eqs. (2) and (4) in Eq. (6) yields 
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The nonlocal stress resultants
iN , 

jQ and 
iM are obtained from the following expression 

/ 2

/ 2

/ 2

/ 2

/ 2

/ 2
( , , ; , )

h

i i
h

h

j s i
h

h

i i
h

N dz

Q K dz

M z dz i xx yy xy j xz yz

















  







                              

(8) 

We can define the varation of the work done by applied loads in the integral form 
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(9)      

where, wk and Gk  are Winkler and Pasternak parameter of elastic foundation, TN  and HN  are the external 

thermal and hygro forced due to the changes of temperature and moisture 
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The governing equations of equilibrium for buckling behaviour are obtained by substituting Eqs. (7) and (9) in 

Eq. (5) when the coefficients of w  and   are equal to zero 
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2.3 The nonlocal elasticity theory for FG nanoplates 
Making certain assumptions presented by Eringen [1,2] we will assume the nonlocal differential constitutive 

equation as  
2 2
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where 2  is the Laplacian operator which is defined by 
2 2 2 2 2( / / )x y       ,and 0e a is the nonlocal 

parameter that takes into account the small scale effects into the differential constitutive equation.  
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Based on Eqs. (11) the stress-strain constitutive equations of a rectangular FG nanoplates can be written as 
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 where    denote Poisson’s ratios. 

 

2.4 Equations of equilibrium of single-layered FG nanoplates 

 Equations of equilibrium of nonlocal elasticity theory and new first order shear deformation theory for 

investigation the buckling behaviour of single-layered FG nanoplates with uneven porosities and hygrothermal 

in-plane loadings can be written in the terms of displacements as follows 
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III. Solution by Galerkin’s method 
 In this section, by using Galerkin’s method, the governing equations of equilibrium for buckling study 

are solved for simply supported (S) and clamped (C) boundary conditions. 

The analytical solution for displacement field of Eqs. (15) and (16) can be introduced as: 
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In this study the single-layered FG nanoplate is assumed to have simply supported (S) and clamped (C) 

boundary condition or have combinations of them, and the functions ( )X x  and ( )Y y that satisfy above 

boundary conditions can be written as:   

 

SSSS: 

( ) sin( ), ( ) sin( )X x x Y y y                                              

(18) 

CCCC: 
2 2( ) sin ( ), ( ) sin ( )X x x Y y y                                              

(19) 

SCSC: 
2( ) sin ( ), ( ) sin( )X x x Y y y    

where ,x ym L n L       

Substituting Eq. (17) into Eqs. (15) and (16) and implementing the Galerkin’s method the equations of 

equilibrium in terms of parameters mnW , 
mn , can be obtained from 
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IV. Numerical results and discussions 
In this research the material properties of single-layered FG nanoplate (Al and Al2O3) are given as: 

380 , 0.3, 70 , 0.3c c m mE GPa E GPa      

In the present investigation the following dimensionless parameters are used: 
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In Fig. 2 the nondimensional critical buckling load is plotted as a function of the uneven porosity volume 

fraction for SSSS boundary conditions. From Fig. 2 it can be seen that the value increase of the uneven volume 

porosity fraction has a linear decreasing effect on the nondimensional critical buckling load. 

 

 
Figure 2: Variation of nondimensional critical buckling load versus uneven porosities for SSSS boundary 

conditions 

 

 From Fig. 3 it can be noticed that in the case of SCSCS boundary conditions the behaviour of a FG 

single-layered nanoplate with the change of value of uneven porosity volume fraction and nonolocal parameter 

is the same as in the case of SSSS boundary conditions. It can easily be seen that in the case of SCSC boundary 

conditions buckling, the value of nondimensional critical buckling load is higher than the case of SSSS 

boundary conditions. 

 

 
Figure 3: Variation of nondimensional critical buckling load versus uneven porosities for SCSC boundary 

conditions 
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 Fig. 4 demonstrates the effects of the uneven porosities on value of nondimensional critical buckling 

load for CCCC boundary conditions. It can be concluded that the value of the nondimensional critical buckling 

load is reduced when the value of the uneven porosities volume fraction rises. 

 

 
Figure 4: Variation of nondimensional critical buckling load versus uneven porosities for CCCC boundary 

conditions 

 

V. Conclusion 
We present in this paper the buckling behaviour of the FG uneven porous single-layered nanoplates 

subjected to in- plane mechanical and hygrothermal and various boundary conditions. The Galerkin’s method 

has been used to solve the equations of equilibrium   for SSSS, SCSC and CCCC boundary conditions.  

Numerical results are presented to investigate the effects of uneven porosity volume fraction on nondimensional 

critical buckling load for three observed boundary conditions. It is noticed that increasing the value of uneven 

porosity volume fraction will decrease the value of nondimensional critical buckling load for the case of SSSS, 

SCSC and CCCC boundary conditions.  
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