
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)  

e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 6 Ver. III (Nov. - Dec. 2017), PP 50-57 

 www.iosrjournals.org 

DOI: 10.9790/1684-1406035057                                   www.iosrjournals.org                                           50 | Page 

 

Consistent Mass Formulation in Dynamic Analysis  

of Structural System 
 

Binsar H. Hariandja
1
 

1
(Civil Engineering Department, Bandung Institute of Technology, Bandung, Indonesia) 

Corresponding Author: Binsar H. Harindja 

 

 

Abstract: The paper deals with frequency analysis of irregular framed structures. The analysis used finite 

element method cast in matrix formulation. In frequency analysis of framed structure with relative rigid floor 

system, the mass of structure is lumped at each floor. In the dynamic analysis proposed herein, the analysis is 

carried out by adopting consistent mass formulation, i.e., the inertial forces are applied material point wise. 

Using finite element formulation tends to increase structural degrees of freedom.To reduce structural degrees of 

freedom, static condensation and multi-point constraint algorithms are used. The natural frequency resulted out 

of proposed analysis is then compared to that obtained by assuming rigid floor. The difference between due two 

results differ significantly, especially for irregular type of structure. 

Keywords: consistent mass formulation, dynamic analysis, finite element method, multi point constraint, 

natural frequency, static condensation. 

------------------------------------------------------------------------------------------------- -------------------------------------- 

Date of Submission: 08 -12-2017                                                                         Date of acceptance: 23-12-2017 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

I. Introduction 
In the application of finite element method being a numerical analysis, the analysis is carried out using 

discrete model as a representation of real structrure. To preserve the accuracy of the solution, finer element 

meshing may be used. However, the use of finer elements tends to increase the number of degrees of freedom, 

and hence increase the numerical work involved. To decrease the number of degrees of freedom, and hence the 

number of dynamic modes, several assumptions are taken; for example, the floors are assumed to be rigid 

compared to columns that the nodal rotations at column and beam connection may be neglected, and the 

sidesways of floors are the  remaining degrees of freedom. The mass of the structure is lumped in horizontal 

displacements of floors. In the proposed paper, consistent mass distribution is assumed and all degrees of 

freedom are assumed to be active. Then, some of the degrees of freedom are statically condensed by applying 

static condensation or multi-point constraint method. Therefore, assumptions that the floors are rigid and the 

mass is lumped at directions of horizontal displacements are not used. The results out of proposed method differ 

significantly from that given by conventional method. The proposed method especially suitable to be applied to 

irregular structural systems. 

 

II. Dynamic Analysis of Regular and Irregular Structural System 
Regular structural system is referred to the structure in which columns and beams are placed in regular 

fashion such as depicted in Fig. 1. The columns and beams are arranged in such a way that the strong 

displacements are horizontal sways of the floors as drawn in Fig. 1.  

Figure 1: Regular Frame, Floors Are Rigid 
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By assuming that the floors are rigid relatively to the columns, the floors behave like rigid floors that 

undergo horizontal displacements and no end rotations. For plane frame, there are 6 nodes with 6 x 3 = 18 active 

degrees of freedom at nodes 2, 3, 5, 6, 8 and 9. Assuming that the floors are rigid, nodal rotations and axial 

deformations are ignored, ending with 2 degrees of freedom; i.e., horizontal sways at storeys. This simplified 

model is usually adopted in regular structural frame system. If the the structure is regular, the assumptions 

mentioned above would give fairly accurate results. But this is not the case in irregular structural system. In this 

kind of irregular structural system, assumptions considered in regular structural system no longer provide good 

results. 

Now consider a system in Fig. 2 which actuallyis similar to the structure in Fig. 1 except that the mid 

column 45 is removed. With respect to lateral load, in addition to horizontal sways and nodal rotations, vertical 

sway occurs at node 5 as shown in Fig. 2. 

Figure 2: Irregular Frame 

 

III Dynamic Analysis of Structural System 
In this chapter, both regular and irregular structural plane frames are considered. The regular structure is 

depicted in previous Fig. 1, while irregular structure is shown in Fig. 2. 

 

3.1.  Analysis of Regular Structural System 

Regular plane frame degrees of freedom is shown in Fig. 3. By assuming that floors are relatively rigid 

compared to adjoining columns, only horizontal sways of floors are considered as degrees of freedom, i.e., 1U  

and 2U . Equilibrium of  shear forces in directions of the two degrees of freedom leads to the following 

simultaneous equation 

Figure 3: Degrees of Freedom, Regular Frame 
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in which { 1U , 2U } is vector of horizontal displacement of storeys 1 and 2, { 1M , 2M } mass vector, { 1U , 2U

} acceleration vector,  tU  ground acceleration, EI flexural rigidity of column and L  height of floor.  

 

 

For irregular frame shown in Fig. 2, the removal of column 45 but applying rigid floor assumptions leads to  
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3.2.  Analysis of Irregular Structural System 

In Section 3.1, the irregular structural system in Fig. 2 is obtained by deleting column 45 but upon 

which assumptions of rigid floor is still applied. In this section, irregular system is analyzed by applying 

consistent mass concept. All degrees of freedom are assumed to be active and included in equilibrium 

consideration. Therefore, there are 20 degrees of freedom as shown in Fig. 3. Degrees of freedom 1U  and 2U  

are treated as master degrees of freedom, 3U  till 18U  are condensed slave degrees of freedom, whereas 19U  

and 20U  are restrained degrees of freedom. The displacement vector }{U  is decomposed to master 

displacement vector }{ mU , condensed displacement vector }{ sU , and restrained displacement }{ rU . Sub 

vectors }{ mU  and }{ sU  form free displacement vector }{ fU . 

The following dicussions deal with finite element formulation, static condensation algorithm and multi-

point constraint scheme.  

 

3.2.1 Consistent Mass Finite Element Formulation 

The following is the finite element formulation of consistent mass scheme. The displacement of 

element in local coordinates reads 
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External work done by inertial force in direction of { u , w } becomes 

δW =    δu T  N  mdx +   δu T N  mda (5)  

The use of interpolating function in (12) in (13) provides  
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which results in consistent element mass matrix 
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in which m is the mass of element per unit volume, A element cross sectionand L the length of element. It seen 

that the mass consistent matrix is simetric and may be may be transformed from local to global coordinates,  

      eee MRm   (8) 

and assembled the mass matrix onto global mass matrix  
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3.2.2 Static Condensation 
The equilibrium equation is decomposed in the form 
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or 
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First, to find structural force vector due to earthquake excitation, the equation is further arranged as 

follows. Due to the fact that acceleration is second derivative of displacement with respect to time, then ground 

acceleration also obeys kinematically admissible criterion of displacement field, then can be written that. 


























}0{

}0{

}{

}{

][][

][][

r

f

rrrf

frff

U

U

KK

KK




 (12) 

The ground acceleration creates foundation acceleration 
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that together with Eqn. 5 give 
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and the structural acceleration becomes  
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This acceleration is then utilized to form intertia force in elements as follows. First, acceleration on element 

ends are computed by  
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in global system coordinates, and 
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The global dynamic equilibrium of the system then  
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in which sub-matrices related to mass matrices in (18) are formed based on computation of equivalent intertial 

force in (8). The equilibrium equation may also be partitioned in the form  
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 The solution to (18) is obtained by first performing static condentation process, i.e., the sub-solution   



Consistent Mass Formulation In Dynamic Analysis  of Structural System 

DOI: 10.9790/1684-1406035057                                   www.iosrjournals.org                                           54 | Page 
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which in turn is used to find  
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 Solution  mU for (21) then is inserted to (20) to computed for  sU  to complete the solution. Observe 

that the above scheme deals with lesser number of final degrees of freedom.   

One may raise a question as how to select condensed degrees of freedom  sU and retained degrees of 

freedom  mU . Generally, the degrees of freedom that define the shape of the structure may be chosen as 

retained degrees of freedom. Other retained degrees of freedom may also be chosen by performing sensitivity 

analysis.  

 

3.2.3. Multi-point Constraint Algorithm 

To begin, consider a special relationship among master degrees of freedom vector  
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The size of coefficient matirx  A  in (23) is )( qp , then the constrained displacement vector  CU  is 

partitioned in 3 sub-vectors; i.e., master displacement vector  mU  with size 1)(  pq , constrained 

displacement vector  sU  with size )1( p . The third sub-vector is  fU  containing free displacement 

components. The partition of displacement vector is  
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which consistently partition stiffness matrix in the form 
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Prior to the substitution of (23) into (25), we observe that constraint in (23) is identically with the 

application of constraint vector on upper portion of lower partition (25) with the application of reaction force 

vector  sR  such that 
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Displacement vector in (25) is denoted with bar on top to state that the vector is not yet modified by constraint,  

 

     

     

     

 

 

 

 

 

 













































































s

m

f

s

m

f

sssmsf

msmmmf

fsfmff

P

P

P

U

U

U

KKK

KKK

KKK



















 (27) 

 

Further, displacement vector   U  in (27) is related to  U with transformation process 
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in which lower partition provides 
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Referring to the form in (29), fulfillment of (23) is identic with the application of the following constraint, 
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 (31)  

or 

    '' PUKm   (32) 

 

Now a virtual but kinematically admissible displacement field is assumed,  
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Insertion of (28) in(31) and with pre-multiplication of obtained equation with (33) result in 

                '' BPRUURKRU
TT

m

TT
   (34) 

Due to the fact that U  is arbitraly but kinematically admissible, (34) gives 
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Observing the form, (35) resembles the combination of basic equilibrium equation and multi-point 

constraint equation. So the solution of this equation satisfies the two equations. It is interesting to see that the 

new equilibrium equation involves modified stiffness matrix which is symmetric. The obtained solution then 

may be used in (26) to compute for reaction force vector,   

 

            ssssmsmfsfs PUKUKUKR   (36) 

 

IV. Computer Programming 
A computer program package for structural analysis was written in Fortran leaguage. The program was 

equipped with several features; i.e., multi-point constraint [3] and static condensation [1]. The degrees of 

freedom were catogarized in master, slave and restraint sub-vector  mU , sU and rU . The grouping of 

degrees of freedom was done by  denoting activity of node with 1, 2, 3, and 0 for master, slave, restraint inactive 

degrees of freedom such that the degrees of freedom are grouped in the same sub-vector. Unfortunately, this 

scheme will alter the size of half-bandwidth of the global stages matrix. And other method is not to arrange 

degrees of freedom sequently according to category, but to perform static condensation and multi-point 

constraint by row-wise. In this method, partitioning process as in (18) is not carried out formally. The program 

was then applied to case study in the following chapter. 

  

V. Case Study 
 In the study, three cases are investigated; i.e., (1) regular plane frame as in Fig. 1 with the assumptions 

that the floors are rigid and structural mass is lumped, (2) irregular plane frame as in Fig. 2 with the assumptions 

that the floors are rigid and structural mass is lumped and (3)irregular plane frame as in Fig. 2 with no 

assumptions that the floors are rigid and structural mass is lumped. See Table 1 as explanation. In all cases, only 

horizontal sways of the floors are retained as degrees of freedom, leading to 2 dynamic modes. Only natural 

frequencies are computed for all cases and then compared one to another.  

The beam span is 600 cm and the dimension is b x d = 30 cm x 60 cm. The clolumn height is 400 cm and 

the dimension is b x d = 30 cm x 30 cm. The components are made of concrete with elastic modulus E = 20,000 

MPa, Poisson’s ratio ν = 0.0 and mass m = 0.024 kgm/m
3
.  

 

Table 1: Study Cases 

Analysis Remark 

I 2-storey regular frame, with assumed rigid floor and lumped mass 

II 
1 2-storey irregular frame, with assumed rigid floor and lumped mass 

2 2-storey irregular frame, with no assumed rigid floor and lumped mass 

 

Based on the computer run for dynamic analysis of the three cases in Table 1, the computed natural 

frequencies are tabulated and compared in Table 2. It is shown that the natural frequencies of Cases I and II.1 

are the same. However, the natural frequency of Case II.2 is different significantly to those of Cases I and II.1. 

The difference is due to the computation of structural mass and stiffness matrices that are computed in different 

manner. Mass matrices in Cases I and II.1 are computed based on lumped mass procedure, whereas the matrix in 

Case II.2 is computed based on consistent mass procedure.    

 

 

Table 2: Comparison of Natural Frequencies 
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Analysis 
Natural Frequency (rad/sec) 

mode 1 mode 2 

I 0.646 1.644 

II.1 0.674 1.939 

II.2 0.5366 1.197 

 

Table 2 demonstrates that stiffness of irregular frame is less that of regular one, hence the angular 

frequency is smaller and natural period is larger that of regular one. The natural frequency of Case II.2 is more 

accurate since its discrete model represents the actual structural system more accurately. Therefore, modal 

analysis of Case II.2 will be more closely to the actual result compared to those of Cases I and II.1.  

  

VI. Conclusions 

Based on the comparison among cases in Chapter V, it is concluded simplification in structural dynamic 

analysis based on the assumptions that the floors are rigid and the mass is lumped in retained nodes, provides 

results with accuracy that depends on irregularity of the system. For regular system, the assumptions still 

provide relatively accurate results, but this is not the case with irregular system.  The proposed method using 

consistent mass formulation may be applied to regular as well as irregular systems with good accuracy of 

results.   
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