
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)  

e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 6 Ver. II (Nov. - Dec. 2017), PP 55-63 

www.iosrjournals.org 

DOI: 10.9790/1684-1406025563                                    www.iosrjournals.org                                          55 | Page 

 

Dynamic Study of A Wind Turbine Blade Using Bond Graph 
 

Zakaria Khaouch
1
,Mustapha Zekraoui

1
,Mustapha Adar

1
, 

Nourreeddine Kouider
1
,Mustapha Mabrouki

1
 

1
Industrial Engineering Laboratory, Faculty of Science and Technology, Sultan Moulay Slimane University, 

Beni Mellal, Morocco. 

Corresponding Author:Zakaria Khaoch  

 

Abstract: The design of a wind turbine system (sizing, control), needs the use of performing simulation tools 

agreeing to specifications in terms of quality of produced electricity, stability and safety. The effects of the wind 

speed change, the variation of cinematic movement parameters, the structure aero elastic response and the 

definition of subsystems characteristics that makes the entire wind turbine system, including blades, tower, drive 

train, rotor and control system allow one to characterize the structural dynamic behavior of the wind turbine. 

This paper presents a novel methodology to study the dynamic behavior of wind turbine blades with horizontal 

axis using the Bond Graph Method. The model is based on the theory of three-dimensional Rayleigh beam, 

composed of a number of variable sections of the type NACA 4415 airfoil, and takes into account the axial and 

tangential flexion and free torsion effects with regards to the aerodynamic loads (the lift, the drag and the 

pitching moment) calculated using the BEM theory. A validation has been undertaken by considering data from 

a NACA 4415 blade profile. 
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I. Introduction 
Energy is an essential element for the economic progress of most countries. The increasing concern 

about climate change and pollution has led to the development and improvement of renewable energy sources. 

Wind energy is the fastest-rising renewable source. The most common device to convert the wind kinetic energy 

into electrical power is the horizontal axis wind turbine (HAWT), typically having a three-blade rotor. The 

power captured by wind turbines is proportional to the swept area of the rotor disc, to be a competitive energy 

resource over other energy generation systems, the overall wind turbines size (blades) must be increased. At the 

same time, the turbine weight must be less. This results in more slender and lighter structure. Therefore, the aero 

elastic deformation of wind turbines structure (blades) is unavoidable, which leads to vibratory loads, and alters 

the turbine power performance [1]. Consequently, it is important to better understand the aero elastic behaviors 

of the rotor blades such that large-scale wind turbines well be designed to be a more efficient and reliable energy 

production system. 

There have been many studies on the blade dynamic problem, [1] established a three-degrees-of-

freedom analytical model (including rigid body flap, lead/lag and feather motion) for a rigid blade and studied 

the nonlinear dynamics of the blade. [2] considered horizontal axis wind turbine as a multi-flexible-system 

composed of rigid subsystems (hub and nacelle) and flexible subsystems (blade and tower). And established a 

blade model by using the FEM. [3] use the principle of virtual work in combination with the FEM to model the 

wind turbine  blade in which the warping, extension and tilt effects of the cross section were included.[4–7] 

introduced a variational model for the coupled flap–lead/lag–feather vibration of blades based on the Euler–

Bernoulli beam theory. The effect of support point motion was emphasized in this model.[8] proposed an 

analytical model for the couple extension-flap–lead/lag–feather vibration of elastic, isotropic, non-uniform 

blades, and dealt with linear modal and nonlinear normal modes problems. [9] introduced a mathematical model 

for the lead/lag motion of a blade subjected to gravitational and aerodynamic loading, and performed a 

perturbation analysis for the nonlinear dynamics of the blade in super- and sub-harmonic resonances.  

These works on analytical models of rotating blades are all dealing with only structural part or 

aerodynamic part. Therefore, it is necessary to move towards a more unified approach for modelling wind 

turbine systems as a whole for understanding, analyzing and hence designing this multidisciplinary system 

[10].Bond graph methodology allows its further integration to bond graph model of drive train, tower and 

generator providing a common platform to access the whole turbine system [10] and to deal with control 

problems [11]. 
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A Bond Graph [10,11,12,13] is a graphical representation of a physical dynamic system. It is similar to 

the better known block diagram and signal-flow graph, with the major difference that the arcs in bond graphs 

represent bi-directional exchange of physical energy, while those in block diagrams and signal-flow graphs 

represent unidirectional flow of information. In addition, Bond Graphs are multi-energy domain (e.g. 

mechanical, electrical, hydraulic, etc.). This means that a Bond Graph can incorporate multiple domains 

seamlessly. 

The Bond Graph is composed of the ”bonds” which link together ”single port”, ”double port” and ”multi-

port” elements (R, I, C, TF and GY) [10,11,12,13].Each bond represents the instantaneous flow of energy 

(dE(t)/dt) or power P(t). A pair of variables called “power variables” whose product is the instantaneous power 

of the bond denotes the flow of energy in each bond. Each domain’s power variables are broken into two types: 

“effort e(t)” and “flow f(t)”. Effort multiplied by flow produces power, thus the term power variables. Every 

domain has a pair of power variables with corresponding effort and flow variables. 

Causality - a bond graph must determine which of the two power signals for the subsystem is entering, 

and which in turn dependent variable, thus acting on the subsystem. Causality is referred by perpendicular to the 

detention site where the flow enters the subsystem variable effort. Between the building elements of bond 

graphs which in practice are sufficient, and that we classify according to the number of bonds are one-port, two-

port and multiport. One-ports are elements that exchange energy in the system only via one link. This group 

includes:   

 Source of effort "SE". 

 Source of flow "SF". 

 One port C element (Capacitor). 

 One port I element (Inductor). 

 One port R element (Resistor). 

Two-ports are elements of the system which can exchange energy via two bonds. Thus, two-ports retain 

power, it is supposed that the product of effort and flow at the exit is equal to the product of effort and flow at 

the inlet. There are two basic types of two-ports: 

 Transformer "TF". 

 Gyrator "GY". 

One-ports are attached to two-ports in the bond graph by connecting nodes. The power is branched in the 

nodes. There are two types of nodes: 

 1 – junction. 

 0 – junction. 

The 1 – junction for all the power bonds that lead to the same node flow (f) and node describes the 

balance of effort (e).   

0 - junction is the power of all bonds that lead to the same node of effort (e) and node describes the 

balance of the flow (f). 

 

The main advantages of the Bond Graph tool for modeling purposes are summarized through few keywords:  

1. Modeling: the Bond Graph is a unified representation language, which explicitly highlights the power flows, 

makes possible the energetic study,  simplifies models building for multi-disciplinary systems, explicitly 

shows up the cause - effect relations (causality) and leads to a systematic writing of mathematical models 

(linear or nonlinear associated). 

2. Identification: identification of unknown parameters, but knowledge of the associated physical phenomena 

and mastering physical meaning of the obtained model. 

3. Analysis: Putting to the fore the causality problems, and therefore the numerical problems, model dynamic 

estimation and identification of the slow and fast variables. 

4. Control: Design of control laws from simplified models. 

5. Simulation: Specific software (20-Sim) 

 

In the present work, we study the dynamic structural behavior of the wind blade in term of the Bond 

Graph approach. The blade is considered as a three-dimensional Rayleigh beam composed of a number of 

sections submitted to aerodynamic forces calculated using the BEM theory. In [14], a structural model of the 

wind turbine blade is proposed using the bond graph approach based upon the Rayleigh beam model. The blade 

– assumed as a twisted beam – is divided into three components, each of which is subject to the aerodynamic 

wind forces. Nevertheless, the deformation of the axial extension and the pitching moment applied to the center 

of gravity are not taken into consideration. These “gaps” are addressed in this paper where they are integrated in 

our model. The model describe the nonlinear vibration of wind turbine blades. The system consists of three 

components of deformation including longitudinal vibration (named axial extension), outof-plane bend (named 

flap), in-plane/edgewise bend (named lead/lag) and torsion (named feather).  
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This paper is organized as follows: Section 2 presents aBond graph model of the wind turbine blade. 

Section 3 is concerned with Aerodynamic model of the wind turbine. TheSection 4 includes a simulation and a 

validation of the proposed model. The concluding remarks are given in Section 5. 

 

II. Bond Graph Model Of The Wind Turbine Blade 
In this section, we study the structural dynamic behavior of the wind blade. A blade Bond Graph model 

is developed. It consists of considering the blade as a three-dimensional beam composed of a number of variable 

sections according to NACA 4415 aerofoil sections (Fig. 1(a)). 

 

 
Fig. 1 Turbine Blade with space reticulation (a), Dynamic model of blade (b) 

 

The study of the dynamic behavior of a wind turbine blade can be undertaken by various methods of 

analysis. The Euler-Bernoulli beam model is the simplest form. It does not consider rotary inertia of the beam 

and its shear deformation. However, this approximation gives nearly accurate results for slender beams, i.e., 

when the depth of the beam is much smaller than its length. The Rayleigh beam formulation, which accounts for 

the rotary inertia of the beam, is an improvement over Euler-Bernoulli formulation. Rayleigh beam formulation 

gives better approximation of the natural frequencies of a slender beam than the Euler-Bernoulli formulation and 

it requires less number of discrete elements to create a model. The shear deformation effect becomes prominent 

when the beam thickness is large and the model of such system is constructed by accounting for the additional 

deformation of each element due to the shear force. In the present work. The blade is considered as a three-

dimensional Rayleigh beam composed of a number of sections submitted to aerodynamic forces.The dynamic 

model of the blade is shown in Fig. 1(b). 

 

2.1. Rayleigh Beam Model 

The Rayleigh beam formulation is based on shear force and bending moment representations given in 

Newtonian convention, where a common reference is taken for both faces of the beam element: upward shear 

force is positive force and anticlockwise moment is positive moment (Fig. 2). The rotation of the beam segment 

is explicitly modeled in Rayleigh beam formulation. The beam segment is assumed to store potential energy due 

to four distinct displacements: displacements of either end and rotations of either end. 

Fig. 2 Turbine Blade with space reticulation (a), Dynamic model of blade (b) 

In a bond graph formulation, the potential energy storage is representedas a four-port C-field. The i
th

 

beam element is influenced by displacements yi and yi+1, and rotations ψi and ψi+1. The flow variables in four 

ports of the C-field are the corresponding linear and rotational velocities. The effort variables are the shear 
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forces and bending moments. The stiffness of the beam element relates these generalized Newtonian forces to 

the generalized displacements at the ends of the element as (1), (2) and (3). 
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Where [Kfyi] is the flexural stiffness around y, [Kfzi] is the flexural stiffness around z and, [Kt] is the 

flexural stiffness  
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Where E is the Young module of the material, G is the Coulomb module, Iy,z the second moments of area 

about the axis of deflection, J is the second polar moment and  L is the length of the finite element,  Note that 

the stiffness matrix is symmetric. This stiffness matrix is derived by taking partial derivatives of the strain 

energy with respect to the individual nodal displacements. The structural damping matrix is given by [Ri]=[Ki], 

where the  factor represents the coefficient of structural damping.  

The Bond Graph representation of the combined stiffness and damping of the beam element is then given 

as shown in Fig. 3. 

 
Fig. 3 Representation of element stiffness and damping in Rayleigh beam Bond Graph model 

 

Fig. 4 shows the Bond Graph model of the blade. Fig. 4(a) represents the axial extension deformation 

of the blade, Fig. 4(b) the tangential extension deformation and Fig. 4(c) the torsional deformation of blade. For 

Fig. 4(a) and Fig. 4(b), two motions are shown: rotation at the top and translation at the bottom of the figure. In 

Fig. 4(c) the model is represented by one rotation motion.  For each model, the displacements and rotations at 

the center of gravity of each element are represented by 1-junction. For each element aerodynamic forces are 

applied, meanings that the effort is imposed. The stiffness and the structural damping matrixes between the 

centers of gravity of adjacent elements are represented using C-field and R-field elements, respectively. 
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Fig. 4 Structural bond graph of blade, axial extension (a), tangential extension (b), torsional extension (c) 

 

Boundary conditions of the model for the tangential extension deformation are represented by the Sf and 

Se sources. Connection between the blade and the hub must be rigid, i.e. Sf = 0, and the blade has only one 

degree of freedom, so Se = 0. Boundary conditions for the axial extension deformation are represented by the Se 

source. The blade has only one degree of freedom, then Se = 0. Connection between the blade and the hub as 

well as between the hub and the tower are assumed to be rigid. Therefore, the movement at the tower top is the 

same as the movement at the blades bottom. This relationship between the blade and the tower can be modeled 

by 1-junction. Boundary conditions for the torsional deformation are represented by the Sfsource which 

represents the pitch actuator system’s velocity. Dynamic equations and natural frequencies of the blade can be 

directly obtained from the Bond Graph model. 

Three sources of effort, which represent the aerodynamic forces, need to be calculated in the input 

wind. This process will be treated in the aerodynamic subsystem section. Sub-models, as shown in Fig. 5 can 

represent the model of the blade (Fig. 4). 

 

 
Fig. 5 Tree sections bond graph blade 

III. Aerodynamic Subsystem 
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The aerodynamic subsystem transforms the three-dimensional wind field into lumped forces acting on 

the rotor blades. The inputs to the aerodynamic subsystem are the wind speed V, the pitch angle , the rotational 

and axial speeds of the rotor and the axial displacement of the blades caused by flapping and tower bending yb, 

respectively. Its outputs are the aerodynamic torque Tr tangential force Fr, the thrust force FT and the 

aerodynamic moment. 

Wind turbine aerodynamic models are used to relate wind inflow conditions to the loads applied to the 

turbine. The subsequent analysis develops the most common aerodynamics theory employed in the wind turbine 

design and analysis environment. It corresponds to the Blade Element Momentum theory (BEM). Extensive 

literature deals with the BEM theory explanation and presentation [15,16]. The BEM Theory combines two 

methods of examining how a wind turbine operates. The first method uses a momentum balance on a rotating 

annular stream tube passing through a turbine. Axial Thrust dFT and Tangential Force dFr -in terms of flow 

parameters, are: 

 𝑑𝐹𝑇 = 4𝑎 1 − 𝑎 𝜌𝑉2𝜋𝑟𝑑𝑟 (74) 

 𝑑𝐹𝑟 = 4𝑎′(1 − 𝑎)𝜌𝑉Ω𝑟π𝑟
2𝑑𝑟 (85) 

Where V represents the wind velocity,  the air density, a the axial induction factor, a'  the angular 

induction factor,  the angular velocity of the blades, and r is the radius of an annular element, having a 

thickness dr. 

 

The second method is to examine the forces generated by the airfoil lift and drag coefficients at various 

sections along the blade. Axial Force, Tangential Force and Aerodynamic Moment - in terms of the lift, the drag 

and the pitching moment coefficients of the airfoil, are as follows: 

 𝑑𝐹𝑇 =
1

2
𝜌
𝑉2 1 − 𝑎 2

𝑠𝑖𝑛2𝜙
(𝐶𝐿𝑐𝑜𝑠𝜙 + 𝐶𝐷𝑠𝑖𝑛𝜙)𝑐𝑑𝑟 (9) 

 𝑑𝐹𝑟 =
1

2
𝜌
𝑉2 1 − 𝑎 2

𝑠𝑖𝑛2𝜙
(𝐶𝐿𝑠𝑖𝑛𝜙 − 𝐶𝐷𝑐𝑜𝑠𝜙)𝑐𝑑𝑟 (106) 

 𝑑𝑀𝑥 =
1

2
𝜌
𝑉2 1 − 𝑎 2

𝑠𝑖𝑛2𝜙
 𝐶𝑚𝑐 + 𝑦𝐺 𝐶𝐿𝑐𝑜𝑠𝜙 + 𝐶𝐷𝑠𝑖𝑛𝜙 − (𝑧𝐺 − 𝑧𝑎)(𝐶𝐿𝑠𝑖𝑛𝜙 − 𝐶𝐷𝑐𝑜𝑠𝜙) 𝑐𝑑𝑟 (11) 

 𝜙 = 𝑡𝑎𝑛−1  
𝑉(1 − 𝑎)

Ω𝑟𝑟(1 + 𝑎′)
  (12) 

 

Where c is the chord length of the blade element, the wind inflow angle,  is the angle between the 

local flow direction and the rotor plane (Equation 12), parameters involved in these expressions are graphically 

represented in Fig.6(a). (yG,zG)are the center of gravity coordinates,  za: the aerodynamic center’s coordinate, as 

shown in Fig. 6(b). 

 

Fig. 6Velocities at rotor plane (a), Center of  gravity coordinates and the aerodynamic center (b) 

 

CL, CD and Cm are lift, drag and pitching moment dimensionless coefficients respectively as functions of 

the angle of attack . Lift, Drag and Pitching moment coefficients for a NACA 4415 airfoil are shown in Fig 7. 

This graph indicates that for low values of incidence angle, the airfoil successfully produces a large amount of 

lift with little drag.  
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                      Fig.7 Lift, Drag and pitching moment Coefficients for a NACA 

 

Equations (7) and (9) are used to calculate the axial induction: 

 
 
𝑎 =  1 +

4𝑠𝑖𝑛2𝜙

𝜍′(𝐶𝐿𝑐𝑜𝑠𝜙 + 𝐶𝐷𝑠𝑖𝑛𝜙)
 

−1

 (13) 

Equations (8) and (10) are used to calculate the tangential induction factor: 

 𝑎′ =  −1 +
4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

𝜍′(𝐶𝐿𝑠𝑖𝑛𝜙 − 𝐶𝐷𝑐𝑜𝑠𝜙)
 
−1

 (14) 

Solution for a given blade cannot be found directly from the equations but an iterative method is required 

to calculate the axial induction factor, the tangential induction factor, angles of attack and thrust coefficients for 

each section along the span of the blade. It is composed of the following steps: 

1. Estimate the initial value of the axial induction factor 𝑎𝑖  and the tangential induction 𝑎′𝑖relative to 

the 𝑖𝑡ℎ  blade element. 

 

An efficient technique (among others) is to assume that the inflow angle is small: 𝑠𝑖𝑛𝜙𝑖 ≈ 𝜙𝑖 . 

The tangential induction 𝑎′𝑖  and the drag coefficient 𝐶𝐷𝑖  are null. The lift coefficient is 𝐶𝐿𝑖 = 2𝜋𝛼𝑖 , 
where the angle of attack is 𝛼𝑖 = 𝜙𝑖 − 𝛽𝑖 , with𝛽𝑖  the sum of the twist angle𝛽𝑖  depending on the 

position of the center of gravity of the 𝑖th section and the pitch angle β which is an input control 

variable. 

After some rearranging, it yields to: 

 𝑎𝑖 =
1

4
 2 + 𝜋𝜆𝑟𝑖𝜍

′
𝑖 −  4 − 4𝜋𝜆𝑟𝑖𝜍

′
𝑖 + 𝜋𝜆𝑟𝑖

2 𝜍 ′
𝑖(8𝛽𝑖 + 𝜋𝜍′𝑖)  (157) 

 

With:𝜆𝑟𝑖 =
Ω𝑟𝑟𝑖

𝑉
 is the local speed ratio and 𝜍′𝑖 =

𝑐𝑖

2𝜋𝑟𝑖
 is the local solidity, calculated using chord 

values 𝑐𝑖  depending on 𝑟𝑖  (Appendix A).  

2. Use the initial value of 𝑎𝑖  and 𝑎′𝑖  to calculate 𝜙𝑖 . 

 𝜙𝑖 = 𝑡𝑎𝑛−1  
𝑉(1 − 𝑎𝑖)

Ω𝑟𝑟𝑖(1 + 𝑎′ 𝑖)
  (168) 

3. Calculate incidence angle 𝛼𝑖and then𝐶𝐿𝑖𝑎𝑛𝑑𝐶𝐷𝑖  using look-up tables (Fig 20) 
 𝛼𝑖 = 𝜙𝑖 − 𝛽𝑖  (179) 

4. Calculate new values of 𝑎𝑖  and 𝑎′𝑖using the following Equations : 

 𝑎𝑖 =  1 +
4𝑠𝑖𝑛2𝜙𝑖

𝜍′𝑖(𝐶𝐿𝑖𝑐𝑜𝑠𝜙𝑖 + 𝐶𝐷𝑖𝑠𝑖𝑛𝜙𝑖)
 

−1

 (18) 

 𝑎′𝑖 =  −1 +
4𝑠𝑖𝑛𝜙𝑖𝑐𝑜𝑠𝜙𝑖

𝜍′𝑖(𝐶𝐿𝑖𝑠𝑖𝑛𝜙𝑖 − 𝐶𝐷𝑖𝑐𝑜𝑠𝜙𝑖)
 
−1

 (19) 

 

In this process iterations are done  until the values of induction factors and inflow angle 

converge to their final values, and then we can calculate the axial force and the tangential force for 

each section along the blade by: 

 𝐹𝑇𝑖 =
1

2
𝜌
𝑉2 1 − 𝑎𝑖 

2

𝑠𝑖𝑛2𝜙𝑖

(𝐶𝐿𝑖𝑐𝑜𝑠𝜙𝑖 + 𝐶𝐷𝑖𝑠𝑖𝑛𝜙𝑖)𝑐𝑖𝑙𝑖  (20) 

 𝐹𝑟𝑖 =
1

2
𝜌
𝑉2 1 − 𝑎𝑖 

2

𝑠𝑖𝑛2𝜙𝑖

(𝐶𝐿𝑖𝑠𝑖𝑛𝜙𝑖 − 𝐶𝐷𝑖𝑐𝑜𝑠𝜙𝑖)𝑐𝑖 𝑙𝑖  (21) 
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𝑀𝑥𝑖 =

1

2
𝜌
𝑉2 1 − 𝑎𝑖 

2

𝑠𝑖𝑛2𝜙𝑖

 𝐶𝑚𝑖 𝑐𝑖 + 𝑦𝐺𝑖 𝐶𝐿𝑖𝑐𝑜𝑠𝜙𝑖 + 𝐶𝐷𝑖𝑠𝑖𝑛𝜙𝑖 − (𝑧𝐺𝑖 − 𝑧𝑎𝑖 )(𝐶𝐿𝑖𝑠𝑖𝑛𝜙𝑖

− 𝐶𝐷𝑖𝑐𝑜𝑠𝜙𝑖) 𝑐𝑖𝑙𝑖  

(22) 

 

The fundamental aerodynamic theory used by the bond graph model is presented in this paper. A 

MGY-element of bond graph is used to implement equations (15) through (22), with wind flow (MSf source) 

being transformed into aerodynamic forces (Se source), as shown in Fig. 8. 

 

 
Fig. 8Bond graph model of the aerodynamic subsystem 

 

Modulated inputs to MGY elements of Fig. 8 are the pitch angle𝛽, the angular velocity Ω𝑟 , and the 

wind speed V and the axial displacement of the blades caused by flapping and tower bending. In order to 

simulate the blade model, equations (15) through (22) are integrated within each MGY element; which means 

that their traditionally constitutive relation is changed. 

 

IV. Simulation And Results 
To validate the Bond Graph model, a simulation of the power coefficient Cpis done. This parameter 

characterizes wind turbines. It represents the fraction of the power extracted on the turbine from the available 

power in the wind. It can be written as: 

  C𝑝 = 4𝑎(1 − 𝑎)2 
(

10) 

 

The theoretical maximum power coefficient from an idealized rotor C𝑝𝑚𝑎𝑥 , known as Betz limit, can be 

found by setting the derivative of  C𝑝with respect to a equal to zero, which leads to :  a=1/3 and  5 C𝑝𝑚𝑎𝑥 =

0.596 which corresponds to the maximum possible efficiency for an idealized wind turbine of 59.6%. 

 

To make this simulation, we connect the MGY elements with the blade as shown in Fig. 9.Then we set 

the wind speed to a constant value equal to 12m/s, then we apply a slope ramp equal to 1 for the speed and we 

simulate the model for three values of  (2, 4 and 6).Finally we compute Cp by Equation 24 and then we show 

the results of Cp as a function of the tip speed  (RV) as shown in Fig.10. 

  C𝑝 =
3𝑇𝑟  Ω𝑟

1

2
𝜌𝜋𝑅2𝑉3

 (24) 

 
Fig. 9 Simulation model of wind turbine blade 
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Fig. 10 Curve of Cp vs l 

 

From the figure the maximum values of Cp is 0.42, having a tip speed of 7; the theoretical maximum 

value of  Cp is 0.596, known as Betz limit, at around a tip speed of 7. In practical designs, the maximum 

achievable Cp is below 0.5. The difference to standard values is acceptable and it is better that the value shown 

in [14] (around 0.33). This simulation confirms that dynamical model of the blade bearing adequately performs. 

 

V. Conclusion 
Due to interactions between aerodynamic, mechanical subsystems, a dynamic model of a wind turbine 

generating system using the Bond Graph Approach is proposed to analyze the dynamic behavior of a wind 

turbine blade. It consists in considering the blade as a Rayleigh beam composed of a number de sections 

submitted to aerodynamic forces calculated using the BEM theory. The value of power coefficient curve 

indicate the validity of the proposed Bond Graph model of wind turbine. The model has been validated with the 

available data (NACA 4415), but the proposed blade model is a generic model and can be used with any profile 

of blade. Power Coefficient curve can be predicted and hence the optimum conditions to operate.  
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