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Abstract: The paper discusses the use of mixed Eulerian-Lagrangian in the analysis of post-tensioned 

prestressed concrete bridge girder. The hose of the tendon is in stick condition with the surrounding concrete 

while the tendon in slip condition with the hose. The slip between the tendon with the hose is modeled by means 

of Eulerian displacement. The girder concrete is modeled by using brick elements while the tendon is modeled 

by using bar elements. The quadratic shape of tendon is modeled by piece-wise linear bar elements 

arrangement. If finite element mesh is construed to follow quadratic shape of tendon, then irregular shape of 

elements may results. To avoid this, the nodes on bar elements are connected to girder mid nodes with rigid 

bars. Bottom ends of bars are connected with bar nodes. Slip between tendon and rigid bar is modeled by 

Eulerian displacement. The modeled is applied to the analysis of post-tensioned prestressed concrete bridge 

girder. The results obtained are then compared to analysis result using conventional beam method, and the 

results agree well. 
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I. Introduction 
In post-tensioned prestressed concrete system, the tendon is freely slips relatively to hose, while 

the hose is rigidly connected to surrounding concrete. If conventional Lagrangian displacement is used, 
the slip between a tendon node and concrete node may separate the material points initialy occupied the 
same node. To over come this problematic case, Eulerian displacement is used to model slip between 
tendon and surrounding hose. The concept of mixed Eulerian-Lagrangian displacement is discussed in 
available reference [3]. The description of deformation is reffered to undeformed configuration [4] 

The paper deals with the use of mixed Eulerian-Lagrangian displacement in the analysis of post-
tensioned prestressed concrete bridge girder. The analysis is carried out by means of finite element 
method and the analysis is cast in matrix form. The analysis algorithm is then cast in a computer package 
program written in Fortran language. The program is then applied to the analysis of a post-tensioned 
prestressed concrete girder, and the results are compared to the results obtained by using conventional 
beam method. 
 

II. Mixed Eulerian-Lagrangian Displacement Model 
Mixed Eulerian-Lagrangian displacement field was first introduced by Hariandja [3]  

2.1  Mixed Eulerian-Lagragian Model. 

The following discussion deals with finite element formulation of system with finite displacement. The 

decomposition of displacement is desribed by showing displacement model in Figure 1. A typical material point 

in the structural system at time t  occupies initial configuration 𝑉𝑡  at location 𝑋 . After loading, the material 

point eventually occupies current configuration 𝑣𝑡  at location𝑋  A configuration, which may be occupied by 

structural system at a particular time within loading process is chosen as referential configuration and denoted 

by𝑣𝑟   The displacement of a typical material point initially occupied location at𝑋  , is denoted by 𝑞  and this 

displacement decomposed into Eulerian displacement 𝑤  and Lagrangian displacement𝑢 , 

wuXxxxXxq rr ~~)
~~()~~(

~~~   (1) 

Deformation may be observed by inspecting elongation experienced by a typical line segment dS  that mapped 

into ,ds  such that 

 

xdLxddSds ~~2)()( 22   (2) 

following Euler description, and  
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XdEXddSds
~~

2)()( 22   (3) 

according to Lagrange description. The entity E  is Green strain tensor given by  
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Figure1 Mixed Eulerian and Lagrangian displacement 
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and L  is Almansi strain tensor given by 
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in which Einstein summation rule applies, i.e., summation is to be carried out for repeated index. The Green 

strain tensor gives Piola-Kirchoff stress tensor, while Almansi strain tensor gives Cauchy stress tensor 

(Gantmacher, 1975, Hariandja, 1985, Malvern, 1969). The displacement gradient may be expressed in term of 

Jacobian  
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in which 
ikĴ  is Lagrangian Jacobian and 

kjJ  is Eulerian Jacobian given by 
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Since the formulations are arranged in terms of referential parameter𝑥 𝑟   then partial derivatives with respect to 

𝑋  need to be transformed into partial derivatives with respect to𝑥 𝑟   First, it is written that  
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which, upon inversion gives 
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 (9) 

in which𝑚 𝑘  is the element of inverted matrix of the matrix formed by𝑚𝑘𝑖   Further, partial derivatives 
with respect to𝑥 may be inverted to partial derivatives with respect to parametric coordinatesζ  by writing  
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which, upon inversion gives 
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in which 𝑛 𝑖𝑘  is the element of inverted matrix of the matrix formed by𝑛𝑘𝑖 . Therefore, the following may be 

obtained, 
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2.2 Incrementation and Linearization Technique 

It may be observed from the form of Equations 4 and 5 that the governing equilibrium equation is 

quadratic in terms of displacement components. Therefore, the problem would be geometrically nonlinear. The 

governing equilibrium equation may be expanded in terms of displacement components and the expression may 

be approximated by retaining linear terms. In this case, successive iteration scheme is applied. 

 

The following is incrementation process of terms. First, at time t the displacement is decomposed in Eulerian 

and Lagrangian displacement  

 

 

tttrrtttt wuXxxxXxq ~~)
~~()~~(

~~~   (13) 

Strain component is given by  
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For time𝑡 + ∆𝑡  displacement is given by  

 

wuqqqq tttt ~~~~~~ 
 (15) 

in which 𝑞   is incremental displacement consisting Lagrangian incremental displacement 𝑢 and Eulerian 

incremental displacement𝑤 . Correspondingly, total Jacobian components are incremented 
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in which incremental Jacobian components are given by  

t
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which may further be written in terms of Lagrangian and Eulerian incremental Jacobians. Strain components 

may also be incremented by writing 
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which results in  

)(
2

1 t

jkkikj

t

ikij JJJJE   (19) 

Eqn. (19) may be written in matrix form [1] 

              uBJJBJJBE ~~
      ;

~
       ; 321   (20) 

in which  u~  is incremental displacement vector containing Eulerian and Lagrangian incremental 

displacements. Therefore, the following relationship is established.  

          321      ;~ BBBBuBE   (21) 

In the following, equilibrium equation is written in incremental form. First, at time t , the equilibrium condition 

reads 

    ttt PQK   (22) 

in which  

      
v

tTtt dvECEK
2

1
 (23) 

At time tt  , 

    tttttt PQK    (24) 

which may be expanded in the following form, 
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          PPQQK tttt 
 (25) 

 

which, in view of equilibrium condition in Equation 22, provides linearized form  

    PQK tt 
 (26) 

where 

      

v

Ttt dvBCBK  (27) 

In the formulation of global element stiffness, the following relationship may be used, 

321321321  dddrdxdxdxmdxdxdxdv rrr   (28) 

In the following chapter, incremental matrix stiffness of several types of elements, in this case, four node 

isoparametric membrane and bar elements, are developed. 

 

III. Finite Element Formulation and Computer Programming 
The following discussing deals with finite element formulation that may be found in several available references 

[2]. 

3.1 Finite Element Formulation 

Due to the limitation on the space, only two types of elements are developed, i.e., four node isoparametric 

membrane and bar elements, considered in turn in the following. 

3.1.1 Four node isoparametric membrane 

 A four node isoparametric membrane element is depicted in Figure 2. Each node contains four degrees 

of freedom, i.e., Eulerian and Lagrangian displacement components in 
rx~  coordinate. Therefore, the element 

has 16 degrees of freedom, arranged in the form 
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and displacement and nodal coordinates are interpolated by using shape functions, 
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in which 
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Figure 2 Four node isoparametric membrane element 

 

First, Lagrangian and Eulerian Jacobian components are obtained by applying Equation 7,  
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The  1B  matrix then may be written in the form  
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 2B  matrix in the form 
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and  3B  matrix in the form 
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in which 

 

 

222121

222121

212111

212111

//

//

//

//

















iii

iii

iii

iii

NrNrd

NmNmc

NrNrb

NmNma

  

for node i. Therefore,  B  matrix may be constructed by inserting Equations 33, 34 and 35 in Equation 21. The 

result reads  
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for node i. For flat plane membrane, stress-strain relationship is controlled by constitutive equation 

 

(36) 
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The obtained matrices may be inserted in Equation 27 to construct element stiffness matrix. The element 

stiffness matrix is computed by using Gauss numerical integration technique. 

 

3.1.2 Bar element 

Bar element is depicted in Figure 3. The element has two nodes and each node has two degrees of freedom 

arranged in the form 
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Figure 3 Bar element  

 

The displacement is found by interpolating nodal displacement vector with shape functions, 
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and ,/)2/(1/1     ;/2 111111  uLxurLn r and Jacobian components may be computed and used to 

construct element stiffness matrix. The result is  
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3.2 Computer Programming 
Finite formulation described in previous discussion is cast in a computer package program writen in 
Fortran language. Incrementation technique is also embedded in the program. Contsructed program is 
then validated to prove its accuracy and correctness, before applied in case study as discuss in followed. 
 

IV  Case Study 
For a case study, a prestressed concrete I girder of brigde is analyzed [5]. The I beam has a span of 2400 
cm, divided into 24 rows and 2 columns of 3 dimension brick isoparametric elements being shown in Fig. 
4. Girder dimension is b x h = 55.00 cm x 132.00 cm. The prestressing force is 10,800.00 kN. The girder is 
analyzed by using beam theory to computed stresses and displacements due to own weight, 
superimposed, and live load.  

 
Figure 4: Element Meshing of Prestressed Concrete Girder 
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To compute stresses and displacements due to prestressing force, uniform uplift load  

𝑤𝐹 =
8𝐹∙𝑒

𝐿2 = 66.00 𝑘𝑔/𝑐𝑚 (44) 

is used. The results are used as comparison to the results obtained by means of computer program. The 
comparison is shown in Table 1.  
 

Table 1 : Comparison Between Manual and Computer Output 
No. Quantity Manual Program Error Percentage 

1 Displacement in Z direction of mid span -6.00 -6.04 0.64% 
2 Stress in upper fiber  -295.53 -293.29 0.76% 
3 Stress in mid-height fiber -148.76 -149.66 0.36% 
4 Stress in lower fiber -2.00 -4.65 -133.03% 

 
By observing the table, it is concluded that the results out of program agree well with manual 

results. The element meshing is used to analyze the same girder with parabolic tendon with mid span 
eccentricity e = -44.00 cm and F = 10,800.00 kN. For tendon,  rupture stress 0.70×fpu=126,000.00 MPa of 

high tension tendon is used.If element meshing is taken to follow parabolic shape of tendon, then it is 
ended with rather irregular shape of elements and this may eventually cause error due to shape factor of 
element dimention. To avoid this problem, cable is run below rigid bars connecting mid section nodes 
with the cable. The rigidity of the connecting bars may be simulated by setting large number of axial 
rigidity of bars, or giving the same number of displacements between upper and lower nodes of the bars. 
The cable may slip freely beneath the bars. The slip between cable and bar is modeled by Eulerian 
displacement and the displacements of rigid bar lower end is modeled by Lagrange displacements. See 
Fig. 5 as explaination. 

The beam is then analyze using the computer program. The results are compared with the results 
by manual. The comparison is carried out for stresses and displacements at mid span cross section, as 
shown in Table 2.The table clearly shows that the results out of computer program agree well with 
manual results.  
 

Table 2: Comparison Between Computer and Manual Results 
No. Quantity Manual Program Error Percentage 

1 Displacement in Z direction of mid span -6.00 -5.90 1.67% 
2 Stress in upper fiber  -295.53 -294.76 0.26% 
3 Stress in mid-height fiber -148.76 -148.56 0.13% 
4 Stress in lower fiber -2.00 -2.40 20.00% 

 
 

 
Figure 5: Tendon With Connecting Rigid Bar to Beam Centeroid 

 
The girder analyzed previously using cross section dimension b x h = 55 cm x 132 cm, which 

results in the use of internal prestressing tendon. In the following, the cross section dimension is changed 
to I shape with the height 100 cm, and upper and lower flange thicknesses 30 cm. girder CTC is 400 
cmand the loads are 
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(46

) 

𝑞𝑔 = 0.0024 × 7200 = 172.8 𝑁/𝑐𝑚

𝑞𝑠 = 0.072 × 400 = 288.0 𝑁/𝑐𝑚
𝑞𝑙 = 0.090 × 400 = 360.0 𝑁/𝑐𝑚
𝑃𝑙 = 49.00 × 400 = 196,000.0𝑁

  (45) 

The moments at mid span are  
𝑀𝑔=

1

8
×172.8×2400 2=1254 .2 𝑘𝑁−𝑚

𝑀𝑠=
1

8
×288.0×2400 2=2073 .6 𝑘𝑁−𝑚

𝑀𝑙=
1

8
×360.0×2400 2= 2592.0 𝑘𝑁−𝑚

𝑀𝑝 =
1

4
×196,000×2400  =1176 .0 𝑘𝑁−𝑚

𝑀𝑡=7085 .8 𝑘𝑁−𝑚
   

Based on allowable compression stress 315.00 kg/cm2 then by Magnel scheme, the prestressing force is 
computed 𝐹0 = 10,800 𝑘𝑁 and eccenctricity 𝑒 = −60.00 𝑐𝑚. Since the eccentricity falls outside cross 
section, external prestressing tendon is used.  

By manual, the displacements at mid span are computed as   

𝛿𝑔 = −
5

384
×

𝑞𝑔𝐿4

𝐸𝐼
= −4.690 𝑐𝑚;  𝛿𝑠 = −

5

384
×

𝑞𝑠𝐿
4

𝐸𝐼
= −7.820 𝑐𝑚

𝛿𝑙 = −
5

384
×

𝑞𝑙𝐿
4

𝐸𝐼
= −9.770 𝑐𝑚;  𝛿𝑝 = −

1

48
×

𝑃𝐿3

𝐸𝐼
= −3.550 𝑐𝑚

 (47) 

so that total displacement due to loads becomes  
𝛿𝑡 = −25.82 𝑐𝑚   (48) 

uplift equivalent load is  

𝑤𝐹 =
8𝐹∙𝑒

𝐿2 = 82.50 𝑘𝑔/𝑐𝑚   (49) 

resulting in camber  

𝛿𝐹 =
5

384
×

𝑤𝐹𝐿4

𝐸𝐼
= 22.39 𝑐𝑚   (50) 

so that the total displacement at mid span becomes 
𝛿𝑇 = −3.43 𝑐𝑚    (51) 

For check up of stresses, two stages of loading are considered, i.e., transfer and service stages. For 
transfer stage, the stresses are  

𝑓𝑐𝑡 =
𝐹0

𝐴
+

𝐹0𝑒

𝐼𝑧𝑧
𝑦𝑡 +

𝑀𝑔

𝐼𝑧𝑧
𝑦𝑡 = −15.00 + 37.312 − 7.815 = +14.436𝑀𝑃𝑎

𝑓𝑐𝑏 =
𝐹0

𝐴
+

𝐹0𝑒

𝐼𝑧𝑧
𝑦𝑏 +

𝑀𝑔

𝐼𝑧𝑧
𝑦𝑏 = −15.00 − 37.312 + 7.855 = −44.496 𝑀𝑃𝑎

  (52) 

in which the stress at both upper and lower fibers violate allowable stresses this problem is may be 
overcome by stressing the tendon when the girder is ready set at place and superimpose load already 
active. So,  

𝑀𝑑 = 𝑀𝑔 + 𝑀𝑠 = 331.78 𝑡 − 𝑚  (53) 

The stresses become  

𝑓𝑐𝑡 =
𝐹0

𝐴
+

𝐹0𝑒

𝐼𝑧𝑧
𝑦𝑡 +

𝑀𝑑

𝐼𝑧𝑧
𝑦𝑡 = −15.00 + 37.312 − 20.840 = +1.471 𝑀𝑝𝑎

𝑓𝑐𝑏 =
𝐹0

𝐴
+

𝐹0𝑒

𝐼𝑧𝑧
𝑦𝑏 +

𝑀𝑑

𝐼𝑧𝑧
𝑦𝑏 = −15.00 − 37.312 + 20.840 = −31.471 𝑀𝑃𝑎

(54) 

The total stresses at service stages are  

𝑓𝑐𝑡 =
𝐹0

𝐴
+

𝐹0𝑒

𝐼𝑧𝑧
𝑦𝑡 +

𝑀𝑡

𝐼𝑧𝑧
𝑦𝑡 = −15.00 + 37.312 − 44.509 = −221.97 𝑘𝑔/𝑐𝑚2

𝑓𝑐𝑏 =
𝐹0

𝐴
+

𝐹0𝑒

𝐼𝑧𝑧
𝑦𝑏 +

𝑀𝑡

𝐼𝑧𝑧
𝑦𝑏 = −15.00 − 37.312 + 44.509 = −78.03 𝑘𝑔/𝑐𝑚2

 (55) 

The comparison is depicted in Table 3, which demostrates that the results out of program agree well with 
manual results.  
 

Tabel 3: Comparison Between Computer and Manual Results 
No. Quantity Manual Program Error Percentage 

1 Displacement in Z direction of mid span -3.43 -4.17 21.57% 
2 Stress in upper fiber  -221.97 -224.55 1.16% 
3 Stress in mid-height fiber -150.00 -150.49 0.33% 
4 Stress in lower fiber -78.03 -74.90 4.01% 

V  Discussions of the Results 

Several observation out of the comparison of results are drawn as follows. First, a finite element 
model is established for the analysis of prestressed concrete bridge girder. Curved shape of tendon is 
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connected to the regular rectangular shape of element meshing with rigid bars. The rigidity of the bars 
are represented by giving the same number between lower and upper bar displacements. 

The newly developed model is applied to two cases, i.e., internal cable case and external cable 
cases. The results out of the pakage program agree well with the results obtained by manual computation. 
The slip between the tendon and the lower end of rigid bar is modeled by means of Eulerian 
displacement.  

VI Conclusions 

Based on the results obtained in this paper, several conclusions are drawn as follows. First, a 
newly developed finite element model has been established for the analysis of post-tensioned prestressed 
concrete brigde girder.Secondly, the model is incorporated in an algorithm analysis of the girder and the 
algorithm is cased in a computer package program written in Fortran language. The model may be 
applied to both internal and external tendon systems. The results obtained by the application of the 
program agree well with the results obatained by the use of beam theory. 
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