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Abstract: This paper investigates the effects of genetic algorithm parameters on the performance of optimum 

structural search. The most significant of these parameters can be grouped according to their biologically-

inspired functions: population size, initial population, and crossover and mutation operators. However, since 

the genetic algorithms use a random search the numerical results presented in this paper show the extent to 

which the quality of solution depends on the choice of these parameters. 
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I. Introduction 
Genetic algorithms (GAs) are a class of stochastic relaxation techniques that are applicable to the 

solution of a wide variety of optimization engineering problems [1–10] by emanating the evolutionary 

behaviour of biological systems. They are global optimizers due to their population search. They have great 

advantages over traditional methods for solving optimization problems in design of civil engineering structures, 

since they can be applied simultaneously with continuous or discrete design variables. In contrast to sequential 

search methods that, at each iteration, generate a single potential solution from the last,  GAs maintain a large 

population of candidate solutions. Each population is generated from its predecessor by applying a set of 

stochastic transition operators [11-12]. Three commonly used genetic operators are employed : selection, 

crossover and mutation . These operators are applied in turn to the solutions in the current generation during the 

search process.  

The selection operator identifies the fittest individuals of the current population to serve as parents of 

the next generation. Jebari et al [13] are analyzed relative performance of several selection methods often used 

in GAs and showed the extent to which the quality of solution depends on the choice of the selection method. To 

explore the search space, the crossover operator consists of choosing a pair of individuals among those survived 

from a previous generation, and then offspring are generated using a mechanism that inherits valid 

characteristics of the two parents. Several crossover techniques have been proposed and their relative 

effectiveness is still continuing [14–16].   As selection and crossover introduce better solutions, mutation is used 

in hopes of nudging good solutions closer to the best solution. The probability of applying the mutation is low. 

In contrast, the probability of crossover is usually high. Numerous studies have investigated the optimal setting 

for the mutation probability [17–23]. However the optimal solution of GAs optimization as well as the 

convergence of the algorithm depends to a very large extent on the choice of genetic operator’s parameters. 

Hence the present paper examines the effects of these parameters on the performance of optimum structural 

search like population size, initial population, and crossover and mutation probabilities. 

 

II. Illustrative example 
To show the effect of genetic parameters on  the performance of optimum structural search, let' s 

consider a 10-bar truss optimization [24], with a minimum weight as shown in Fig.1. Nodes 5 and 6 are fixed by 

the hinges. The truss loads kNF 822.444 act at nodes 2 and 4.  

The material properties are 3/2770 mkg  and .1089.6 4 MPaE  The design variables are the 

cross-section areas of truss members.  The list of possible cross sections (Table 1) is taken from the American 

Institute of Steel Construction Manual. Each design variable will be chosen from 32 values of table 1 that may 

be feasible solutions. Then the cross-section for  members 1, 3, 4, 7, 8 and 9 are chosen from section numbers 

11 to 42, the others are chosen from section numbers 1 to 32. 

Since there are 10 design variables, and each can take any of the 32 values of the list, the intrinsic size 

of the search space is 32
10

. Five bits are required to represent the 32 available sections (2
5
 = 32), assigning 

random values from list to the extra codes. Thus, each chromosome is 50 bits long (5 bits/bar x 10 bars). 
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Figure 1 : 10-bar truss 

 
Table 1 : Cross-section list 

N° Area (cm²) N° Area (cm²) N° Area (cm²) N° Area (cm²) 

1 10.45 12 21.81 23 30.97 34 103.22 

2 11.61 13 22.39 24 32.06 35 109.03 

3 12.84 14 22.90 25 33.03 36 121.29 

4 13.74 15 23.42 26 37.03 37 128.39 

5 15.35 16 24.77 27 46.58 38 141.93 

6 16.90 17 24.97 28 51.42 39 147.74 

7 16.97 18 25.03 29 74.19 40 170.96 

8 18.58 19 26.97 30 87.10 41 193.55 

9 18.90 20 27.23 31 89.68 42 216.13 

10 19.93 21 28.97 32 91.61 - - 

11 20.19 22 29.61 33 100.00 - - 

 

III. Problem formulation 

We formulate the optimal design problem with a satisfied displacement cmuy 08.5max   and allowable stress 

MPaa 37.172  with a minimized 10 bar truss weight W(A) : 
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where Ai is the cross-section area of the element, 

 Li is the length of the element, 

 j  is the stress in member j, 

 uk is the vertical displacement of  node k.  

To replace a constrained optimization problem by a unconstrained problem we use a penalty method  [12]. The 

unconstrained problems are formed by adding a penalty function to the objective function that consists of a 

penalty parameter multiplied by a measure of violation of the constraints. The measure of violation is nonzero 

when the constraints are violated and is zero in the region where constraints are not violated. 
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 where     C  constant determined by users, 

  nc number of constraints, 

  Pi  penalty  function given by : 
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GA strategy is a maximization search. This means that the best individuals have a higher probability of 

surviving. Therefore, we have to transform the objective function minimization problem to the fitness function 

maximization problem. Consequently, the fitness function F is defined as follows :  

   iiF  minmax              (6) 

where Fi is the fitness function, max and min are, respectively, the maximum and minimum value of objective 

function  . 

IV. Influence of the initial population 
 To show the effect of the initial population on the quality of the final results we consider two processes 

of optimization with tow initial populations Pop1 and Pop2 (Table 2). The initial population Pop1 contains 

individuals which represent the set of points in the search space while the initial population Pop2 contains only 

individuals associated with a limited part of the search space. Although the other GA parameters are identical 

for both processes, the results are different. The diversity of individuals in the Pop1 allows convergence to the 

best results (Fig. 2). 

 

Table 2 : Initial populations Pop1 and Pop2 
 

Table 3 : Final results  with initial populations Pop1 and Pop2 
 Pop1 Pop2 

Crossover average 173.32 172.63 

Mutation average  3.67 3.64 

Optimum (kg) 2519.56 2669.79 

Section list of optimum 41-1-38-31-1-1-28-40-39-1 42-17-38-30-1-11-35-34-38- 26 

 

 
Figure 2 : Initial population effect  on the quality of the final results 

 

 POP1 POP2 

Ind. Weight (kg) Section numbers Weight (kg) Section numbers 

1 2020,1 14-26-30-15-17-21-23-39-41-25 4225,6 42-32-34-42-29-22-42-42-41-26 

2 1301,2 16-6-21-22-21-5-33-16-34-25 4220,1 32-32-26-42-32-32-42-42-42-32 

3 1849,4 12-15-34-36-11-26-28-35-25-32 4187,1 40-31-42-36-12-32-42-38-42-32 

4 1616,3 34-20-36-29-29-8-21-27-25-27 3488,3 34-32-42-30-32-16-37-34-42-32 

5 2176,7 42-20-22-32-26-14-12-40-31-18 4203,6 42-32-42-42-32-32-26-42-42-28 

6 1080,0 19-9-16-31-1-22-21-16-24-29 4050,2 42-30-34-42-32-32-42-42-26-32 

7 1118,0 27-28-19-13-24-6-11-31-27-7 4204,4 42-32-26-42-32-16-40-42-42-32 

8 1721,9 35-9-14-32-25-19-29-16-36-27 4306,2 42-28-42-32-32-32-38-42-42-32 

9 1799,4 23-17-35-13-17-29-32-40-12-5 3759,3 24-32-41-41-32-32-42-42-34-15 

10 1842,9 33-18-16-34-3-27-27-38-31-5 4271,5 41-32-34-42-32-28-42-38-42-31 

11 1932,7 37-19-36-31-10-4-23-36-32-3 4190,6 42-32-42-42-32-16-41-42-34-28 

12 1859,8 28-3-33-24-19-4-37-36-32-1 4373,7 42-32-42-26-32-32-42-40-42-32 

13 2403,4 33-5-13-35-32-2-26-37-40-30 3669,3 42-32-26-41-32-24-26-42-42-30 

14 1453,5 39-28-33-31-26-3-21-16-21-3 4228,0 42-32-42-41-26-32-42-34-42-27 

15 1340,0 15-12-19-22-13-18-36-14-35-5 3869,4 42-32-42-38-32-32-42-34-38-8 

16 996,1 21-25-36-17-22-5-25-15-11-13 3471,7 38-31-40-34-30-32-42-34-29-32 

17 1321,5 24-22-19-11-21-29-29-23-32-13 3300,5 42-24-42-25-30-32-34-26-42-30 

18 863,0 14-22-19-34-3-6-20-21-14-2 4443,0 38-32-39-42-32-8-42-42-42-32 

19 1171,5 15-7-16-15-7-2-34-11-27-29 3683,6 24-24-32-40-32-12-42-42-41-32 

20 1691,6 27-21-16-34-18-23-29-39-11-27 3924,2 42-32-42-42-30-24-42-41-24-27 
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V. Influence of the population size 
 Fig. 3 and 4 show comparing the population size effect on the speed and the quality of the final results. 

We observe the beneficial effect of height population size in terms of quality of the final results. However, a 

small population size allows an initial faster convergence, but a worse final result. This can be explained 

because the quality of final solution needs more population diversity -it depends on the population size- to avoid 

premature stagnation.  

 

 
Figure 3 : Best individuals weight evolution (Without mutation) 

 

 
Figure 4 : Best individuals weight (With mutation) 

 

VI. Influence of mutation probability 
 Mutation is expected to introduce diversity since it is able to insert new individuals into the population. 

Fig. 5 and 6 illustrate the influence of the mutation probability rate on the quality of the final results. The higher 

this rate, the greater the population strongly changes. That will keep shaking things up enough so that other parts 

of the solution space will be explored and the global optimum can be achieved. However, if the mutation 

probability is large enough to prevents premature convergence it gives poor results. 
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Figure 5 : Weight evolution of the best individuals 

 

VII. Influence  of crossover implementation 
 Crossover provides an exchange of design characteristics between paired individuals. In this paper, a 

comparative study is carried out between a single, 2-points and uniform crossovers technique for selected 

proportions of generations with a fixed generation number. Fig. 7 sows that a uniform crossover single point 

resulted in better solutions when compared to the single and 2-points crossovers. The uniform crossover gives a 

higher chance to individuals in exchanging the foremost genes of their chromosomal strings with respect to tow 

other crossovers technique. Fig. 8 illustrates the influence of the crossing probability rate, without mutation, on 

the problem convergence. The lower the rate, the less the population is destroyed. A large enough of crossover 

probability leads to suboptimal solutions. 
 

 
Figure 6 : Mutation probability effect on the weight standard deviation of the best individuals 

 

 
Figure 7 : Crossovers technique effect 
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Figure 8 : Crossover probability effect on the weight of the best individuals 

 

VIII. Stability of the solution 
 Design structures optimization by using GAs requires to ensure the results convergence obtained by 

several process run with the same starting population and the identical parameters. Fig. 9 shows the optimal 

weight obtained after each optimization process launches. Although the GAs parameters are identical, the 

optimization process behaves differently. This is because GAs use random factors. The previous results show 

that it is advisable to remain cautious about the absolute value of an optimal solution and that the process should 

preferably be executed several times. They also show that of the 100 solutions obtained, 29 of them do not differ 

from the optimum by more than 3%. 

  

 
Figure 9 : Optimal weight for each total number launch 

 

Table 4 : Optimization results after several runs 
Run Optimal  (kg) Section numbers Mutation average Crossover average 

1 2649,26 42-1-39-35-1-1-30-40-33-17 3,89 363,63 

20 2661,94 40-1-42-30-1-6-37-35-36-13 3,57 358,31 

40 2525,86 42-1-39-33-1-1-29-38-37-1 3,52 348,16 

60 2730,62 41-3-41-32-17-3-39-30-37-16 3,86 358,45 

80 2933,74 42-9-42-26-1-21-39-33-40-20 3,75 354,09 

100 2726,67 39-23-42-35-1-17-37-36-34-19 3,53 350,95 

 

IX. Conclusion 
 This paper has discussed and evaluated the effect of GAs parameters on the quality of the final 

optimization results. First, the quality of final solution needs more population diversity -it depends on the 

population size- to avoid premature stagnation.  However, a small population size allows an initial faster 

convergence, but a worse final result. Then an initial population with individuals which represent the set of 

points in the search space allows  convergence to the best results.  
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 On the other hand, uniform crossover gives a higher chance to individuals in exchanging the foremost 

genes of their chromosomal strings with respect to single and 2-points crossovers technique. Large enough of 

crossover probability leads to suboptimal solutions. Finally, large or small enough mutation probability prevents 

premature convergence and gives poor results. Good use of these parameters increases the chance that the 

genetic algorithm will find the optimum solution, and improves the value of the best solution found even when 

the optimum solution is not found. 
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