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Abstract: One of the key challenges in multidisciplinary design is integration of design and analysis methods of 

various systems in design framework. To achieve Multidisciplinary Design Optimization (MDO) goals of 

aircraft systems, high fidelity analysis are required from multiple disciplines like aerodynamics, structures or 

performance. High Fidelity Analysis like Computer-Aided Design and Engineering (CAD/CAE) techniques, 

complex computer models and computation-intensive analyses/simulations are often used to accurately study 

the system behaviour towards design optimization. Due to high computational cost and numerical noise 

associated with these analyses, they cannot be used effectively. The use of surrogates or Response Surface 

Models (RSM) is one approach in Multi Disciplinary design optimization to avoid the computation barrier and 

to take care of artificial minima due to numerical noise. This paper brings out a method based on use of “Smart 

Response Surface Models" to generate surrogate models, with its validated subspace, in the design space 

around the point of interest with the use of legacy data for MDO. The method has been evaluated on three test 

cases, which are created based on High Speed Civil Transport (HSCT) Multidisciplinary Design Optimization 

Test Suite 
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I. Introduction 

Present generation multi-role combat aircraft with y by wire and state of the art weapons systems are 

complex systems in nature, which need specialists. Complexity of combat aircraft mandates the need for design 

teams to have multidisciplinary experience in the entire aircraft design with core expertise in their respective 

domains. Today aerospace design and development is not only multidisciplinary but also global in nature with 

design and engineering teams deployed around the world [1].  It requires a high level of technical and techno-

managerial expertise across various engineering disciplines to cater for very stringent reliability, safety and 

performance requirements. This would enable design and development of an optimal multidisciplinary system in 

a collaborative and cohesive integrated environment of various engineering domains.  

Multidisciplinary system design is a complex, computationally intensive process that combines 

discipline analysis with design-space search and decision making. The decision making is based on engineering 

judgment and is greatly assisted by computer automation. Towards this systems engineering provides holistic 

approach for integrated design and development of aircraft and its associated systems [2]. One of the key 

challenges in collaborative design is integration of design and analysis methods of various systems in system 

engineering framework. With the advances in Computer-Aided Design and Engineering (CAD/CAE) 

techniques, complex computer models and computation-intensive analyses/simulations (discipline analysis) are 

often used to accurately study the system behaviour towards design improvements. This design optimization 

process normally requires a large number of iterations before the optimal solution is identified. Design 

optimization, with high fidelity design tools, is computationally very expensive and time consuming. The use of 

approximation models or surrogates to replace the expensive high fidelity computer analysis, in Multi 

Disciplinary Optimization (MDO), is a natural approach to avoid the computation barrier and to take care of 

numerical noise[3]. Typically approximation models or surrogates of high fidelity design tools are used to 

reduce this computational effort and time during multidisciplinary design optimization process.This paper brings 

out a method based on use of “Smart Response Surface Models" to generate surrogate models in the design 

space around the point of interest with the use of legacy data for (MDO). 

 

II. Response Surface Models (Rsm) 
Complex aircraft engineering design problems are solved using high fidelity analysis/simulation 

software tools. The high computational cost associated with these analyses and simulations prohibits them from 

being used as performance measurement tools in the optimization of design for combat aircraft. Another major 

drawback in using high fidelity analysis is numerical noise, which occurs as a result of the incomplete 

convergence of iterative processes, the use of adaptive numerical algorithms, round-o_ errors, and the discrete 

representation of continuous physical objects (fluids or solids)[4]. The use of surrogates or Response Surface 
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Models (RSM) to replace the expensive high fidelity computer analysis, in MDO, is a natural approach to avoid 

the computation barrier and to take care of artificial minima due to numerical noise. Renaud and Gabriele 

developed Response Surface Modelling (RSM) of multidisciplinary systems during concurrent subspace 

optimizations (CSSOs) [5] [6]. Korngold and Gabriele addressed discrete multidisciplinary problems using the 

RSM [7]. 

Expensive high fidelity computer analysis can be represented as a blackbox function. In a simplest form the high 

fidelity analysis tools takes vector X as input and gives Y as the output as shown in Figure 1. 

 

 
Figure 1: Representing it mathematically with limits on the design space 

 

𝑌 = 𝑓 𝑥         𝑤 𝑒𝑟𝑒 𝑥  ∈ 𝑅𝑛                                                                            (1)  
 

𝑥 𝑚𝑖𝑛 < 𝑥 <  𝑥 𝑚𝑎𝑥  𝑑𝑒𝑓𝑖𝑛𝑒𝑠 𝑡 𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑠𝑝𝑎𝑐𝑒      
 

This function would be replaced by polynomial based surrogate model. A typical second order surrogate model 

is shown below 

 

𝑦 = 𝛽0 +  𝛽𝑖𝑥𝑖

𝑛
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+  𝛽𝑖𝑖𝑥𝑖
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𝑥 ′𝑚𝑖𝑛 < 𝑥 ′ <  𝑥 ′ 𝑚𝑎𝑥          𝑑𝑒𝑓𝑖𝑛𝑒𝑠 𝑡 𝑒 𝑚𝑜𝑑𝑒𝑙  𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒  
 

Where   𝛽𝑖 ,  𝛽𝑗   and 𝛽𝑖𝑗   are regression coefficients,  



x  is the input vector and y is the output.  The subspace 

surrogate model is defined by the side constraints  𝑥 ′𝑚𝑖𝑛  𝑎𝑛𝑑  𝑥 ′ 𝑚𝑎𝑥 .  

 

III. Smart Response Surface Models 
Smart response surface models is a methodology that develops a response surface model and identifies 

the subspace for which model is valid. In the conventional methods, of implementing response surface models 

(RSM) for Multidisciplinary Design, the model subspace is de_ned prior to generating the model and the 

accuracy of the model is not predefined [4]. The accuracy of the RSM generated is assumed to be acceptable 

apriori. An algorithm for developing surrogate models to pre-defined accuracy was developed by Gabbur & 

Ramchand is described in [3]. As the accuracy becomes more stringent there would be a reduction of model 

subspace with concomitant increase in number of iterations. The algorithm creates knowledge database for 

functions calls and surrogates models. Legacy or historical data if available would also form a part of this 

knowledge database. This database would reduce the number of times a high fidelity analysis/simulation 

software tool is run for model generation. The methodology has been been tested on five different optimization 

test function and the result have been brought out in [3]. 

 

IV. Algorithm 

The flow chart for smart RSM is shown in figure 2. The smart RSM comprises of six processes repeated 

iteratively to generate the validated surrogate models with its design space.   The iterative steps are follows 

1. Identifying the design space of the model 

2. Design of Experiments 

3. Analysis of DOE points 

4. Generation of Response surface models based on DOE 

5. Model Validation  

6. Design space reduction 

 

4.1  Identifying the design space of the model 

The domain of the optimization problem is defined as the initial design space for the surrogate model.    

Mathematically it can be represented as 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝐹 𝑋                𝑤 𝑒𝑟𝑒               𝑋   ∈ 𝑅𝑁                                                                   (3)  
 

𝑋𝑖𝑚𝑖𝑛 ≤  𝑋𝑖 ≤ 𝑋𝑖𝑚𝑎𝑥             𝑤 𝑒𝑟𝑒           𝑖 = 1,2,3 … . 𝑁                                  (4) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝐺   𝑥  ≥ 0 𝑤 𝑒𝑟𝑒  𝐺   ∈ 𝑅𝑚   
𝐻   𝑥  = 0 𝑤 𝑒𝑟𝑒  𝐻   ∈ 𝑅𝑝  

 

Then the initial design space of the model, for N dimension, would be defined by equation 4. 

 

 
Figure 2: Smart RSM Alogorithm 

 

4.2  Design of Experiments 

Experimental design techniques, which were initially developed for physical experiments, are _nding 

considerable use for the design of computer experiments/analyses. In Design of Experiment (DOE) techniques 

developed for analysis of physical experiments, random variation is accounted for by spreading the sample 

points out in the design space and by taking multiple data points (replicates). Among various classical 

experimental designs, Central Composite Design (CCD), alphabetical optimal designs, especially D-optimal 

designs, are also widely used [8, 9]. Sacks, et al. state that the classical techniques of experimental blocking, 

replication, and randomization are irrelevant when it comes to deterministic computer experiments [10]. 

Therefore sample points should be chosen to fill the design space for computer experiments. Koch, Mavris and 

Mistree [11] investigate the use of a modified central composite design (CCD) that combines half-fractions of 

an inscribed CCD with a face-centered CCD to distribute points more evenly throughout the design space. 

Koehler and Owen [12] describe several Bayesian space filling.designs, including maximum entropy designs, 

mean squared-error designs, minimax and maximin designs, Latin Hypercube, randomized orthogonal arrays, 

and scrambled nets. Widely used space filling sampling methods are Orthogonal Array (OA) and Latin Hyper 

cube Design (LHD). OA can generate a sample with better space-filling property than LHD. However, the 

generation of an OA sample is more complicated than LHD [13, 14]. In addition, OA demands strict level 
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classification for each variable, which might bring difficulty in real design. In real design, not all combinations 

of variable level lead to realistic design solutions, and some may cause the crash of the analysis or simulation, 

which is not uncommon in finite element analysis. In that case, the engineers must manually adjust variables to 

an appropriate number, deviating from one of the defined levels. Thus the property of OA might be undermined 

[15]. Therefore for this algorithm LHD is used as DOE method.  

 

4.3  Analysis of DOE points  

Design analysis is carried out on the points selected by DOE and values of the objective function are evaluated 

through the computation intensive analysis and simulation processes.  

 

4.4  Generation of Response surface models based on DOE  

Based on the analysed above design points a quadratic response surface model is fitted to the data using 

the usual least square method. As an initial test R2 and R2 adjusted are metrics used to estimate and understand 

the quality of RSM.  

 

4.5  Model Validation  

The surrogate model is validated for acceptable fit in two stages. The first stage is to check for low 

frequency errors (gross misfit of the model). This is carried out around a check point in the design space. The 

check point is generated in such a way that if the model validation fails then the point would be in the new 

reduced domain. This point is then perturbed for low frequency error. The direction of perturbation is such that 

the perturbed point also lies in the reduced design space. This is shown in the Figure 3 for a two dimension 

function. 

 

 
Figure 3 : Low Frequency validation points 

 

Negative perturbation is given in the X1

 

direction to get point 1 and positive perturbation is given along 

X2

 

to get point 2. The perturbation value d is 50% of the reduced domain width for each input. The number of 

points needed for carrying low frequency error is (k+1), where k is the dimension of the input vector. The error 

(residual) between actual value and the predicted value is calculated at each of these points. This value should 

be less than predetermined value (typically around 1% ) for the model to be acceptable. Once the model is 

validated for low frequency then it is checked for high frequency error. For carrying out high frequency 

validation the above process is repeated with a change in perturbation value. The perturbation value d is 

changed to 5 % of the reduced design space. The error residuals are calculated as 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  
𝑌′ − 𝑌

𝑌
∗ 100 

 

𝑤 𝑒𝑟𝑒  𝑌 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒  
 

𝑌′ = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑉𝑎𝑙𝑢𝑒 
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4.6  Design Space Reduction 

For a complex analysis tool / function a single quadratic model may not satisfactorily represent the 

analysis tool for the full design space. When surrogate model does not accurately represent the analysis tool then 

the design space needs to be reduced. A selective reduction of design space is employed. The strategy is to halve 

the domain for that design variable for which the error residual is more than 1%. Further more design space is 

reduced (zoomed in) around the reference point. Mathematically xri is the reference point for i
th

 input and xli and 

xui are its lower and upper limits respectively then the new design space lower limit x`li and upper limit x`ui are 

 

𝑥′𝑙𝑖 = 𝑥𝑟𝑖 −
𝑥𝑢𝑖 −𝑥𝑙𝑖

4
                                                                                                      (5) 

 

𝑥′𝑢𝑖 = 𝑥𝑟𝑖 +
𝑥𝑢𝑖 −𝑥𝑙𝑖

4
              for i= (1,2,….k)                                                           (6) 

 

𝑖𝑓     𝑥′𝑙𝑖 < 𝑥𝑙𝑖   𝑡 𝑒𝑛  

𝑥′𝑙𝑖 = 𝑥𝑙𝑖  𝑎𝑛𝑑 𝑥′𝑢𝑖 = 𝑥𝑟𝑖 +
𝑥𝑢𝑖 − 𝑥𝑙𝑖

2
                                                                    (7)  

 

𝑖𝑓     𝑥′𝑢𝑖 < 𝑥𝑢𝑖   𝑡 𝑒𝑛 

𝑥′𝑢𝑖 = 𝑥𝑢𝑖  𝑎𝑛𝑑 𝑥′𝑙𝑖 = 𝑥𝑟𝑖 +
𝑥𝑢𝑖 − 𝑥𝑙𝑖

2
                                                                   (8) 

 

Figure 4 shows Design space reduction for two dimension design space (k=2). In figure 4(a) and figure 

4(b) both the domain are reduced and in figure 4(c) domain for one variable only is reduced. It is proposed to 

test the algorithm on a higher dimension (10
d 

or higher) realistic design problem. High speed civil transport 

(HSCT) data is chosen to create a synthetic problem of 25 design variable. The HSCT date used for optimization 

test problem consists of one objective function and 66 inequality constraints. Noisy functions are created for the 

objective function and constraints for proving the effectiveness of the smart RSM algorithm in filtering out 

numerical noise for use in Multidisciplinary Design Optimization. 

 

V. High Speed Civil Transport (Hsct) 
High speed civil transport (HSCT) is an example of extremely challenging aircraft designs, where the 

disciplines are highly coupled and results from high fidelity design analysis are critical to establishing the 

feasibility of the aircraft design. The design concept of HSCT is to fly the aircraft with more than 300 

passengers at speeds in excess of 1,500 miles per hour.  The aircraft development is by NASA and its industry 

partners as a next generation supersonic passenger jet of the future [16].  HSCT aircraft configuration is shown 

in figure 5 

 
Figure 4: Design Space Reduction 
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Figure 5 : HSCT Configuration 

 

Multidisciplinary Analysis and Design (MAD) center for advanced vehicles   uses HSCT configuration 

design as a test case for the evaluation of new design optimization methodologies and techniques developed in-

house [17].  The test case is described as minimizing the takeoff gross weight (TOGW) of a High Speed Civil 

Transport (HSCT) aircraft with range of 5500 nautical mile, designed to cruise at Mach 2.4 and ferry 250 

passengers. TOGW was selected as the objective function for optimization problem since it represents a 

composite measure of merit for the aircraft as a system.  TOGW is expressed as a sum of the dry weight (i.e., 

the weight of the aircraft including payload, but without fuel) and the fuel weight.The dry weight of the aircraft 

is  correlated to the initial acquisition cost of the aircraft and fuel weight  represents the yearly recurring costs of 

aircraft operations [18]. From Multidisciplinary perspective the choice of the gross weight as the objective 

function incorporates structural and aerodynamic considerations. The structural considerations are directly 

related to the aircraft empty weight, while the aerodynamic performance dictates the drag and hence the thrust 

required to overcome the drag which dictates the fuel weight required for the mission. The HSCT design is 

described by twenty five design variables and sixty eight constraints. Twenty four of these design variables 

describe the geometry of the aircraft and can be divided into five categories, wing planform, airfoil shape, tail 

area, nacelle placement and fuselage shape.One variables, mission fuel, defines the cruise mission. Details of the 

twenty five design variables are given in Table 1.  

 

Table 1 HSCT Design Variables 
Design Variable No Description 

1 Wing root chord 

2 LE break point, x 

3 LE break point, y 

4 TE break point, x 

5 TE break point, y 

6 LE wing tip, x 

7 Wing tip chord 

8 Wing semi-span 

9 Max t/c location 

10 Airfoil t/c at root 

11 Airfoil t/c at LE break 

12 Airfoil t/c at tip 

13 Fuselage restraint 1,x 

14 Fuselage restraint 1,r 

15 Fuselage restraint 2,x 

16 Fuselage restraint 2,r 

17 Fuselage restraint 3,x 

18 Fuselage restraint 3,r 

19 Fuselage restraint 4,x 

20 Fuselage restraint 4,r 

21 Nacelle 1, y 

22 Nacelle 2, y 

23 Mission fuel 

24 Vertical tail area 

25 Horizontal tail area 

 

Sixty eight design constraints define geometry, system performance and aerodynamic performance and are 

given in Table 2.  
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Table 2: HSCT Constraints 
Index Constraint  

1 Fuel volume  50 wing volume  

2 Wing root TE  Tail LE  

3-20 Wing chord 7.0 ft   

21 LE break within wing semi-span  

22 TE break within wing semi-span  

23 Root chord t/c ratio ≥ 1.5%  

24 LE break chord t/c ratio≥1.5%   

25 Tip chord t/c ratio ≥1.5%   

26-30 Fuselage restraints  

31 Wing spike prevention  

32 Nacelle 1 inboard of nacelle 2  

33 Nacelle 2 inboard of semi-span  

34 Range ≥5500 nautical miles  

35 CL at landing speed ≤1  

36-53 Section CL at landing  ≤2  

54 Landing angle of attack  ≤12o  

55-58 Engine scrape at landing  

59 Wing tip scrape at landing  

60 TE break scrape at landing  

61 Rudder deflection  ≤22.50  

62 Bank angle at landing  ≤50  

63 Tail deflection at approach  ≤22.5o  

64 Takeoff rotation to occur  ≤ Vmin  

65 Engine-out limit with vertical tail  

66 Balanced field length  ≤11000 ft  

67-68 Mission segments: thrust available ≥ thrust required  

 

Multiple configuration of HSCT were analysed over a period of time at NASA Multidisciplinary 

Analysis and Design (MAD) center for advanced vehicles. The data from this analysis has been collated and is a 

part of NASA Multidisciplinary Design Optimization Test Suite [17]. It consists of analyses of 2490 HSCT 

configuration. The data from each analysis is represented in a matrix of 19 rows and 5 columns, and each of the 

2,490 matrices is separated by a blank line. The breakup of 95 numbers taken row by row from each 19 x 5 

matrix is as follows 

 Number 1 to Number 25 are the x vector of 25 design variables which describes each HSCT aircraft 

configuration. The 25 Design variables are scaled to the order of 1 to 10.  

 Number 26 wing bending material weight 

 Number 27 is the takeoff gross weight (TOGW(x)). The objective function, TOGW(x), is not scaled. 

 Number 28 to Number 95 represent the sixty eight constraints. The constraints are unscaled and are of order 

100-1000 (with negative numbers indicating design infeasibility).  

 

VI. Response Surface Model 
Using the legacy data of HSCT, polynomial based surrogate models (cubic response surface) are created for the 

objective function and 68 constraints.  For generating the response surface models the 68 constraints are scaled. 

The scaling procedure used for constraints is  

   𝑆𝑐𝑎𝑙𝑒𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 =  (𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒  −   𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)/𝐿𝑖𝑚𝑖𝑡 
where 𝐿𝑖𝑚𝑖𝑡 is defined as difference between maximum value and minimum value  of the constraints.   The 

surrogate model is of the form given below 

𝑦 = 𝛽0 +  𝛽𝑖𝑥𝑖

𝑘

𝑖=1 𝑡𝑜  𝑘

+  𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1 𝑡𝑜  𝑘

 𝛽𝑖𝑖𝑖𝑥𝑖
3

𝑘

𝑖=1 𝑡𝑜  𝑘

+  

𝑘

𝑖=1 𝑡𝑜  𝑘

 𝛽𝑖𝑗 𝑥𝑖

𝑘

𝑗=𝑖 𝑡𝑜  𝑘

𝑥𝑖𝑗              (9) 

 

Latin Hypercube design (LHD) as DOE strategy was used to generate 2000 experimental design points 

for 25 design variables.  The data points nearest to the 2000 experimental design points were selected from the 

HSCT data and used for generating cubic response surface model. The cubic response surface model is fitted to 

the data using least square method.  For the objective function TOGW, the graph of predicted vs actual value is 

shown in Figure 6. Residual / error is calculated for the objective function for all 2490 data points. The error is 

normalised with variance and estimated as follows  

 

𝑁𝑜𝑟𝑚𝑎𝑖𝑠𝑒𝑑  𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  
𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑣𝑎𝑙𝑢𝑒

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 σ
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Figure 6 Plot of Objective Function 

 

 
Figure 7 Normalized Residual Error Plot for Objective Functions 

 

The normalised error for the objective function with +3 σ and -3 σ $ limits is shown in figure 7.  Model statistics  

R
2
 and R

2
adjusted  for objective function are .991093 and 0.982265 respectively.  Figure 8 and 9 indicate the 

spread of  R
2
and R

2
adjusted for 66 constraints. 

 

 
Figure 8 : R

2
 for 66 constraints 
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Figure 9: R

2
 adjusted for 66 constraints 

 

The error for each model is the characterized using mean and variance σ. The Error metrics for the objective 

function and 66 scaled constraints are given in table 3. 

 

Table 3: Error Metrics for the Surrogate Model 
Function   Mean   Sigma   Function   Mean   Sigma   

Objective  -87.030 2956.607   Constraint 34  0.001617 0.172839   

Constraint 1 0.002317 0.330295   Constraint 35  0.014505 0.221591   

Constraint 2 0.000351 0.009246   Constraint 36 0.010143 0.184822    

Constraint 3 0.001463 0.034273   Constraint 37 -0.000420 0.137855   

Constraint 4 0.001411 0.032661   Constraint 38  0.002242 0.140118   

Constraint 5 0.001360 0.032563   Constraint 39  0.004293 0.123276   

Constraint 6 0.001555 0.032148   Constraint 40  0.002108 0.102640   

Constraint 7 -0.000217 0.034550   Constraint 41 -0.000411 0.013342   

Constraint 8 -0.002202 0.039148   Constraint 42 -0.000489 0.023651   

Constraint 9 -0.002477 0.037638   Constraint 43 -0.000490 0.023634   

Constraint 10 -0.002208 0.041348   Constraint 44 -0.000430 0.025833   

Constraint 11  0.003470 0.042901   Constraint 45 -0.000439 0.025776   

Constraint 12  0.004246 0.051777   Constraint 46 -0.001345 0.031570   

Constraint 13 -0.000858 0.052123   Constraint 47  0.000000 0.000000   

Constraint 14  0.002668 0.057427   Constraint 48 -0.011687 0.292862   

Constraint 15  0.001782 0.048474   Constraint 49  0.001291 0.034009   

Constraint 16 -0.001079 0.041063   Constraint 50  0.022865 2.302002   

Constraint 17  0.000149 0.047517   Constraint 51 -0.000079 0.001688   

Constraint 18  0.001348 0.051881   Constraint 52 -0.000399 0.010767   

Constraint 19  0.000765 0.060724   Constraint 53  0.001689 0.025668   

Constraint 20 -0.000000 0.000000   Constraint 54 -0.000998 0.020468   

Constraint 21 -0.000080 0.007034   Constraint 55  0.000915 0.030134   

Constraint 22 -0.004000 0.025713   Constraint 56 -0.000000 0.000000   

Constraint 23 -0.003393 0.069140   Constraint 57  0.000000 0.000000   

Constraint 24 -0.000000 0.000001   Constraint 58  0.000000 0.000000   

Constraint 25  0.000470 0.031493   Constraint 59  0.000000 0.000000   

Constraint 26  0.000926 0.063048   Constraint 60 -0.000003 0.000068   

Constraint 27  0.002525 0.090631   Constraint 61 -0.000049 0.004281   

Constraint 28 -0.005665 0.120384   Constraint 62  0.000024 0.045508   

Constraint 29 -0.015115 0.154662   Constraint 63 -0.000000 0.000000   

Constraint 30 -0.017200 0.163188   Constraint 64  0.000000 0.000000   

Constraint 31 -0.011297 0.167016   Constraint 65  0.001646 0.050521   

Constraint 32  0.017417 0.168936   Constraint 66 -77.501 3508.771  

Constraint 33  0.022139 0.193345      
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VII. Hsct Design Optimization - Test Case 
A synthetic design optimization test problem is created based on available HSCT data. Mathematically 

optimization test problem of HSCT is stated below 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝐹 𝑥               𝑤 𝑒𝑟𝑒          𝑥   ∈ 𝑅25   

𝑥𝑖𝑚𝑖𝑛 ≤  𝑥𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥             𝑤 𝑒𝑟𝑒           𝑖 = 1,2,3 … .25 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝐺𝑗   𝑥  ≥ 0  𝑓𝑜𝑟 𝑗 = 1,2, … 66 

 

 𝑤 𝑒𝑟𝑒 𝐹 𝑥    𝑖𝑠 𝑡 𝑒  𝑡𝑎𝑘𝑒 𝑜𝑓𝑓 𝑔𝑟𝑜𝑠𝑠 𝑤𝑒𝑖𝑔 𝑡, 𝑎𝑛𝑑 𝑥  𝑖𝑠 𝑡 𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟  
 

 𝐺𝑗   𝑥     𝑎𝑟𝑒 𝑡 𝑒 𝑛𝑜𝑛 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  

 

𝑥𝑚𝑖𝑛  𝑎𝑛𝑑 𝑥𝑚𝑎𝑥  𝑎𝑟𝑒 𝑡 𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑝𝑢𝑛𝑑𝑠 𝑓𝑜𝑟 𝑡 𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  
 

Three optimization problem based on HSCT are defined for validation of Smart Response Surface 

Models algorithm. The first test case is based on the cubic model (called as smooth function) detailed in section 

6. Test case 1 is represented in Figure 10.  In the second test case noise is added to the smooth function. The 

amount of noise added is based on the mean and sigma of the respective model/function. This is represented in 

Figure 11. In third test case  Smart Response Surface Models algorithm is used to generated surrogate models 

for optimization. The smart RSM interfaces between optimizer and noisy function. The smart RSM generates 

quadratic models with is move limits and is used by the optimizer. Figure 12 shows interaction between 

optimizer,  smart RSM, noisy function  along with RSM and I/O database.  It is expected that the Smart RSM 

would effectively filter numerical noise and optimization would converge with fewer iteration.  

 

The following Nomenclature is used for defining the optimization problem statement  

 

𝑓𝑡 𝑥                   𝐶𝑢𝑏𝑖𝑐 𝑓𝑖𝑡 𝑜𝑓 𝑤𝑒𝑖𝑔 𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝐻𝑆𝐶𝑇 𝑙𝑒𝑔𝑎𝑐𝑦 𝑑𝑎𝑡𝑎 set  

𝑔 𝑡(𝑥 )                𝐶𝑢𝑏𝑖𝑐 𝑓𝑖𝑡 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑡𝑜  𝐻𝑆𝐶𝑇 𝑙𝑒𝑔𝑎𝑐𝑦 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 

𝑓𝑛𝑡  𝑥                 𝑁𝑜𝑖𝑠𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓      𝑓𝑡(𝑥 ) 
𝑓𝑛𝑡  𝑥  =  𝑓𝑡 𝑥  +  𝜖    𝑤 𝑒𝑟𝑒 𝜖 = 𝑅𝑁 𝜇, 𝜎  

𝑔 𝑛𝑡  𝑥                𝑁𝑜𝑖𝑠𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑜𝑓      𝑔 𝑡(𝑥 ) ) 
𝑔 𝑛𝑡 (𝑥 ) =  𝑔 𝑡(𝑥 )  +  𝜖    𝑤 𝑒𝑟𝑒 𝜖 = 𝑅𝑁 𝜇, 𝜎  

𝑓𝑞𝑛  𝑥           𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓   𝑓𝑛𝑡  𝑥    𝑤𝑖𝑡 𝑖𝑛 𝑚𝑜𝑣𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 

𝑔 𝑞𝑛  𝑥          𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓  𝑔 𝑛𝑡  𝑥    𝑤𝑖𝑡 𝑖𝑛 𝑚𝑜𝑣𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 

 

Gradient based optimizer CSFQP is used to solve the three test cases. Gradients are calculated by CSFQP using 

the built-in finite difference method based function. The stopping criteria for optimizer, d0 norm, is less than 10
-

6
. The starting point for optimization, i.e initial design point is a feasible for all the constraints. It is identical for 

all three test cases.  

 

 
Figure 10:  Test Case 1 
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7.1   Test case1 

Problem Statement 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝑓𝑡 𝑥                                     𝑤 𝑒𝑟𝑒          𝑥   ∈ 𝑅25   
𝑥𝑖𝑚𝑖𝑛 ≤  𝑥𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥        𝑤 𝑒𝑟𝑒           𝑖 = 1,2,3 … .25 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑔 𝑡 𝑥     ≥ 0   𝑤 𝑒𝑟𝑒         𝑔 𝑛𝑡  ∈ 𝑅66  
 

CSFQP was run for the above design problem. The starting point for the optimizer was an initial 

feasible design point. An optimal point was reached after 72 iteration.The d0 norm after 72 iteration was 

 7.817𝑒 − 07.  The number of functions calls for by the optimizer for the objective function 1931. The value of 

the weight function was 332601.83 . This value of the objective function is used as reference value for 

comparing the other two test cases. 

 

7.2  Test case 2 

 

Problem Statement 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
𝑓𝑛𝑡  𝑥                                     𝑤 𝑒𝑟𝑒          𝑥   ∈ 𝑅25   
𝑥𝑖𝑚𝑖𝑛 ≤  𝑥𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥        𝑤 𝑒𝑟𝑒           𝑖 = 1,2,3 … .25 
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
𝑔 𝑛𝑡 (𝑥 )     ≥ 0   𝑤 𝑒𝑟𝑒         𝑔 𝑛𝑡  ∈ 𝑅66   
 

 

 
Figure 11:  Test Case 2 

 

CSFQP was run for the above design problem with initial design point. The value of objective function 

at the initial design point is 6.21725X 10
5
. The optimizer failed to converge after10 iteration. The value of 

Objective function after10 iteration is 6.21417times10
5
.The values of the objective function has not reduced 

much after 10 iteration. The objective function was called 844 times. The function calls to each of 66 constraints 

was ranging  between 840 to 849. The d0 norm and the step size at the 10 iteration were 3.6058990e+00and  

1.4210854e-14 respectively. The optimizer failed as the step size was small. As seen here with a noisy function 

a gradient based optimizer fails to converge to optima due to numerical noise.  

 

7.3 Test case 3 - Smart RSM 

In test case 3 Smart RSM interfaces between optimizer and the noisy function. It  generates validated 

quadratic RSM  (with its subspace) for objective function and 66 constraints to be used by optimizer.  The 

optimization parameters are similar to earlier test cases. The process was repeated  twice  with two different 

acceptable modelling error of 10\% and 5\%. The Smart RSM also interacts with two databases, Input/output 

and RSM database. At the starting of the optimization process there is no data in both databases during 

optimization process the databases get populated and values are checked to reuse existing RSM and avoid 

redundant  function calls. 
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Figure 12: Test Case 3 

 
Acceptable modelling error  10%  

      Number of iterations  36  

      d0norm               2.67651 X 10-7 

      Number of functions calls for objective function  1636 

      Objective function 𝑓𝑛𝑡  𝑥     374942.05  

% 𝑒𝑟𝑟𝑜𝑟 =  
𝑓𝑛𝑡  𝑥  − 𝑓𝑡 𝑥   

𝑓𝑛𝑡  𝑥  
𝑋 100 

12.7 % 

    

 
Acceptable modelling error  5%  

      Number of iterations  41  

      d0norm               9.390395  X 10-7 

      Number of functions calls for objective function  2426 

      Objective function 𝑓𝑛𝑡  𝑥     366345.560329 

% 𝑒𝑟𝑟𝑜𝑟 =  
𝑓𝑛𝑡  𝑥  − 𝑓𝑡 𝑥   

𝑓𝑛𝑡  𝑥  
𝑋 100 

10.1% 

 

VIII. Result 
Objective function/design analysis tools of the form 𝑓𝑡 𝑥    are smooth and simple functions.  Typically 

these are empirical methods or simple equation used during pre-conceptual design stage.  For conceptual/detail 

design, high fidelity design analysis tools are preferred which are complex and invariably have numerical noise 

and are similar to 𝑓𝑛𝑡  𝑥  . During multidisciplinary optimization process with these design analysis tools, the 

optimization process either fails due to non- convergence  or requires large number of  iterations. Smart RSM 

present a way to overcome these issues.  

Table 4 shows the number of iterations, calls to the objective function, and value reached after 

optimazation for the test cases. Due to the numerical noise introduced in test case 2 the optimization process has 

failed after 10 iterations without convergence. It is aslo observed that the value of objective function value has 

not reduced appreciably to 6.21417 x 10
5
 from the initial value of 6.21725 x 10

5
 during optimization process. 

The number of functions calls by the optimizer for objective function was 844 till non convergence.   

  

Table 4 Test Case Results 
  Iteration  No Of Objective  

Function calls 
Objective Function optimal 
value (Kg)  

Test Case 1   72 1932 332061.8  

Test Case 2   Failed (10)  844  621417.3  

Test Case 3   10% 36  1636 374942.1  

  5% 41 2426 366345.5 

 

With the implementation of Smart RSM, Test case 3, quadratic approximations with move limits are 

created and used by optimizer.  The number of objective function calls by the smart RSM for an acceptable 

modelling error of 10%  and 5% is 1636 and  2426 respectively. For a acceptable modelling error of 10%, Table 
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6 gives the details of the function calls for objective functions and 66 constraints. Complex aircraft design has 

large number of constraints criteria that needs to met. In the case of HSCT there are 66 design constraints. These 

design constraints are estimated with use of multidisciplinary analysis. This increases the computation efforts 

and time.  With the implementation of Smart RSM on design tools, both for objective function and constraints, 

there would a saving in computation time and circumventing the problems associated with numerical noise. 

Further, with appropriate database managements for RSM a design knowledge base could also be developed.  

Table 5 shows number of models generated for objective function and constraints for 10`% modelling error.  

 

Table 5 : Number of Surrogate models generated 
Function  RSM created Function  RSM created 

 Objective  3  Constraint 34 9 

 Constraint 1 3  Constraint 35 14 

 Constraint 2 2  Constraint 36 11 

 Constraint 3 8  Constraint 37 11 

 Constraint 4 11  Constraint 38 9 

 Constraint 5 12  Constraint 39 11 

 Constraint 6 15  Constraint 40 13 

 Constraint 7 7  Constraint 41 12 

 Constraint 8 14  Constraint 42 7 

 Constraint 9 15  Constraint 43 8 

 Constraint 10 15  Constraint 44 3 

 Constraint 11 14  Constraint 45 3 

 Constraint 12 11  Constraint 46 15 

 Constraint 13 3  Constraint 47 1 

 Constraint 14 16  Constraint 48 3 

 Constraint 15 6  Constraint 49 18 

 Constraint 16 11  Constraint 50 0 

 Constraint 17 3  Constraint 51 3 

 Constraint 18 3  Constraint 52 3 

 Constraint 19 10  Constraint 53 15 

 Constraint 20 1  Constraint 54 20 

 Constraint 21 3  Constraint 55 11 

 Constraint 22 13  Constraint 56 1 

 Constraint 23 11  Constraint 57 1 

 Constraint 24 1  Constraint 58 1 

 Constraint 25 5  Constraint 59 1 

 Constraint 26 12  Constraint 60 1 

 Constraint 27 15  Constraint 61 0 

 Constraint 28 10  Constraint 62 21 

 Constraint 29 9  Constraint 63 1 

 Constraint 30 15  Constraint 64 1 

 Constraint 31 15  Constraint 65 13 

 Constraint 32 14  Constraint 66 0 

 Constraint 33 12   

 

Table 6: Function calls details 
Function   No of calls  Function   No of calls  

 Objective           1636        Constraint  34      5210     

 Constraint  1       2118        Constraint  35      8067     

 Constraint  2       1117        Constraint  36      6817     

 Constraint  3       5177        Constraint  37      9099     

 Constraint  4       6468        Constraint  38      8972     

 Constraint  5       6549        Constraint  39      9106     

 Constraint  6       9030       Constraint  40      10601     

 Constraint  7       4030       Constraint  41      12949     

 Constraint  8       8795       Constraint  42      6437      

 Constraint  9       9147       Constraint  43      5886      

 Constraint  10      8764       Constraint  44      2227      

 Constraint  11      8672       Constraint  45      2725      

 Constraint  12      6234       Constraint  46      10535     

 Constraint  13      2374       Constraint  47      704       

 Constraint  14      9331       Constraint  48      1643      

 Constraint  15      5832       Constraint  49      13543     

 Constraint  16      8164       Constraint  50      947       

 Constraint  17      2362       Constraint  51      1620      

 Constraint  18      2227       Constraint  52      2227      

 Constraint  19      7206       Constraint  53      8963      

 Constraint  20      704        Constraint  54      19637     
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 Constraint  21      2227       Constraint  55      8428      

 Constraint  22      10189      Constraint  56      704       

 Constraint 23       7195       Constraint  57      704       

 Constraint  24      704    Constraint  58      704       

 Constraint  25      3016       Constraint  59      704       

 Constraint  26      6610       Constraint  60      704       

 Constraint  27      9494       Constraint  61      946       

 Constraint  28      5670       Constraint  62      19843     

 Constraint  29      5105       Constraint  63      704       

 Constraint  30      8986       Constraint  64      704       

 Constraint  31      9786       Constraint  65      8599      

 Constraint  32      7846       Constraint  66      946       

 Constraint  33      7221        
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