"Optimization of Cutting Parameters for Turning AISI 316 Stainless Steel Based on Taguchi Method"

J. Chandrasheker¹, Mahipal Manda², D.Vijay Kumar³

¹Associate Professor (Mechanical Department, Vaageswari College of Engineering, Telangana, India) ²Assistant Professor (Mechanical Department, Vaageswari College of Engineering, Telangana, India) ³Assistant Professor (Mechanical Department, Vaageswari College of Engineering, Telangana, India)

Abstract: The objective of this work is the optimization of the cutting parameters for turning AISI 316 stainless steel to achieve the better surface finish using Taguchi's methodology. Taguchi Parameter Design is a powerful and efficient method for optimizing quality and performance output of manufacturing processes, thus a powerful tool for meeting this challenge. This work discusses an investigation into the use of Taguchi Parameter Design for optimizing surface roughness generated by a Turning operation. In this method, four control factors viz. cutting speed, feed rate, depth of cut, three different cutting fluids (sherol B, sherol ENF, straight cutting oil) and one work piece material (AISI 316 stainless steel) were investigated at three different levels and the turning operations are done on Banka 1000 lathe machine. Cutting speed followed by cutting fluid has the significant role. The quality characteristic identified is surface roughness. Experiments carried out using L_9 (3^4) Orthogonal Array with three different levels of control factors. The test results were analyzed using "smaller-the-better" criteria for Signal-to-Noise ratio in order to optimize the process. The experimental results were analyzed, conformed and successfully used to achieve good surface finish on work piece materials. **Keywords:** Cutting parameters, turning, Surface roughness, Cutting fluids, Taguchi method.

I. Introduction

Turning is the removal of metal from the outer diameter of a rotating cylindrical work Piece. Turning is the machining operation that produces cylindrical parts. In its basic form, it can be defined as the machining of an external surface:

- 1. With the work piece rotating.
- 2. With a single-point cutting tool and
- 3. With the cutting tool feeding parallel to the axis of the work piece and at a distance that will remove the outer surface of the work.

Fig- 1: Diagram for turning process

In competition industry, each manufacturing company wants to manufacture low cost and high quality product in a short time to full fill customer demand. Automated and flexible manufacturing systems are employed for that purpose along with computerized numerical control (CNC) machines that are capable of achieving high accuracy and very low processing time. In a turning operation, it is important task to select cutting parameter for achieving high cutting performance. To select the cutting parameter properly, several mathematical models and based on statistical regression or neural network techniques have been constructed to establish the relationship between the cutting performance and cutting parameter. Then, an objective function with constraints is formulated to solve the optimal cutting parameter using optimization techniques. Therefore, considerable knowledge and experience are required for this approach. In this study, an alternative approach based on the Taguchi method and is used to determine the desired cutting parameter more efficiency.

"Optimization of Cutting Parameters for Turning AISI 316 Stainless Steel Based on Taguchi Method"

Basically, surface roughness is strongly correlated with cutting parameters such as cutting speed, feed rate, and depth of cut. So along with these, one more cutting parameter i.e., cutting fluid is taken as the cutting parameter. Proper selection of the cutting parameters based on the parameter design of the Taguchi method is adopted in this project to improve surface roughness in a turning operation.

2.1. Work Piece Material

II. Materials And Method

The work piece material used in this project was AISI 316 Stainless Steel of length of 120mm and diameter 50mm. The work piece material is shown below:

Fig -2: AISI 316 Stainless Steel

Table - 1: Chemical (Composition of AISI 316 Stainless Steel.
-----------------------	--

SNO	MATERIAL	COMPOS	SITION	HARDNESS
	AISI	С	0.08%Max	
1	STAINLESS	Cr	16-18%	
	STEEL	NI	10-14%	
		SI	10MAX	25-39Hrc
		Mo	2-3Max	
		Mn	2.0%Max	
		Р	0.045%Max	
		S	0.03MAX	

2.2. Material Applications:

AISI 316 has improved pitting corrosion resistance and has excellent resistance to sulphates, phosphates and other salts. AISI 316 has better resistance than standard types to sea water, reducing acids and solution of chlorides, bromides and iodies. Include pumps, valves, marine fittings, fasteners, paper and pulp machinery, and petro chemical equipment.

2.2. Cutting Tool:

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a super hard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide. The diamond tipped tool used in this work is show in the figure-3.

Fig -3: Diamond tipped tool

2.3. Selection Of Control Factors:

Cutting experiments are conducted considering four cutting parameters: Cutting Speed (m/min), feed rate (mm/rev), Depth of Cut (mm) and cutting fluids. Overall 27 experiments were carried out. Table 3 shows the values of various parameters used for experiments:

		iaeinning i ara	incloid and Leve	15
Sl	Process Parameter		Levels	
No		1	2	3
1	Speed (m/min)	500	1000	1500
2	Feed (mm/rev)	0.10	0.15	0.20
3	Depth of Cut (mm)	0.3	0.5	0.8
4	Cutting fluid	Sherol –B	Sherol - ENF	Straight cutting oil

Table - 2: Machining Parameters and Levels

Fig-4: Banka 40 Lathe Machine.

III. Experimental Procedure

Turning is popularly used machining process. In this project work turning is done on the lathe machine which is shown in the figure-4.

3.1. Taguchi Approach:

The Taguchi method is a well-known technique that provides a systematic and efficient methodology for process optimization and this is a powerful tool for the design of high quality systems. Signal to noise ratio and orthogonal array are two major tools used in robust design. The S/N ratio for each level of process parameters is computed based on the S/N analysis. The optimal level of the process parameters is the level having highest S/N ratio. The S/N ratio characteristics can be divided into three categories when the characteristic is continuous.

a) Nominal is the best

b) Smaller the better

c) Larger is better characteristics.

Alloy steels require smooth surface finish. So quality characteristic chosen for this project work is surface roughness. Since the requirement is to reduce the surface roughness to improve the performance of selected work piece materials, the objective function is of the smaller-the-better type Signal to Noise Ratio: Smaller is better

i=1

nS/N ratio (η) = -10 log₁₀ [(1/n) \Box y_i²] Where

n: no. of tests in trial (no. of repetitions regardless of noise levels) Y_i : is the ith observation of the quality characteristic.

3.2. Taguchi Orthogonal Array:

 L_9 (3⁴) Orthogonal array is selected for experimentation. This L_9 (3⁴) orthogonal array is selected from the Taguchi's standard orthogonal arrays. By using this method number of experiments reduced to 9 instead of 27 with almost same accuracy. The Taguchi's standard orthogonal arrays are tabulated in the table-3

Factors				
Expt.No.	1	2	3	4
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	2	3	3
5	2	3	1	1
6	3	1	3	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

Table - 3: Standard L_9 (3⁴) O.A. Design

In L_9 (3⁴) orthogonal array, five columns bearing the numbers '1', '2', '3', '4', represents factors. And each set of numbers below these columns represent levels of that factors respectively. As the index in the first column depicts, each row represents an experiment.

Factors	Cutting speed	Feed rate	Depth of cut (mm)	Cutting
1	(levels)	(levels)	(levels)	(levels)
2	455	150	0.8	Sherol ENF
3	455	175	1.2	Straight cutting oil
4	683	110	0.8	Straight cutting oil
5	683	150	1.2	Sherol B
6	683	175	0.4	Sherol ENF
7	1025	110	1.2	Sherol ENF
8	1025	150	0.4	Straight cutting oil
9	1025	175	0.8	Sherol B

 Table - 4: Factor assignment (Experimental Design)

3.3. Measurement Of Surface Roughness:

In this project stylus type surface roughness meter was used to measure the surface roughness of the specimens. There were two main reasons behind selecting stylus type surface roughness one is its easy availability and other is the ease with which it can be operated. The surface roughness measuring instrument used in this experiment is Talysurf.

Fig - 5: Stylus Movement On Work piece Material

3.4. Procedure Followed To Measure Surface Roughness (Ra):

For each and every experiment the surface roughness of the machined work material is found out. Three points on the work material are considered for each sample and each measurement is about 90 degrees apart. The stylus moves to and fro on the work material at these four points. The R_a values are displayed on the digital meter and the three values of R_a are considered for that particular experiment. Similarly 27 (R_a) values are considered for 9 experiments.

IV. Results And Analysis

Minitab statistical software has been used for the analysis of the experimental work. The Minitab software studies the experimental data and then provides the calculated results of signal-to-noise ratio. The average value of S/N ratios has been calculated to find out the effects of different parameters and as well as their levels. The Minitab software studies provide the predicted equations of surface roughness for a work piece material. After analysis of data for the surface roughness based on the factors cutting speed, feed rate, depth of cut, cutting fluid for a work piece material i.e., AISI 316 stainless steel is given below.

Starting Minitab 17:-

Step1: Open minitab15 software and a window is displayed on the desktop as shown below.

> Minitab - Untitled											
File Edit Data Calc Stat Graph Editor Tools Window Help											
C Session											
Worksheet 1 ***											
• C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C											
3											
Relcome to Minitab, press F1 for help. [Editable											

Step 2: Firstly inorder to get results from minitab software by taguchi method we need to define the parameters considerd and obtained experimental values. And by going on clicking as the procedure shown below completes the defining procedure in minitab software.

Click on STAT >> DOE >> TAGUCHI >> DEFINE CUSTOM TAGUCHI DESIGN... The window as shown in the figure below

Defining the custom Taguchi design

	Begression	1101	-	XQ +TOOL.			HU 940 ~	<u></u>							
	DOF	External					To Ta Ta	10 2 2	1 miles						
And in case of the local division of the	Control Charts	Response	Sudaca	j 178 / 76 L22 175 / 60 BW											
Project M. Co La	Quality Tools	Minture	e sontoce	and the second se											
Graph Main Effects Plot for Me	Reliability/Survival	Tanuchi		To Consta Tamah Davies	5	C6	C7	C8	C9	C10	C11	C12	C1.		
Main Effects Plot for SN	Multivariate		_	The Create Pagochi Design	A1	RA2	RA3	AVG	SNRA1	MEAN1					
Main Effects Plot for Me	Time Series	Modify I	Design	Denne C Nom Tagueni Design	5.790	5.449	4.737	5.325	-14 5563	5.32533					
Main Effects Plot for SN	Jables	Display [Design	To Analyze Taguchi Design	1.558	4.819	4.793	4.723	-13.4877	4.72333					
	Nonparametrics	455	1/5	To Predict Taguchi Results	5.111	4,550	5.291	4 984	-13.9689	4.98400					
	EDA	683	110	100 10	6.440	5.592	5.832	5.621	-15.0004	5.62133					
	Power and Sample Size	683	150	1.2 Sherol B	6.506	5.890	5.958	6.118	-15.7410	6.11800					
	7	1025	110	1.2 Charles ENP	6 189	6.667	6.534	6.463	-16.2133	6.46333					
	8	1025	150	0.4 Straight a mine of	3.4.38	3.605	4.054	3.699	-11 3831	3.69900					
	9	1025	175	0.4 Straight cutting oil	2.850	=3.522	3.701	3.357	-10.5721	3.35767					
	10			0.0 Sheror B	4.186	3.876	3 648	3.903	-11.8425	3.90333					
	11														
	12														
	13														
	14														
	15														
	16														
	17														
	18														
	19														
	20														
	21														

Now various steps involved in getting the final results are as shown in the figures below.

ile fitt Data Cale S	tat Graph Editor	r Iools	Window H	elp												
1416 9	Basic Statistics		808	0 0		市地区图	1 1 1 1	-1-2	1 61 12	0.0						
	Begression		The second second	- 11 -	I XIOII	TOON	1-1-1-1									
-	ANOVA		-		1 - 1 - 1 -	1001-	00									
And the second se			Eactorial					222	10 B 10	Tg 400 000	1111					
Depart M. Con Lin	Control Charts	Control Charts +		e Surface												
Granh	Quality Tools		Migture		, 0	CAT	1 00	00	- 07							
Main Effects Plot for Me Reliability/Survival		e lev	Leguche P		To Create Taguchi Design		12	047	L/	68	C.9	C10	C11	C12	C13	
Main Effects Plot for SN	Multivariate Fine Series Files		Q and a	9 Modify Design		tom Teauchi Desian	700	RAZ	RAJ	AVG	SNRAT	MEANT	12222			
Main Effects Plot for Me			455 175		Analyze Taguchi Design		1 260	1 040	4.737	5.325	-14,5563	5.32533				
							1.556	4.013	4,733	4.123	-13.4677	4.12333				
and the second second			683	110	To Predict Tag	puchi Results		4.500	5.231	4 984	-13.9689	4.98400				
	EDA.		683	150	12	Shaml H	6 50C	5.000	5.059	5.621	-15.0004	5.62133				
	Power and Samp	ple See +	683	175	0.4	Sherol ENF	6.199	5.030	2.350	6 118	-15.7410	6.11800				
	1		1025	110	1.2	Sherol ENE	3 4 3 8	3 605	4 054	0.463	-16.2133	6.46333				
	8		1025	150	0.4	Straight cutting oil	=2.850	3.522	3.754	3.033	-11 3031	3.69900				
	9	9		175	0.5	Sherol B	4 186	3.876	3 648	3 002	11.0407	3.35/6/				
	10							-	2/040	3.305	-11.0425	3.90333				
	11															
	12															
	13															
	14															
	15															
	16															
	17															
And the second second	18															
	19															
	20															
	27															
Concernant of the local division of the loca																
	and a second of															

DOI: 10.9790/1684-1401010109

	Begre ANO RCE Contr	A A A A A A A A A A A A A A A A A A A		1.00	T 9 T 4	6 73.22		
	The set of	y Tools + Mature billy/sharwal sarenetrics +	Processor Processor 1 Operate Tayouto Design- Tra- transmission Tra- transmission Tra- transmission 110 Tra- transmission Tra- transmission Tra- transmission Tra- transmission 110 Tra- transmission Tra- transmission Tra- transmission Tra- transmission 110 Tra- transmission 0.4 Strend B 150 0.4 Stranget A 175 0.8 Shered B	Y 53 at Design 53 segs 53 <th>C6 C7 RA2 RA 849 4. 419 4. 450 5. 5.959 5. 5.890 5. 6.667 6. 3.605 4. 3.876 3.</th> <th>C8 C8 3 AVG 5 737 5.225 -1 793 4.723 -1 793 4.723 -1 291 4.984 -1 382 5.621 -1 568 6.118 -1 544 6.463 -1 648 3.903 -1</th> <th>C9 C10 NRA1 MEAN1 4 5563 5 32533 33 9679 4 79240 50004 5 6214 50004 5 6214 1 8307 4 98400 5 1 6004 5 641800 16 2133 6 46333 15 7410 6 11800 10 5721 3 35767 11 8425 3 90333</th> <th>CII</th>	C6 C7 RA2 RA 849 4. 419 4. 450 5. 5.959 5. 5.890 5. 6.667 6. 3.605 4. 3.876 3.	C8 C8 3 AVG 5 737 5.225 -1 793 4.723 -1 793 4.723 -1 291 4.984 -1 382 5.621 -1 568 6.118 -1 544 6.463 -1 648 3.903 -1	C9 C10 NRA1 MEAN1 4 5563 5 32533 33 9679 4 79240 50004 5 6214 50004 5 6214 1 8307 4 98400 5 1 6004 5 641800 16 2133 6 46333 15 7410 6 11800 10 5721 3 35767 11 8425 3 90333	CII
COTTING SPEED FEED ALL CALL SALES AND ALL CAL	Minitab - Untitled - Workshee Ei File Edit Data Calc Sta Call Call Call Call Call Sta Call Call Call Call Call Call Call Call	19 20 21 11 ^{mm} 4 Seph Egitor Jools Window He ∞ ↑ ↓ ♣ ∯ ⓒ ♀ ∰ ▶ ≠ + ⇔ Z	* €===0000010±10000 X Q ↓ TOON ∘ L	<u>家</u> 永 - 瑞 - 瑞 - 瑞 - 福 - 編 - 編 - 編 - 編 - 編 - 編 - 編 - 編	1 M d O			- 0 X _8;
Image Action Image Action	C1 C1 CUTTING SPEED FEE 1 455 2 4455 3 465 4 683 5 683 6 683 7 1025 9 1025 10 1025	C2 C3 C4 D RATE DEPTH OF CUT CUTTING 110 0.4 sherel B 150 0.8 Sherel CB 175 1.2 Straight c 190 0.8 Sherel CB 190 1.2 Sherel EB 190 1.2 Sherel EB 175 0.4 Sherel EB 190 0.4 Straight c 190 0.4 Straight c 190 0.4 Straight c 191 0.8 Sherel EB	LT C5 C6 C7 FLUIDS RA1 RA2 RA3 5790 5 449 4 737 W Define Custom Taguch Design utting oil C1 CHTTPS OFEN C2 FED BAT C3 FED CAST C4 CHTTPs FLUIDS C5 RA3 W C7 RA3 Spol FA	Te 1 CC8 C9 C10 SPEED FEED PATE DEPTH O THIGE FUILDS		C13 C14	C15 C16	C17 C1
Image: Speech PEED RATE DEPTH OF CUT CUTTING FLUIDS CA T CA C CB C CB C CB C CC C CB C CA C CB C CC C <td>12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18</td> <td>rrs] Graph Editor Iools Window Help ⊡ 1 ± Ak ∰ ⊘ ∰</td> <td></td> <td>fy by colume</td> <td>Cancel</td> <td></td> <td></td> <td>- 0</td>	12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18	rrs] Graph Editor Iools Window Help ⊡ 1 ± Ak ∰ ⊘ ∰		fy by colume	Cancel			- 0
Initab - Unitited - [Worksheet 1 ***] File Edit Data Sale Stat Graph Editor Iools Window Help Imitab - Unitited - [Worksheet 1 ***] File Edit Data Sale Stat Graph Editor Iools Window Help Imitab - Unitited - [Worksheet 1 ***] File Edit Data Sale Stat Graph Editor Iools Window Help Imitab - Unitited - [Worksheet 1 ***] Imitab - [Worksheet 1 ***] <t< td=""><td>C1 C2 CUTTING SPEED FEED 7 455 455 683 683 683 1025 1025</td><td>2 C3 C41 PATE DEPTH OF CUT CUTTING F 110 0.4 sherd B 150 0.8 Sherd ENF 175 1.2 Straight cut 160 0.8 Straight cut 170 1.2 Shered ENF 175 0.4 Shered ENF 100 0.4 Shered ENF 110 1.2 Shered ENF 110 0.4 Shered ENF 150 0.4 Straight cut 175 0.8 Shered ENF</td><td>CS C6 C7 FLUIDS RA1 RA2 RA3 5.780 5.49 4.737 biting of Cefre Cuttom Teguchi Design Cefre Cuttom Teguchi Design citing of C1 CUTTNE Seeton Factors: citing of C2 CEFR OF CUT Factors: citing of C3 A3 Ceffe Cuttom Teguchi Design citing of C2 CEFR OF CUT Factors: citing of C3 A3 Ceffe Cuttom Teguchi Design citing of C3 Ceffe Cuttom Teguchi Design Cuttom Teguchi Design citing of C3 Ceffe Cuttom Teguchi Design Cuttom Teguchi Design citing of C7 RA3 Separating Cuttom Teguchi Design citing of C5 Set Citing Cuttom Teguchi Design citing of C5 Set Citing Cuttom Teguchi Design</td><td>TG C8 C9 C1 SPEED FRED RATE DEPTH C TITUE FLUIDS for main factor fy by colume.</td><td>5. 5 10 2. 3. 1 0 C11 C 2 2 1 2 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>12 C13 C1</td><td>4 C15 C16</td><td>C17</td></t<>	C1 C2 CUTTING SPEED FEED 7 455 455 683 683 683 1025 1025	2 C3 C41 PATE DEPTH OF CUT CUTTING F 110 0.4 sherd B 150 0.8 Sherd ENF 175 1.2 Straight cut 160 0.8 Straight cut 170 1.2 Shered ENF 175 0.4 Shered ENF 100 0.4 Shered ENF 110 1.2 Shered ENF 110 0.4 Shered ENF 150 0.4 Straight cut 175 0.8 Shered ENF	CS C6 C7 FLUIDS RA1 RA2 RA3 5.780 5.49 4.737 biting of Cefre Cuttom Teguchi Design Cefre Cuttom Teguchi Design citing of C1 CUTTNE Seeton Factors: citing of C2 CEFR OF CUT Factors: citing of C3 A3 Ceffe Cuttom Teguchi Design citing of C2 CEFR OF CUT Factors: citing of C3 A3 Ceffe Cuttom Teguchi Design citing of C3 Ceffe Cuttom Teguchi Design Cuttom Teguchi Design citing of C3 Ceffe Cuttom Teguchi Design Cuttom Teguchi Design citing of C7 RA3 Separating Cuttom Teguchi Design citing of C5 Set Citing Cuttom Teguchi Design citing of C5 Set Citing Cuttom Teguchi Design	TG C8 C9 C1 SPEED FRED RATE DEPTH C TITUE FLUIDS for main factor fy by colume.	5. 5 10 2. 3. 1 0 C11 C 2 2 1 2 2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 C13 C1	4 C15 C16	C17
683 175 0.4 Sherol ENF C5 R Analyze Taguchi Design - Analysis 83 1025 110 1.2 Sherol ENF C7 R Analyze Taguchi Design - Analysis 83 1025 150 0.4 Straight cutting oil Display response tables for Fit linear model for 1025 150 0.4 Straight cutting oil If Simal to Noise ratios Signal to Noise ratios	Linitab - Untitled - [Wi File Edit Data C Edit Data C C1 CUTTING SPEE 45 45 45 68 68 68 68 68 68 68 102	orksheet 1 ***] alc_Stat_Graph Egitor ■ *> ~> (P) ↑ ↓ = ** * * * + > = C2 (C) FEED RATE DEPTH 5 150 5 175 3 150 3 150 3 150 5 110 5 160 5 160 5 160	Heb Iools Window Help Image: Straight cutting off C3 C4-T OF CUT CUTTING FLUIDS 0.4 sherol B 0.8 Sherol ENF 1.2 Straight cutting oil 1.2 Sherol BNF 1.2 Sherol BNF 1.4 Sherol ENF 1.2 Sherol ENF 1.4 Sherol ENF 1.5 Sherol ENF 1.6 Sherol ENF	C S RAT C RA1 RA 5.790 5 4.558 4 Analyze Taguchi	Carcel	C8 C8 7 3 sponse data are in n - Analysis for Fit linear	C9 C10 c v v v v v v v v v v v v v v v v v v v	1 2 2 2

Min	itab - Untitled - [Wor	ksheet 1 ***]					18.5	TEM	and had								_ 0	X
E	ile <u>E</u> dit D <u>a</u> ta <u>C</u> alo	c <u>S</u> tat <u>G</u> raph	E <u>d</u> itor <u>T</u> ools <u>W</u>	<u>(</u> indow <u>H</u> elp														_ 5 X
2		n 01 📴	1 I A A	0 ? 🗊 🕂 🖥	600	🗟 🕯 🖡	I 🛛 🗖	EM	f	da 🖓 🔅	1 1. 0							
	v		+ ₽ ₽	Ŧ	XQ	₹T⊏	0 \ •	11				_						
										Tg Tg, (g Tg <mark>10</mark>	C DISP						
÷	C1	C2	C3	C4-T	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C1 ^
	CUTTING SPEED	FEED RATE	DEPTH OF CUT	CUTTING FLUIDS	RA1	RA2	RA3											
1	455	110	0.4	sherol B	5.790	5.449	4.737											
2	455	150	0.8	Sherol ENF	4.558	4.819	4.793											
3	455	175	1.2	Straight cutting oil	Analyze Tac	uchi Desigi	1,00				X							
4	683	110	0.8	Straight cutting oil														
5	683	150	1.2	Sherol B	C5 RA1		Resp	onse data are	e in:		_							
6	683	175	0.4	Sherol ENF	C7 RA3		RA	RA2 RA3										
7	1025	110	1.2	Sherol ENF														
8	1025	150	0.4	Straight cutting oil			1											
9	1025	175	0.8	Sherol B														
10																		
11																		
12							_	Graphs	Analysis	Term	i							
13						Select	ånako	is Granhs	Ontions	Storad								
14					_		- Hisaya	o aroprom	oponan									
15					Help				OK	Can	el							
16																		
17																		

Table - 5: Data Summary of Surface Roughness and S/N Ratio

EXPT.	SURFAC	E ROUGH	S/N RATIO		
NO.	1	2	2	Avg.	(dB)
1	5.790	5.449	4.737	5.325	$\eta_1 = -14.00$
2	4.558	4.819	5.291	4.723	$\eta_2 = -13.48$
3	5.111	4.550	5.291	4.984	$\eta_3 = -13.96$
4	5.440	5.592	5.832	5.621	$\eta_4 = -15.00$
5	6.506	5.890	5.958	6.118	$\eta_5 = -15.74$
6	6.189	6.667	6.534	6.463	$\eta_6 = -16.21$
7	3.438	3.605	4.054	3.699	$\eta_7 = -11.38$
8	2.850	3.522	3.701	3.357	$\eta_8 = -10.57$
9	4.186	3.876	3.648	3.907	$\eta_9 = -11.84$

Selection Of Optimum Set Of Conditions:

The objective is to maximize the S/N ratio, hence select the factor levels which have maximum S/N ratio values. The best condition for cutting speed factor is level 3, 96.6 (m/min) (1025 rpm), for feed is level 2 (150mm/rev), for depth of cut is level 2, (0.8mm), for cutting fluids is level 3 i.e., straight cutting oil. Thus optimum conditions chosen were: A_3 - B_2 - C_2 - D_3 combination. The optimum set of control factors are shown in table.

T. CTOD			
FACTOR	LEVEI	LEVEL2	LEVEL3
CUTTINGSPEE(A)	-14.00	-15.65	-11.27
FEED (B)	-13.65	-13.27	-14.01
DEPTH OF CUT(C)	-13.78	-13.44	-13.70
CUTTINGFLUIDS(D)	-14.05	-13.69	-13.18

Prediction Of Process Average For Optimum Condition:

Having determined the optimum condition from the orthogonal array experiment, the next step is to predict the anticipated process average $\eta_{predicted}$ under Chosen optimum condition. This is calculated by summing the effects of factor levels in the optimum condition.

$$\eta_{\text{predicted}} = [A_3 + B_2 + C_2 + D_3] - 3\eta$$

= [(-11.27) + (-13.27) + (-13.44) + (-13.18)] - (3 x - 13.6406)= -10.24 dB.

$\eta_{\text{predicted}} (dB)$	-10.24 dB.
$\eta_{\text{confirmation test}}(dB)$	-11.035 dB.

	Tuble of combination rest nebults						
S	SURFACE ROUGHNESS(Ra) (µm)			S/N	RATIO		
				(dB)			
1		2	3	Avg.	-11.03	35	
3	.104	3.231	3.116	3.150			

Table - 8: Conformation Test Results

The S/N ratio of predicted value and verification test values were compared for validity of the optimum condition. It is found that the S/N ratio value of verification test is within the limits of the predicted value and the objective is fulfilled. As the conformation and projected improvements matched, suggested optimum conditions can be adopted. S/N ratio is calculated by using the formula given below.

Table - 9: Comparison of S/N Ratios							
Control Factor	Cutting Speed (A) (m/min) (rpm)	Feed (B) (mm/rev)	Depth (mm)	of	cut	(C)	Cutting fluids
Optimum value	96.6 m/min (1025 rpm)	150	0.8				Straight cutting oil

V. Conclusions

- The best condition for cutting speed factor is level 3 (96.6 m/min)(1025 rpm), for feed is level 2 (150 mm/rev), for depth of cut is level 2 (0.8mm), straight cutting oil in cutting fluids in level 3 for work piece material AISI stainless steel.
- The graph below shows the main effect plot for S/N ratios. The values on the x-axis are various cutting parameters and their three different values used in three different levels. And the y-axis contains mean of S/N ratios. Each cutting parameter's optimum values are discussed below.
- Cutting speed: From the graph shown below, since the S/N ratio is larger at cutting speed 1025, then it is said to be the optimum cutting speed.
- ▶ Feed rate: from the graph below, it shows that the S/N ratio is larger at feed rate 150, and then the optimum feed rate is 150.
- Depth of cut: As shown in the graph below it is clear that the S/N ratio is larger at depth of cut 0.8. Then the optimum depth of cut is 0.8.
- Cutting fluid: It is clear that the S/N ratio is larger at cutting fluid, straight cutting oil. Then we can say that the optimum cutting fluid is straight cutting oil. It means that the values we got by using straight cutting oil are optimum values.

Fig - 6: Graphs of main effects plot for S/N ratios for surface roughness.

Main effect plots for surface roughness are shown in the figure 2.1. Main effect plot shows the variation of surface roughness with respect to cutting speed, feed rate and depth of cut and cutting fluids. X axis represents change in level of the variable and y axis represents the change in the resultant response.

References

- [1] Alagarsamy.S.V, Raveendran.P, Arockia Vincent Sagayaraj.S, Tamil Vendan.S. Optimization of machining parameters for Turning of Aluminium alloys 7075 using Taguchi method, *International Research Journal of Engineering and Technology (IRJET) 2016.*
- [2] Ch.Maheswara Rao, K. Venkatasubbaiah, Optimization of Surface Roughness in CNC Turning Using Taguchi Method and ANOVA, *International Journal of Advanced Science and Technology*, 93, 2016, 1-14.
- [3] Mohd. Abbas, Sravan Kumar, Atishey Mittal, optimization of Cutting Parameters to improve Surface Roughness of AL 1070 in Turning Operation using Taguchi Method, International Journal of Engineering Sciences & Research Technology, 5(7), 2016, 2277-9655.
- [4] Abhishek Prakash, Optimization of Machining Parameters of EN36C Steel in CNC Turning By Use of Taguchi Approach, *Imperial Journal of Interdisciplinary Research*, 2(5), 2016, 2454-1362.
- [5] Narendra Kumar Verma, Ajeet Singh Sikarwar, Optimizing Turning Process by Taguchi Method Under Various Machining Parameters, *International Research Journal of Engineering and Technology (IRJET), 2(6), 2015.*
- [6] Sachin C Borse, optimization of turning Process Parameter in dry Turning of SAE 52100 Steel, *International journal of Mechanical Engineering and technology*, *5*(12), 2014, 01-08.
- [7] Narayana B. Doddapattar, Chetana S. Batakurki Optimazation Of Cutting Parameters For Turning Aluminium Alloys Using Taguchi Method, International Journal of Engineering Research & Technology (IJERT,) 2(7), 2013.
- [8] Vishnu D Asal, Chintan A Prajapati Optimization of Turning Process Using Design of Experiment. Indian Journal of Research 2(4) April 2013.
- M. Aruna and V. Dhanalaksmi, Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts, International Journal of Mechanical and Aerospace Engineering, 2012.
- [10] Krishankant, Jatin Taneja, Mohit Bector, Rajesh Kumar Application of Taguchi Method for Optimizing Turning Process by the effects of Machining Parameters. *International Journal of Engineering and Advanced Technology*, 2(1),2012, 2249 8958.
- [11] S Thamizhmanii, S.Saparudin, S. Hasan, Analysis of surface Roughness by Turning Process using Taguchi method, *Journal of achievements in Materials and Manufacturing Engineering*, 20(2), 2007.