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Abstract: Present work here deal with finite difference simulation of the Navier-Stokes equation (mass and 

momentum) inside a lid driven cavity. Stream-vorticity approach has been adopted to solve the conservation 

equation of mass and momentum. Taylor’s series has been used to convert the partial differential term into 

algebraic form. Central scheme has been adopted over forward and backward scheme because of the higher 

accuracy. Reynoldnumber governs the physical problem inside the cavity. Three different Reynold numbers 300, 

400 and 500 have been considered. Grid validation test has been performed to validate the code. Contours of 

stream-function and vorticity has been represented and studied for different values of Reynold numbers. Results 

reveal that increment in Reynolds number increases the intensity of the extra circulation of streamlines and 

produces an extra roll in contours of horizontal and vertical velocities. From the results it has been found that 

peaks of the horizontal and vertical velocity increases with increment in the Reynolds number. Thinner vortices 

start to form near the lower lid with increment in the Reynolds number. 
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I. Introduction 
Lid driven cavity has been extensively studied by many researchers because of its many different 

applications. (N. A. C. Sidik and S. M. R. Attarzadeh, 2011) studied the cubic interpolated pseudo particle 

method and validate their results with the shear driven flow in shallow cavities. (Li et al., 2011) in their study 

applied the new version of multiple relaxation timesin lattices Boltzmann method to investigate the fluid flow in 

deep cavity. 

(Manca et al., 2003) reported their study on laminar mixed convection for Reynolds numbers from 100 

to 1000. They considered the aspect ratio in the ranges from 0.1 to 1.5. In their study they concluded that at 

higher Reynolds number maximum decrease in temperature occurred. The effect of the ratio of channel height to 

the cavity height was found to be played a significant role on streamlines and isotherm patterns for different 

heating configurations. The investigation also indicates that opposing forced flow configuration has the highest 

thermal performance, in terms of both maximum temperature and average Nusselt number.  

(Khanafer et al. 2007) used pure-fluid and oscillating sinusoidal lid-driven and noticed that average 

Nusselt number increases with Grashof number and decreases with an increase in Reynolds number and lid 

frequency. (Gau and Sharif, 2004) reported mixed convection in rectangular cavities at various aspect ratios 

with moving isothermal side walls and constant flux heat source on the bottom wall. 

 

Problem Statement: 

Fig. 1 shows Schematic of square cavity. From fig. 1 one can notice that upperlid of cavity is moving 

with velocity u. While other boundaries have no-slip velocity boundary condition. As there is no direct equation 

available for pressure calculation for incompressible flow stream-vorticity approach has been used to solve 

governing equations. 

 
Fig. 1 Schematic of square cavity 
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Governing Equation 

Velocity and Stream-function relationship 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
 

Stream-function and Vorticity relationship 

𝜔 =
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
= − 

𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
  

Vorticity Transport Equation 

𝜕𝜔

𝜕𝑡
+ 𝑢

𝜕𝜔

𝜕𝑥
+ 𝑣

𝜕𝜔

𝜕𝑦
=

1

𝑅𝑒
 
𝜕2𝜔

𝜕𝑥2
+
𝜕2𝜔

𝜕𝑦2
  

Boundary Conditions 

Initial Conditions 

𝑎𝑡 𝑡 = 0 → 𝑢 = 0, 𝑣 = 0, 𝜓 = 0,𝜔 = 0 

Wall Boundary Conditions 

 At the Left Vertical wall (x=0) 

𝑥 = 0 → 𝑢 = 0, 𝑣 = 0, 𝜓 = 0,𝜔 = −
𝜕2𝜓

𝜕𝑥2
 

 At the Right Vertical wall (x=L) 

𝑥 = 𝐿 → 𝑢 = 0, 𝑣 = 0, 𝜓 = 0,𝜔 = −
𝜕2𝜓

𝜕𝑥2
 

 At the Bottom wall (y=0) 

𝑦 = 0 → 𝑢 = 0, 𝑣 = 0, 𝜓 = 0,𝜔 = −
𝜕2𝜓

𝜕𝑦2
 

 At the Top Wall (y=L) 

𝑦 = 0 → 𝑢 = 0, 𝑣 = 0, 𝜓 = 0,𝜔 = −
𝜕2𝜓

𝜕𝑦2
 

Non-Dimensional Numbers 

𝑅𝑒 =
𝜌𝑣𝐷

𝜇
 

Grid Generation 

Physical domain has been discretized into small rectangular four nodded elements. A non-uniform 

collocated grid has been used for better accuracy at the walls of the enclosure. A collocated grid is what in 

which all the field variables (vectors as well as scalars) are defined at the same point of a cell. Figure shows the 

non-uniform collocated grid where element φ (i, j) represents the velocity component, stream-function, vorticity 

and temperature at the i
th

 and j
th

 node. 

 
Fig.2: grid layout 

 

II. Mathematical Modelling 

Finite Difference Schemes 

Main step in establishing a finite difference procedure to solve the partial differential equation is 

conversion of continuous problem into algebraic form by finite difference grid or mesh. As in the present 

problem we wish to find the flow distribution considering this in mind, ψ(x, y) in domain 0 ≤ x ≤ Land 0 ≤ y ≤ 

H we will develop a grid, replacing ψ(x, y) by ψ(i∆x, j∆y). From this we can locate the points by changing the 

values of i and j so that the equation can be written in terms of general nodes (i, j) and neighbours nodes. This 

has been represented in fig. 2. We can write as shown in table 1. 
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Table 1 Algebraic and vector notation of a point 
Algebraic notation Vector notation 

x, y i, j 

x+∆x, y i+1, j 

x, y+∆y i, j+1 

x-∆x, y i-1, j 

x, y-∆y i, j-1 

x+∆x, y+∆y i+1, j+1 

x+2∆x, y i+2, j 

x, y+2∆y i, j+2 

x-2∆x, y i-2, j 

x, y-2∆y i, j-2 

x+2∆x, y+2∆y i+2, j+2 

 

Governing equations involved in the present problem are in partial differential form; to solve these 

equations first we have to convert these equations into algebraic form. For this Taylor series expansion has been 

utilizedfor X-direction and Y-direction. 

By using Taylor series we can write the governing equation of the present problem in the form shown below. 

𝑢𝑖,𝑗 =
𝜕𝜓

𝜕𝑦
=
𝜓𝑖 ,𝑗+1 − 𝜓𝑖 ,𝑗−1

2∆𝑦
 

𝑣𝑖 ,𝑗 = −
𝜕𝜓

𝜕𝑥
= −

𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗

2∆𝑥
 

𝜔 = − 
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
 = − 

𝜓𝑖+1,𝑗 + 𝜓𝑖−1,𝑗 − 2𝜓𝑖 ,𝑗

∆𝑥2
+
𝜓𝑖 ,𝑗+1 + 𝜓𝑖 ,𝑗−1 − 2𝜓𝑖 ,𝑗

∆𝑦2
  

 

Now to convert the vorticity transport equation which has the temporal derivative term can be discretized either 

by explicit scheme or by implicit scheme,  

𝑓𝑖 ,𝑗
𝑛+1 − 𝑓𝑖,𝑗

𝑛

∆𝑡
= 𝜈  

𝑓𝑖+1,𝑗
𝑛 + 𝑓𝑖−1,𝑗

𝑛 − 2𝑓𝑖 ,𝑗
𝑛

 ∆𝑥 2
 ,
𝑓𝑖,𝑗
𝑛+1 − 𝑓𝑖,𝑗

𝑛

∆𝑡
= 𝜈  

𝑓𝑖+1,𝑗
𝑛+1 + 𝑓𝑖−1,𝑗

𝑛+1 − 2𝑓𝑖,𝑗
𝑛+1

 ∆𝑥 2
  

 

Above equations represent the explicit and implicit discritization of equation. In explicit scheme only 

one term is unknown while all other terms are known, while in implicit scheme spatial derivative terms are also 

at the next time level (n+1) which makes it difficult to handle in computer code. It is easier to code the explicit 

scheme but requires a condition to satisfy, known as stability condition and leaves a limit on the time step for a 

particular grid selection while implicit scheme is free of this stability condition, represented in eq. below. 

𝜈 ×  
𝑑𝑡

 𝑑𝑥 2
+

𝑑𝑡

 𝑑𝑦 2
 ≤

1

2
 

 

In the present study explicit scheme has been considered for simplicity of the scheme, as we know that 

term at time ‘n+1’ is unknown while terms at time ‘n’ are known. So from above equation it can be observed 

that all the terms on right hand side are at time ‘n’ (known) while only one term at time ‘n+1’ is there in left 

hand side which can be easily calculated as, 

𝜔𝑖 ,𝑗
𝑛+1 − 𝜔𝑖 ,𝑗

𝑛

Δ𝑡
+ 𝑢𝑖,𝑗

𝜔𝑖+1,𝑗
𝑛 − 𝜔𝑖−1,𝑗

𝑛

2Δ𝑥
+ 𝑣𝑖 ,𝑗

𝜔𝑖 ,𝑗+1
𝑛 − 𝜔𝑖 ,𝑗−1

𝑛

2Δ𝑦

=
1

𝑅𝑒
 
𝜔𝑖+1,𝑗
𝑛 + 𝜔𝑖−1,𝑗

𝑛 − 2𝜔𝑖 ,𝑗
𝑛

 ∆𝑥 2
+
𝜔𝑖 ,𝑗+1
𝑛 + 𝜔𝑖 ,𝑗−1

𝑛 − 2𝜔𝑖 ,𝑗
𝑛

 ∆𝑦 2
  

𝜔𝑖 ,𝑗
𝑛+1 = 𝜔𝑖 ,𝑗

𝑛  + Δ𝑡  −𝑢𝑖,𝑗
𝜔𝑖+1,𝑗
𝑛 − 𝜔𝑖−1,𝑗

𝑛

2Δ𝑥
− 𝑣𝑖 ,𝑗

𝜔𝑖 ,𝑗+1
𝑛 − 𝜔𝑖 ,𝑗−1

𝑛

2Δ𝑦

+
1

𝑅𝑒
 
𝜔𝑖+1,𝑗
𝑛 + 𝜔𝑖−1,𝑗

𝑛 − 2𝜔𝑖 ,𝑗
𝑛

 ∆𝑥 2
+
𝜔𝑖 ,𝑗+1
𝑛 + 𝜔𝑖 ,𝑗−1

𝑛 − 2𝜔𝑖 ,𝑗
𝑛

 ∆𝑦 2
   

 

Stability condition 

𝜈 ×  
𝑑𝑡

 𝑑𝑥 2
+

𝑑𝑡

 𝑑𝑦 2
 ≤

1

2
 

 

Above relation is the stability condition for two-dimensional problem. In case of violation of the above relation 

either code will diverge or results will be inaccurate. 
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III. Results and Discussion 
Results have been presented here for different values of Reynolds number considered. Contours of 

stream-function, horizontal velocity, vertical velocity and vorticity have been presented to see the effect of the 

Reynolds number on the flow circulation and vortices generated inside the cavity. Line curve of horizontal 

velocity and vertical velocity have also been presented.  

Figure 3 represents the contour of stream function inside the driven cavity for different values of 

Reynolds number considered. Contour of stream functions also known as streamlines are the quantity which 

physically represents the flow distribution. It can be noticed from the figures that with increment in the 

Reynolds number counter clockwise circulation starts to grow and for larger Reynolds their size is increasing 

continuously. For smaller Reynolds number clockwise streamlines are covering almost full part of the cavity but 

with increment in number its area is decreasing. It can also be noticed that for small Reynolds number a 

triangular shape counter clockwise streamline is forming on the right-bottom corner of the cavity and with 

increment in the Reynolds it is shifting towards the left side and also towards the center of the cavity. 

 

 
                  (a) 200                              (b) 300                               (c) 400                                (d) 500 

Figure 3: Contours of streamlines for different values of Re 

 

Figure 4 and 5 represents the contours of horizontal velocity and vertical velocity. It can be noticed 

from the contours of velocities that two counter clockwise rolls are forming for both the velocities. It can be 

noticed from the figures that for horizontal velocity contours are forming near to the horizontal axis while for 

vertical velocity contours are forming near to the vertical axis. For horizontal velocity a small extra roll is 

forming near to the bottom-right corner of the cavity and with increment in the Reynolds its size and shape is 

changing continuously. Its shape is changing from parabolic to triangular shape from Reynolds number 200 to 

500. For vertical velocity an extra roll on bottom-right corner start to form at Reynolds of 300 then another roll 

forms at bottom-left corner for Reynolds number of 500. Change in shape of first extra roll clockwise rolls with 

increment in the Reynolds number is noticeable. 

 

 
              (a) 200                                (b) 300                               (c) 400                               (d) 500 

Figure 4: Contours of horizontal velocity for different values of Re 

 

 
      (a) 200                              (b) 300                                 (c) 400                               (d) 500 

Figure 5: Contours of vertical velocity for different values of Re 

 

Figure 6 represents the contour of the vorticity for different values of Reynolds number. Vortices are 

forming near to the upper side of the cavity which is due the fact that the upper lid is in motion or have a given 

velocity. And with increment in the Reynolds number more zigzag patterns starts to form near to the lower lid of 

the cavity. 
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      (a) 200                              (b) 300                                  (c) 400                              (d) 500 

Figure 6: Contours of vorticity for different values of Re 

 

Figure 7 and 8 represents the line curves of the horizontal and vertical velocity for different values of 

Reynolds number considered. Horizontal velocity has been plotted along the length and mid height of the cavity 

while vertical velocity has been plotted along the height and mid length of the cavity. Differences between the 

curves are easily noticeable. It can be observed that with increment in the Reynolds number velocities curves 

have large peak values compared to the low values of Reynolds number. 
 

 
        (a) 200                                (b) 300                                  (c) 400                              (d) 500 

Figure 7: Horizontal velocity along length for different values of Re 

 

 
        (a) 200                              (b) 300                            (c) 400                            (d) 500 

Figure 8: Vertical velocity along length for different values of Re 
 

IV. Conclusion 
 Increment in Reynolds number increases the intensity of the extra circulation of streamlines. 

 Increment in Reynolds number produces an extra roll in contours of horizontal and vertical velocities. 

 Peaks of the horizontal and vertical velocity increases with increment in the Reynolds number. 

 Thinner vortices start to form near the lower lid with increment in the Reynolds number. 
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