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Abstract : The use of Lagrange equations allow dynamical systems to be modeled as an assemblage of discrete 

masses connected by mass-less elements. The solution obtained is exact for such systems, but when a continuous 

system is modeled as having discrete masses connected by mass-less elements the results become approximate. 

The lumping of masses of a continuous system introduces an error in the system’s mass distribution. This error 

can be redressed by redistributing the masses but an alternative solution will be making a corresponding 

modification in the systems’ stiffness matrix. This was achieved by formulating the force equilibrium equations 

of discrete elements of a propped cantilever beam such systems under free longitudinal vibration using the 

Hamilton’s principle and the principle of virtual work and the inherent forces causing vibration obtained. This 

was then equated to the corresponding equation of motion of the system and the stiffness matrix of the system 

necessary for such equality obtained. This was used to generate a table of stiffness modification factors for 

segments of the propped cantilever beam under longitudinal vibration. By applying the Lagrange equations to 

the lumped massed beam using these modification factors, we were able to obtain the accurate fundamental 

frequency of the beam irrespective of the position or number of lumped mass introduced.   

 

I. Introduction 
Every system that has mass and elasticity is capable of vibration. Since no system is mass-less we can 

conveniently say that all structures experience vibration to some degree (Thomson 1996, Rajasekaran 2009).  

When vibration is not due to an external force on the system, the system is said to be under free vibration and 

vibrates at one or more of its natural frequencies. These natural frequencies of a system depend on the 

distribution of its mass and stiffness and hence are a property of the dynamical system (Ezeokpube 2002, Blake 

2010). The number of independent coordinates required to describe the motion of a system is known as the 

degrees of freedom of the system. A continuous structure will have an infinite number of degrees of freedom 

and hence an infinite number of coordinates to analyze. However certain idealizations are made and a 

continuous system may be treated as one having a finite number of degrees of freedom (Blake 2010). For 

systems with few degrees of freedom, it is possible to formulate the equations of motion by an application of the 

Newton’s laws of motion (Benaroya and Nagurka 2010; Chandrasekaran 2015). The method however becomes 

complicated for systems with a high degree of freedom and the energy methods provide a convenient 

alternative. One of the notable products of the energy method is the Lagrange’s equations. The Lagrange’s 

equation enables the analysis of structural elements as discrete masses connected together by mass-less elements 

(Ahmad and Campbell 2013, Lisjak and Grasselli 2014). With a proper selection of representative masses the 

results can be very close to the exact response. When the discretization is increased by the use of more number 

of lump masses, the accuracy of the response improves. 

In order to obtain the exact response of structural systems it is necessary to analyse them as elements with 

continuously distributed masses. A continuous structure has infinite degrees of freedom and normal modes but 

generally the first few modes are of most importance. 

The advent of fast digital computers has made the analysis of large simultaneous equations easy (Saad and 

Henk 2000). This can be put to use in the Finite Element Method. Just like in the Rayleigh-Ritz method, there is 

need to select a shape function. The accuracy of finite element method can be improved upon by the careful 

selection of better shape functions (p-version) and also by the introduction of more joints/nodes and hence more 

elements (h-version) (Houmat 2009; Beaurepaire and Schueller 2011; Tornabene et al 2015). The latter has the 

implication of increasing the size of the resulting equations and hence the computational cost. 

 

II. Mathematical theory 
Lagrange formulated a scalar equation in terms of generalized coordinates and is presented as 
𝜕

𝜕𝑡
 

𝜕𝑇

𝜕𝑞 𝑖
 −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑈

𝜕𝑞𝑖
= 𝑄𝑖   .          .          .           .             .              .       (1) 

𝑖 = 1,2, …𝑛  
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Where q1, q2, …, qn are a set of independent generalized displacements, T is the kinetic energy of the structure 

and U is the strain energy of the structure and Qi is the non-conservative or the non-potential force on the 

system. The Lagrange‘s equations can be used to develop the matrix equation for the analysis of a free 

undamped n-degree of freedom discrete mass structure. 
 𝑚  𝑞  +  𝑘  𝑞 = 0 .            .         .            .             .         .        .           (2) 

 

By pre-multiplying the equation with the structure’s flexibility matrix [f] 
 𝐷  𝑞  +  𝑞 = 0 .            .         .            .             .      .         .       .           (3) 

 

Where the dynamical matrix  𝑫 =  𝒇  𝒎  .         .             .           .     (4) 

A solution of equation (3) is given as  
 𝑞 =  𝜙 sin 𝑤𝑡 + 𝛿  .           .           .          .           .             .                (5) 

 

By substituting equation (5) into equation (3) and rearranging we obtain  

  𝐷 − 𝜆 𝐼   𝜙 = 0 .          .          .              .              .               .           (6) 

 

Where [I] is an identity matrix and 𝜆 = 1
𝑤2    .      .        .         .             (7) 

 

Equation (6) represents a system of n-homogenous, linear algebraic equation in the amplitudes  𝜙  and 

can be solved to get the frequencies w1, w2, …, wn for an n-degree of freedom system. For each distinct 

frequency wj (or eigenvalue), there will be a set of amplitudes  𝜙 𝑗  (or eigenvector). 

The eigenvectors or relative amplitudes  𝜙 𝑗  obtained from a free vibration satisfy certain 

orthogonality conditions (Tauchert 1974). 

While Lagrange’s equations provide a way of analyzing multi-degree of freedom system, a similar 

approach for continuous structures is an energy theorem known as the Hamilton’s principle. The principle states 

that the motion of an elastic structure during the time interval t1 < t < t2 is such that the time integral of the total 

dynamic potential U – T + VE is an extremum. 

𝛿   𝑈 − 𝑇 + 𝑉𝐸 𝑑𝑡 = 0
𝑡2

𝑡1
    .             .              .                  .        .           (8) 

 

where U represents the strain energy of the system, T the kinetic energy and VE the work done by the 

external forces. The partial differential equation and boundary conditions governing the free longitudinal 

vibration of a bar is derived as  

𝑐2𝑢1
′′ = 𝑢 1    .          .           .              .             .          .         .              (9) 

where  𝑐2 =
𝐸𝐴

𝜇
      .             .                   .                .                .          (10) 

𝑁𝑜 =  𝐸𝐴𝑢1
′  𝑥1=0  𝑜𝑟 𝛿𝑢1 0, 𝑡 = 0     .           .             .           .       (11a) 

𝑁𝐿 =  𝐸𝐴𝑢1
′  𝑥1=0  𝑜𝑟 𝛿𝑢1 𝐿, 𝑡 = 0     .           .             .           .       (11b) 

 

Where A(x1) is the cross sectional area of the bar, µ(x1) is the mass per unit length of the bar and E is 

the modulus of elasticity of the material of the bar.  

For a normal mode vibration (where each particle of the bar vibrates harmonically at a circular frequency w) 

𝑢1 𝑥1 , 𝑡 = 𝜙1 𝑥1 sin 𝑤𝑡 + 𝛿         .             .            .          .     .          (12) 

 

which upon substitution into equation (10) will give 

𝜙 ′′ +
𝑤2

𝑐2 𝜙 = 0       .         .           .        .        .           .              .       .         (13) 

 

The general solution of equation (13) is  

𝜙 𝑥1 = 𝐶1 cos
𝜔𝑥1

𝑐
+ 𝐶2 sin

𝜔𝑥1

𝑐
        .             .              .              .          .  (14) 

 

By introducing the boundary conditions equation (14) results in an eigenvalue problem, the solution of 

which yields the natural circular frequencies 𝜔𝑗  and mode shapes (eigenvectors) 𝜙𝑗 . The general solution by 

mode superposition is  

𝑢1 𝑥1 , 𝑡 =  𝜙𝑗  𝑥1  𝐴𝑗 cos 𝑤𝑗 𝑡 + 𝐵𝑗 sin 𝑤𝑗 𝑡 
∞
𝑗=1      .            .        .         (15) 

(Thomson and Dahleh 1998) 

 

Where the constants Aj and Bj can be determined form the initial conditions. 

The eigenfunctions 𝜙𝑗  also satisfy certain orthogonality relationships.  
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III. Methodology 
The two essential components that determine the vibration of structural systems are the structure’s 

mass distribution and the structure’s stiffness. 

These properties are captured in the structure’s inertia matrix and stiffness matrix respectively. The 

prominent role these elements play can easily be appreciated by taking a look at the equations of motion of a 

vibrating system or the structural dynamics’ eigenvalue problem. 

If the mode shape 𝜙𝑗  and circular frequency 𝜔𝑗  are kept constant, then any variation in mass 

distribution 𝜇 will have a corresponding change in the element rigidity EA.  

Two equations were compared. One is the force equilibrium equation written as 
 𝐹 +  𝑆  𝐷 =  𝐹∗           . . . . . (16) 

 

(when the external force vector {F*} acts at the element’s nodes) 

 

Where {F} is the vector of fixed end forces generated when nodal displacements are restrained. [S] is 

the element stiffness matrix and {D} a vector of nodal displacements (Okonkwo 2012). 

 

The second is the equation of motion of a vibrating system written simply as  
 𝑚  𝑥  +  𝑘  𝑥 =  𝑃           . . . . . (17) 

 

(when the external force vector {P} acts at the element’s nodes) 

 

Where [m] is the inertia matrix, [k] is the element stiffness matrix and {x} a vector of nodal 

displacements. 

By comparing equation (16) with (17) we see some similarities. Even though equation (16) has been 

largely applied in statics, it can also be applied in dynamics if the equations for the vector of fixed end 

moments/forces {F} can be formulated. The real structure (continuous system) was analyzed using the 

hamilton’s principle and the equations for the fixed end forces {F} and nodal displacements {D} formulated for 

any arbitrary segment of the longitudinally vibrating beam at time t = 0. This was then substituted into equation 

(16) to get the vector of nodal force { F*} that is causing the vibration. 

[K] in equations (17) was taken as the stiffness matrix of the lump-massed beam. If a vibrating element 

of the real beam (beam with continuous mass) and that of a corresponding element of a lump-massed beam are 

to be equivalent then their deformation must be equal and the force acting on their nodes {P} will also be equal. 

Therefore  
 𝐷 =  𝑥         .           .           .           .                .            .                                     (18) 
 𝑚  𝑥  +  𝑘  𝑥 =  𝐹∗           . . . . . (19) 

 

For (propped cantilever) a prismatic bar fixed at one end but free at the other, by considering its boundary 

conditions, we obtain from equation (14) that 

𝐶1 = 0      .             .               .                    .                  .               .                         (20) 

 

And for a non-trivial solution 𝐶2 ≠ 0  

𝑤𝑗 =
𝑖𝜋𝑐

2𝐿
=

𝑖𝜋

2
 

𝐸𝐴

𝜇𝐿2            .                  .                 .                 .               .              (21) 

𝑖 = 1,3,5,7,9, … , ∞        𝑗 = 1,2,3,4,5, … , ∞ 

 

By taking C2 to be equal to unity, the mode shape for the j
th

 mode of vibration is obtained as 

∅𝑗 = sin
𝑖𝜋𝑥

2𝐿
 .            .              .             .             .              .           .                       (22) 

 

The second derivative of equation (15) with respect to time is 

𝑢  𝑥, 𝑡 =  −𝜔𝑗
2∅𝑗  𝐴𝑗 cos 𝜔𝑗 𝑡 + 𝐵𝑗 sin 𝜔𝑗 𝑡 

∞
𝑗 =1      .          .            .                    (23) 

 

By substituting equation (23) into (15) at time t = 0 will give 

𝑢  𝑥, 0 =  −𝜔𝑗
2𝐴𝑗 sin 𝛾2𝑥

∞
𝑗=1          .           .         .          .        .        .                 (24) 

where  𝛾2 =
𝑗𝜋

2𝐿
=

𝜔𝑗

𝑐
   .         .            .          .       .        .       .          .                    (25) 
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By treating the longitudinally vibrating bar like a beam segment pinned at one end and free at the other 

(see Figure 1), it is possible to obtain the fixed end forces (axial) of an arbitrary segment of the bar. The forces 

at the ends of an isolated segment are F1 and F2. 

 

 
 

 
Figure 1 

(a) A clamped-free bar under longitudinal vibration due to inertial forces 𝜇𝑢  
(b) A segment of the clamped-free bar under longitudinal vibration due to inertial forces 𝜇𝑢  

 

There are two possible cases for any arbitrary segment of the vibrating bar 

a)  Case 1  

 When 0 ≤ 𝑥1 < 𝐿 and 0 < 𝑥2 < 𝐿 

 

Using the equations of external equilibrium 

 𝑀2 = 0;    𝐹1 𝑥2 − 𝑥1 +  𝜇𝑢  𝑥2 − 𝑥 𝑑𝑥
𝑥2

𝑥1
= 0 

𝐹1 =
1

 𝑥2−𝑥1 
 

𝜔2𝐴𝑗𝜇

𝛾2
2

∞
𝑗=1  𝛾2𝑥2 cos 𝛾2𝑥1 − 𝛾2𝑥1 cos 𝛾2𝑥1 − sin 𝛾2𝑥2 + sin 𝛾2𝑥1  .       .        (26)   

 𝐹𝑦 = 0;     𝐹1 + 𝐹2 +  𝜇𝑢 𝑑𝑥
𝑥2

𝑥1
= 0 

𝐹2 =  
𝜔𝑗

2𝐴𝑗𝜇

𝛾2
2

∞
𝑗=1  

−𝛾2𝐿 cos 𝛾2𝑥2+𝛾2𝐿 cos 𝛾2𝑥1

𝐿
−

𝛾2𝑥2 cos 𝛾2𝑥1−𝛾2𝑥1 cos 𝛾2𝑥1−sin 𝛾2𝑥2+sin 𝛾2𝑥1

𝑥2−𝑥1
   .         (27) 

 

The fixed end forces F1 and F2, can be expressed in terms of the axial rigidity EA rather than the 

circular frequency  wj 

There is also need to normalize our distances so that the length of the bar L becomes equal to unity and 

the distances x1 and x2 expressed in dimensionless units.  

By substituting equations (10) and (25) into equations (26) and (27)  and normalizing the distances x1 and x2 we 

obtain 

𝐹1 =
𝐸𝐴

𝐿 𝜉2−𝜉1 
 𝐴𝑗  

𝑖𝜋 𝜉2

2
cos

𝑖𝜋𝜉1

2
−

𝑖𝜋𝜉1

2
cos

𝑖𝜋𝜉1

2
− sin

𝑖𝜋𝜉2

2
+ sin

𝑖𝜋𝜉1

2
 ∞

𝑗 =1   .   .    .  (28) 

𝐹2 =
𝐸𝐴

𝐿
 𝐴𝑗  −

𝑖𝜋

2
cos

𝑖𝜋𝜉2

2
+

𝑖𝜋

2
cos

𝑖𝜋𝜉1

2
−

𝑖𝜋 𝜉2
2

cos
𝑖𝜋 𝜉1

2
−

𝑖𝜋 𝜉1
2

cos
𝑖𝜋 𝜉1

2
−sin

𝑖𝜋 𝜉2
2

+sin
𝑖𝜋 𝜉1

2

𝜉2−𝜉1
 ∞

𝑗=1   .  .  .  (29) 

𝑗 = 1,2,3,4,5, … , ∞  

𝑖 = 1,3,5,7,9, … , ∞  

 

b) Case II 

When 0 ≤ 𝑥1 < 𝐿 and 𝑥2 = 𝐿 

Since the far end of the bar is free (with respect to longitudinal vibration), F2 = 0 

For vertical force equilibrium  

𝐹1 +  𝜇𝑢 𝑑𝑥
𝐿

𝑥1
= 0  .        .             .             .         .         .    .            .            (30) 

𝐹1 = − 𝜇𝑢 𝑑𝑥
𝐿

𝑥1
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= − −𝜔𝑗
2𝐴𝑗𝜇  sin 𝛾2𝑥 𝑑𝑥

𝐿

𝑥1
∞
𝑗=1   

=  
𝜔𝑗

2𝐴𝑗𝜇

𝛾2
 − cos 𝛾2𝐿 + cos 𝛾2𝑥 

∞
𝑗 =1       .            .              .           .        (31) 

 

By expressing  equation (31) in terms of EA  

𝐹1 =
𝐸𝐴

2𝐿
 𝐴𝑗 𝑖𝜋  − cos

𝑖𝜋

2
+ cos

𝑖𝜋𝜉1

2
 ∞

𝑗=1   .          .            .              .       (32) 

Where 𝑗 = 1,2,3,4,5, … , ∞  

𝑖 = 1,3,5,7,9, … , ∞  
 

Recall that the constant Aj depends on the initial conditions of the vibrating bar. 

The axial force due to self weight at any point x along the length of the bar is given by 

𝑃𝑥 = 𝜇𝑔 𝐿 − 𝑥    .            .           .             .                .               .            (33) 

 

µ is the mass per unit length of the bar and g is the acceleration due to gravity.  

If the axial deformation on the infinitesimal element dx is du, then from Hooke’s law 

𝑃𝑥 = 𝐸𝐴
𝑑𝑢

𝑑𝑥
    .            .            .               .          .              .          .       .  (34) 

 

By equating equation (30) to equation (31) and integrating 

𝑢 𝑥, 0 =
𝑓

𝐿
 𝐿𝑥 −

𝑥2

2
    .          .       .      .           .             .             .     (35) 

 

Where f is a dimensionless constant equal to 
𝝁𝒈𝑳

𝑬𝑨
 

𝐴𝑗 =
𝜇

𝑀𝑗
 

𝑓

𝐿
 𝐿𝑥 −

𝑥2

2
 sin 𝛾2𝑥 𝑑𝑥

𝐿

0
=

𝜇𝑓 𝐿2

𝑀𝑗
 
−𝛾2

2𝐿2 cos 𝛾2𝐿−2 cos 𝛾2𝐿+2

2𝛾2
3𝐿3      .     .          .        .      (36) 

 

The generalized mass can be expressed as 

𝑀𝑗 = 𝜇  ∅𝑗
2𝐿

0
𝑑𝑥 =

𝜇𝐿

2
   .         .            .     .     .            .             .             .             (37) 

 

Equation (36) above is an expression for the constant Aj for a bar under an initial displacement caused 

by its self weight. Equation (36) can be substituted into the equation (28) and (29) to obtain the values of the 

fixed end forces F1 and F2. With these equations the force equilibrium equations for segments of a vibrating 

beam can be written and the inherent forces in the system that is causing motion calculated at the 

nodes/junctions of the element. An arbitrary segment of a vibrating element is identified by means of the 

normalized distances 𝜉1 and 𝜉2 of its nodes from an origin. 𝜉1 and 𝜉2 are numbers between 0 and 1. 

 

The force equilibrium equations for a segment of a longitudinally vibrating bar can be written as  
 𝐹 +  𝑘  𝑢 =  𝑃     .         .         .          .            .           .           .     (38) 

 

Where {F} is the fixed end forces, [k] is the stiffness of the segment under consideration and {u} is a 

vector of nodal displacements. 

 𝐹 =  
𝐹1

𝐹2
    .        .         .          .        .            .       .        .           .        (39) 

 𝑘 =  

𝐸𝐴

𝑙
−

𝐸𝐴

𝑙

−
𝐸𝐴

𝑙

𝐸𝐴

𝑙

     .          .           .              .             .           .         (40) 

 𝑢 =  
𝑢1

𝑢2
   .        .       .            .        .            .             .  (41) 

 

U1 is the total displacement at the position x1 while u2 is the total displacement at the position x2. The 

total displacement is obtained by totaling the displacements due to all the modes of vibration.  

{P} is the vector of nodal forces; they represent the forces acting on the nodes of the isolated segment.  

 𝑃 =  
𝑃1

𝑃2
    .        .         .          .        .            .       .        .           .        (42) 

 

From equation (38) P1 and P2 can be expressed as 

 𝑃1 = 𝐹1 +
𝐸𝐴

𝜉2−𝜉1
 𝑢1 − 𝑢2  .          .          .           .          .                     (43) 
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𝑃2 = 𝐹2 +
𝐸𝐴

𝜉2−𝜉1
 −𝑢1 + 𝑢2       .          .          .           .          .              (44) 

 

Just like we do in the decomposition of structures, a segment of a vibrating bar can be isolated and will 

be in equilibrium with the application of the force vector {P}. The force {P} represents the effect of the 

removed adjourning elements on the isolated segment. 

 
Figure 2 

(a) An isolated segment of the longitudinally vibrating continuous bar showing the nodal forces P1 and P2 

(b) An equivalent lumped massed segment showing the nodal forces 
 

Figure 2a shows a segment of the vibrating continuous or real bar. The nodal forces on the bar P1 and 

P2 are calculated from the equilibrium equations (equation 43 and 44). When the continuous bar is represented 

by a lumped mass bar (a bar that has its distributed masses lumped at selected nodes), the equivalent segment of 

the bar is shown in Figure 2b. Just like the real segment the equivalent segment is supported by the same nodal 

forces P1 and P2 and has the same nodal displacements as the real bar. This implies that for the lumped massed 

beam to be equivalent to the real beam they must share the same inherent forces and displacements at the nodes. 

The equation of motion for the lumped massed bar is given as 
 𝑚  𝑢  +  𝑘𝑑   𝑢 =  𝑃      .            .         .             .           .              .   (45) 

 

Where [m] is the inertial matrix, {u} is a vector of nodal displacement and kd is the stiffness of the lumped 

massed segment under consideration. 

 

The proposed stiffness matrix for the lumped massed segment kd is  

 𝑘𝑑  =  

𝐸𝐴

𝑙
𝛼1 −

𝐸𝐴

𝑙
𝛼2

−
𝐸𝐴

𝑙
𝛼2

𝐸𝐴

𝑙
𝛼1

     .          .           .              .             .           .         (46) 

 

where α1 and α2 are the stiffness modification factors for longitudinal vibration. They help redistribute 

the stiffness of the lumped massed bar in such a way as to annul the effect of the discretization of the bar due to 

the lumping of its distributed mass on selected nodes. 

 𝑚 =  

𝜇 𝜉2−𝜉1 

2
0

0
𝜇 𝜉2−𝜉1 

2

    .           .            .           .                .                   (47) 

µ is the mass per unit length of the beam. 

 

When treating the isolated segment of the vibrating beam alone the vector of nodal acceleration is written 

as 

 𝑢  =  
𝑢  𝜉1, 0 

𝑢  𝜉2, 0 
 =  

−𝜔2𝑢 𝜉1 , 0 

−𝜔2𝑢 𝜉2 , 0 
 =  

−𝜔2𝑢11

−𝜔2𝑢21

    .     .           .       .        .    (48) 

 

ω is the fundamental frequency of the vibrating mass while u11 and u21 are the values of u1 and u2 for the 

first mode only. 

𝛼1 =
− 𝜉2−𝜉1 𝑢11 𝑃1+

 𝜉2−𝜉1 𝜋2𝑢11
8

 + 𝜉2−𝜉1 𝑢21 𝑃2+
 𝜉2−𝜉1 𝜋2𝑢21

8
 

𝑢21
2 −𝑢11

2     .        .       .    (49) 

𝛼2 =
 𝜉2−𝜉1 𝑢11 𝑃2+

 𝜉2−𝜉1 𝜋2𝑢21
8

 − 𝜉2−𝜉1 𝑢21 𝑃1+
 𝜉2−𝜉1 𝜋2𝑢11

8
 

𝑢21
2 −𝑢11

2     .        .       .    (50) 
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Equations (47) and (48) can be used to evaluate the stiffness modification factor for longitudinal 

vibration of a segment of a fixed-free or pinned-free bar located between 𝜉1 and 𝜉2 of the bar’s total length. A 

numerical demonstration of their use is presented below. For ease of presentation the calculations will be 

presented in a tabular form. 

Example 1: when 𝜉1 = 0, 𝜉2 = 1.0 

Table 1: Calculation of the Stiffness modification factor for an element positioned at  𝜉1 = 0, 𝜉2 = 1.0 on a 

fixed-free bar under longitudinal vibration 

 

𝜉1 = 0,   𝜉2 = 1.0 

j Aj F1j F2j u1j u2j 

1 0.51602455093119 0.29454491820751 0.51602455093119 0 0.51602455093119 

2 0.01911202040486 0.10917529475360 -0.0191120204049 0 -0.0191120204049 

3 0.00412819640745 0.02829458235810 0.00412819640745 0 0.00412819640745 

4 0.00150444475490 0.01804667881896 -0.0015044447549 0 -0.0015044447549 

5 0.00070785260759 0.00929917787561 0.00070785260759 0 0.00070785260759 

6 0.00038769688274 0.00708661811529 -0.0003876968827 0 -0.0003876968827 

7 0.00023487690074 0.00456139214742 0.00023487690074 0 0.00023487690074 

8 0.00015289616324 0.00375542713719 -0.0001528961632 0 -0.0001528961632 

9 0.00010503247526 0.00269970617228 0.00010503247526 0 0.00010503247526 

Total 0.47746379558596 0.50004345111648 0 0.50004345111648 

u11 = 0 

u21 = 0.51602455093119 
From equations 4.6a and 4.6b 

P1 = -0.97750724670244 

P2 = 0 
From equations 4.27 and 4.28  the stiffness modification factors for longitudinal vibration of the element 

are 

α1 = 1.23370055013617 
α2 = 1.89430375926587 

 

J is the mode number, j = 1 stands for the first mode, j = 2 for the second mode and so on. The values 

of the paramaters Aj, F1j, F2j, u1j and u2j are evaluated for modes 1 – 9 and summed to obtain end forces F1 and 

F2 and the end displacements u1 and u2. 

 

Table 1 is an illustration on how the inherent nodal forces P1 and P2 and the stiffness modification 

factors α1 and α2 are calculated. The nodal forces P1 and P2 are the forces acting at the selected nodal point if the 

beam segment under consideration is decomposed. These nodal forces represent the effect of the removed 

adjacent beam segment on the beam segment under consideration. Using the methods presented in table 1 the 

values of stiffness modification factors at different values of 𝜉1 and 𝜉2 for the longitudinal vibration of a fixed-

free bar are presented in Table A1 below. A sample matlab program for the calculation of the stiffness 

modification factors for a segment of a beam restrained at both end can be found the Appendix B. 

 

Numerical Application and Discussion of Results 

For the beam of Figure 3a the stiffness matrix and inertia matrix of the bar with respect to the coordinate of the 

lumped mass are 

𝑘 =
𝐸𝐴

𝐿
    .       .         .         .            .           .           .        .    (51) 

 𝑚 =
1

2
𝜇𝐿      .           .          .            .              .          .         .   (52) 

 

By substituting equations (51) and (52) into equation (6) and solving we obtain 

𝜆 =
0.5𝜇𝐿2

𝐸𝐴
  .   .         .          .         .           .           .             .             .  (53a) 

 𝜙 = 1    .        .           .           .          .              .         .         .   .        . (53b) 

𝜔 = 1.4142 
𝐸𝐴

𝜇𝐿2    .       .           .          .        .              .          .        .    (53c) 

 

From table A1 the stiffness modification factors of the element of the bar are 

 ξ1 = 0, ξ2 = 1, α1 = 1.233701, α2 = 1.894303 
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By applying these stiffness modification factors, the modified stiffness matrix of the bar with respect to the 

coordinate of the lumped mass becomes  

𝑘 =
1.233701 𝐸𝐴

𝐿
    .       .         .         .            .           .           .        .    (54)  

 

By using this modified stiffness on equation (6) the new values of 𝝀, natural frequency and mode shape 

obtained are 

𝜆 =
0.405284586784 𝜇𝐿2

𝐸𝐴
  .   .         .          .         .           .        .             .  (54a) 

 𝜙 = 1    .        .           .           .          .              .         .         .   .        . (54b) 

𝜔 = 1.5708 
𝐸𝐴

𝜇𝐿2    .       .           .          .        .              .          .          (54c) 

 

For the beam of Figure 3b the stiffness matrix and inertia matrix of the bar with respect to the coordinate 

of the lumped mass are 

𝑘 =  
4 −2
−2 2

 
𝐸𝐴

𝐿
    .       .         .         .            .           .           .        .    (55a) 

 𝑚 =  
0.5 0
0 0.5

 𝜇𝐿      .           .          .            .              .          .         .   (55b) 

 

By substituting equations (55a) and (55b) into equation (6) and solving we obtain 

𝜆1 =
0.42677669529664 𝜇𝐿2

𝐸𝐴
, 𝜆2 =

0.07322330470336 𝜇𝐿2

𝐸𝐴
  .   .   .      .  .        .  (56a) 

 𝜙1 =  
0.5773503
0.8164966

 ,  𝜙2 =  
−0.5773503
0.8164966

     .        .         .   .        . (56b) 

𝜔1 = 1.5307 
𝐸𝐴

𝜇𝐿2  , 𝜔2 = 3.6955 
𝐸𝐴

𝜇𝐿2    .       .     .        .          .          (56c) 

 

The stiffness modification factors of the two segments/elements of the bar can be obtained from table A1 as 

For element 1: ξ1 = 0, ξ2 = 0.5, α1 = 0.995936, α2 = 1.339475 

For element2: ξ1 = 0.5, ξ2 = 1, α1 = 0.995936, α2 =0.972287 

 

By applying these stiffness modification factors, the modified stiffness matrix of the bar with respect to the 

coordinate of the lumped mass becomes  

𝑘 =  
3.983744 −1.944574
−1.944574 1.991872

 
𝐸𝐴

𝐿
    .      .            .           .           .        .    (57)  

 

By using this modified stiffness on equation (6) the new values of 𝜆, natural frequency and mode shape obtained 

are 

𝜆1 =
0.40528456176396 𝜇𝐿2

𝐸𝐴
, 𝜆2 =

0.07425242373351 𝜇𝐿2

𝐸𝐴
  .   .    .      .             .     (58a) 

 𝜙1 =  
0.5773503
0.8164966

 ,  𝜙2 =  
−0.5773503
0.8164966

 .        .       .         .   .        . (58b) 

𝜔1 = 1.5708 
𝐸𝐴

𝜇𝐿2  , 𝜔2 = 3.6698 
𝐸𝐴

𝜇𝐿2    .       .    .             .          .          (58c) 

 

These were repeated for the bars of Figures 3(c), 3(d), 3(e) and 3(f) and a summary of the obtained 

natural frequencies presented in table 2 below 

Table 2: Comparism of the obtained natural frequencies of different lump-massed  fixed-free bar under 

longitudinal vibration with the exact results. 

 
 Mode 

No 

Hamilton 

(Exact) 

Lagrange Percentage Error  

(%) 

Lagrange with 

modified 

stiffness 

Percentage Error  

(%) 

Figure 3 (a) 1 1.5708 1.4142 9.95 1.5708 0 

Figure 3 (b) 1 1.5708 1.5307 2.55 1.5708 0 
2 4.7124 3.6955 21.43 3.6698 22.12 

Figure 3 (c) 1 1.5708 1.4749 6.11 1.5708 0 
2 4.7124 4.9824 -5.73 4.6750 0.79 

Figure 3 (d) 1 1.5708 1.5529 1.14 1.5708 0 
2 4.7124 4.2426 9.97 4.1054 12.88 
3 7.8540 5.7956 26.21 5.5171 29.75 

Figure 3 (e) 1 1.5708 1.5755 -0.30 1.5708 0 
2 4.7124 3.7558 20.30 3.7100 21.27 
3 7.8540 6.1708 21.43 6.2305 20.67 
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From table 2, it would be observed that the natural frequencies obtained from the use of Lagrange 

equation on the continuous system had some measure of errors as seen in the percentage error column. But when 

the stiffness of the system was modified using the stiffness modification factors, the use of Lagrange equation 

was able to predict accurately the fundamental frequencies hence their percentage errors were zero. However the 

values of the higher frequencies remained approximate. Some of its predictions for higher frequencies were less 

accurate than that obtained without the application of the stiffness modification factors. 

From this work we can infer that  

1) In order to obtain an accurate dynamic response from a lumped massed beam under longitudinal vibration 

there must of necessity be a modification in the stiffness composition of the system (the finite element 

method actually does the opposite). 

2) No linear modification of the stiffness distribution of lumped mass fixed-free beam under longitudinal 

vibration can cause them to be dynamically equivalent to the continuous beams. This is so because the 

values of α1 and α2 obtained for each segment as shown in Table A1 are not equal. 

3) By modifying the stiffness distribution of a lumped mass propped cantilever it can be made to produce the 

same response at an equivalent continuous beam. 

 

This work was limited to the longitudinal vibration of a propped cantilever. It can however be extended 

to any other beam of a different end constraint ( boundary condition). It is possible to present the values from 

table A1 in the form of graphs. It was however presented as tables in order to allow researchers to pick the exact 

stiffness modification factors unlike the approximate values that would be obtained from graphs. 

 

 
Figure 3: Some lumped massed beams fixed at one end and free at the other used for illustration of Lagrange 

equation 
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APPENDIX A  

Table A1: Stiffness modification factors for the longitudinal vibration of a fixed-free/pinned-free bar 
  𝜉2 

   0 0.05 0.10 0.15 0.20 0.25 0.30 

𝜉1 

0 
α1 - 1.183968 1.132904 1.082305 1.049036 1.028611 1.010495 

α2 - 1.207192 1.210925 1.217182 1.226019 1.237514 1.251769 

0.05 
α1 1.183968 - 1.148560 1.105646 1.073301 1.051217 1.031511 

α2 1.207192 - 1.166776 1.161223 1.164937 1.173842 1.185349 

0.10 
α1 1.132904 1.148560 - 1.097758 1.070537 1.050429 1.031727 

α2 1.210925 1.166776 - 1.109006 1.102963 1.105153 1.110747 

0.15 
α1 1.082305 1.105646 1.097758 - 1.052532 1.035185 1.018205 

α2 1.217182 1.161223 1.109006 - 1.058351 1.052824 1.051551 

0.20 
α1 1.049036 1.073301 1.070537 1.052532 - 1.018377 1.002485 

α2 1.226019 1.164937 1.102963 1.058351 - 1.021661 1.014191 

0.25 
α1 1.028611 1.051217 1.050429 1.035185 1.018377 - 0.988096 

α2 1.237514 1.173842 1.105153 1.052824 1.021661 - 0.990709 

0.30 
α1 1.010495 1.031511 1.031727 1.018205 1.002485 0.988096 - 

α2 1.251769 1.185349 1.110747 1.051551 1.014191 0.990709 - 

0.35 
α1 0.994012 1.013619 1.014289 1.001798 0.986647 0.972243 0.956345 

α2 1.268915 1.199472 1.119325 1.053751 1.01535 0.981802 0.958528 

0.40 
α1 0.985971 1.003608 1.003820 0.991424 0.976089 0.961088 0.944345 

α2 1.289113 1.217183 1.132300 1.061173 1.012784 0.979345 0.951433 

0.45 
α1 0.988424 1.003569 1.002547 0.989434 0.973234 0.957085 0.939016 

α2 1.312556 1.238683 1.149784 1.073861 1.020974 0.983413 0.951386 

0.50 
α1 0.995936 1.008776 1.006373 0.992253 0.974911 0.957376 0.937743 

α2 1.339475 1.263467 1.170592 1.090040 1.032848 0.991349 0.955378 

0.55 
α1 1.004505 1.015592 1.012025 0.996925 0.978416 0.959454 0.938178 

α2 1.370146 1.291408 1.194182 1.108782 1.047147 1.001606 0.961602 

0.60 
α1 1.016998 1.026639 1.021980 1.005838 0.986075 0.965597 0.942562 

α2 1.404893 1.323124 1.221360 1.131033 1.064944 1.015379 0.971368 

0.65 
α1 1.037287 1.045494 1.039679 1.022343 1.001172 0.979044 0.954112 

α2 1.444100 1.359301 1.253032 1.157883 1.087505 1.034112 0.986292 

0.70 
α1 1.062890 1.070165 1.063363 1.044883 1.022319 0.998546 0.971697 

α2 1.488219 1.400138 1.289150 1.189058 1.114365 1.057173 1.005593 

0.75 
α1 1.088804 1.095812 1.088531 1.069239 1.045528 1.020300 0.991651 

α2 1.537785 1.445710 1.329355 1.223801 1.144407 1.083120 1.027518 

0.80 
α1 1.114402 1.121952 1.114768 1.095064 1.070505 1.044057 1.013765 

α2 1.593431 1.496594 1.374144 1.262525 1.177976 1.112240 1.052300 

0.85 
α1 1.143503 1.152264 1.145657 1.125868 1.100720 1.073272 1.041498 

α2 1.655911 1.553805 1.424742 1.306646 1.216679 1.146335 1.081934 

0.90 
α1 1.176530 1.187281 1.181830 1.162373 1.136980 1.108834 1.075822 

α2 1.726125 1.618209 1.481971 1.356951 1.261292 1.186192 1.117231 

0.95 
α1 1.208020 1.221961 1.218586 1.200152 1.175071 1.146697 1.112807 

α2 1.805153 1.690400 1.545967 1.413160 1.311167 1.230829 1.156885 

1.00 
α1 1.233701 1.252387 1.252289 1.235779 1.211728 1.183714 1.149381 

α2 1.894304 1.771274 1.617235 1.475420 1.366137 1.279797 1.200175 

  𝜉2 

   0.35 0.40 0.45 0.50 0.55 0.60 0.65 

𝜉1 0 
α1 0.994012 0.985971 0.988424 0.995936 1.004505 1.016998 1.037209 

α2 1.268915 1.289113 1.312556 1.339475 1.370146 1.404893 1.444100 
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0.05 
α1 1.013619 1.003608 1.003569 1.008776 1..015592 1.026639 1.045494 

α2 1.199472 1.217183 1.238683 1.263467 1.291408 1.323124 1.359301 

0.10 
α1 1.014289 1.003820 1.002547 1.006373 1.012025 1.021980 1.039680 

α2 1.119325 1.132299 1.149784 1.170592 1.194182 1.221360 1.253032 

0.15 
α1 1.001798 0.991424 0.989434 0.992253 0.996924 1.005838 1.022344 

α2 1.053752 1.061173 1.073861 1.090040 1.108782 1.131033 1.157883 

0.20 
α1 0.986647 0.976089 0.973234 0.974911 0.978416 0.986075 1.001172 

α2 1.010535 1.012784 1.020974 1.032848 1.047147 1.064944 1.087505 

0.25 
α1 0.972243 0.961088 0.957085 0.957376 0.959454 0.965597 0.979044 

α2 0.981802 0.979345 0.983413 0.991349 1.001606 1.015379 1.034112 

0.30 
α1 0.956345 0.944545 0.939016 0.937743 0.938178 0.942562 0.954113 

α2 0.958528 0.951433 0.951386 0.955378 0.961602 0.971368 0.986292 

0.35 
α1 - 0.926411 0.919559 0.916524 0.915080 0.917445 0.926832 

α2 - 0.927808 0.923634 0.923657 0.925826 0.931564 0.942654 

0.40 
α1 0.926411 - 0.903190 0.898132 0.894541 0.894626 0.901612 

α2 0.927808 - 0.903857 0.900198 0.898599 0.900599 0.908154 

0.45 
α1 0.919559 0.903190 - 0.885113 0.879145 0.876737 0.881146 

α2 0.923634 0.903857 - 0.885481 0.880507 0.879168 0.883610 

0.50 
α1 0.916524 0.898132 0.885113 - 0.866839 0.861753 0.863414 

α2 0.923657 0.900198 0.885481 - 0.867144 0.862598 0.864070 

0.55 
α1 0.915080 0.894541 0.879145 0.866839 - 0.847616 0.846324 

α2 0.925826 0.898599 0.880507 0.867144 - 0.847731 0.846137 

0.60 
α1 0.917445 0.894626 0.876737 0.861753 0.847616 - 0.832200 

α2 0.931564 0.900599 0.879168 0.862598 0.847731 - 0.831992 

0.65 
α1 0.926832 0.901612 0.881146 0.863414 0.846324 0.832200 - 

α2 0.942653 0.908154 0.883610 0.864070 0.846137 0.831992 - 

0.70 
α1 0.942205 0.914540 0.891480 0.870988 0.850911 0.833642 0.822958 

α2 0.958177 0.920244 0.892680 0.870302 0.849437 0.832421 0.822552 

0.75 
α1 0.959998 0.929909 0.904267 0.880998 0.857861 0.837329 0.823390 

α2 0.976081 0.934463 0.903746 0.878371 0.854400 0.834331 0.821773 

0.80 
α1 0.980031 0.947556 0.919357 0.893300 0.867020 0.843089 0.825747 

α2 0.996541 0.950995 0.916887 0.888309 0.861001 0.837633 0.822161 

0.85 
α1 1.005784 0.971013 0.940362 0.911614 0.882246 0.854950 0.834285 

α2 1.021751 0.972221 0.934731 0.902995 0.872386 0.845765 0.827498 

0.90 
α1 1.038313 1.001420 0.968523 0.937299 0.905026 0.874551 0.850842 

α2 1.052548 0.999025 0.958237 0.923478 0.889710 0.860016 0.839257 

0.95 
α1 1.073758 1.034947 1.000009 0.966482 0.931388 0.897758 0.871082 

α2 1.087311 1.029475 0.985165 0.947202 0.910070 0.877090 0.853728 

1.00 
α1 1.109068 1.068526 1.031696 0.995936 0.957926 0.920893 0.890893 

α2 1.125036 1.062282 1.013941 0.972287 0.931215 0.894297 0.867711 

 

  𝜉 2 

   0.70 0.75 0.80 0.85 0.90 0.95 1.00 

𝜉 1 

0 
α1 1.062890 1.088804 1.114402 1.143503 1.176530 1.208020 1.233701 

α2 1.488219 1.537785 1.593431 1.655911 1.726125 1.805153 1.894303 

0.05 
α1 1.070165 1.095812 1.121952 1.152264 1.187281 1.221961 1.252387 

α2 1.400138 1.445710 1.496594 1.553805 0.618209 1.690400 1.771274 
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0.10 
α1 1.063363 1.088530 1.114768 1.145658 1.181830 1.218586 1.252289 

α2 1.289150 1.329355 1.374144 1.424742 1.481971 1.545967 1.617235 

0.15 
α1 1.044883 1.069239 1.095064 1.125868 1.162373 1.200152 1.235779 

α2 1.189058 1.223801 1.262525 1.306646 1.356951 1.413160 1.475420 

0.20 
α1 1.022319 1.045528 1.070505 1.100720 1.136980 1.175071 1.211728 

α2 1.114365 1.144407 1.177976 1.216679 1.261292 1.311167 1.366137 

0.25 
α1 0.998563 1.020300 1.044057 1.073272 1.108834 1.146697 1.183714 

α2 1.057173 1.083120 1.112240 1.146335 1.186192 1.230829 1.279797 

0.30 
α1 0.971697 0.991651 1.013765 1.041498 1.075822 1.112807 1.149382 

α2 1.005593 1.027518 1.052300 1.081934 1.117231 1.156885 1.200175 

0.35 
α1 0.942205 0.959998 0.980031 1.005784 1.038313 1.075758 1.109068 

α2 0.958177 0.976081 0.996541 1.021751 1.052548 1.087311 1.125036 

0.40 
α1 0.914540 0.929909 0.947556 0.971013 1.001420 1.034947 1.068526 

α2 0.920224 0.934463 0.950995 0.972221 0.999025 1.029475 1.062282 

0.45 
α1 0.891480 0.904267 0919357 0.940362 0.968523 1.000009 1.031696 

α2 0.892679 0.903746 0.916887 0.934731 0.958237 0.985165 1.031941 

0.50 
α1 0.870988 0.880998 0.893300 0.911614 0.937299 0.966481 0.995936 

α2 0.870302 0.878371 0.888309 0.902994 0.923477 0.947202 0.972287 

0.55 
α1 0.850911 0.857861 0.867020 0.882246 0.905026 0.931388 0.957926 

α2 0.849437 0.854400 0.861001 0.872386 0.889710 0.910070 0.931215 

0.60 
α1 0.833642 0.837329 0.843089 0.854950 0.874551 0.897758 0.920893 

α2 0.832421 0.834331 0.837633 0.845765 0.860016 0.877090 0.894297 

0.65 
α1 0.822958 0.823390 0.825747 0.834285 0.850842 0.871082 0.890973 

α2 0.822552 0.821773 0.822161 0.827498 0.839257 0.853728 0.867711 

0.70 
α1 - 0.815363 0.814326 0.819601 0.833297 0.850832 0.867716 

α2 - 0.814953 0.812699 0.815590 0.825356 0.837841 0.849245 

0.75 
α1 0.815363 - 0.804410 0.806085 0.816614 0.831061 0.844219 

α2 0.814953 - 0.803998 0.804186 0.811760 0.822021 0.830317 

0.80 
α1 0.814326 0.804410 - 0.793129 0.799969 0.810603 0.818564 

α2 0.812699 0.803998 - 0.792585 0.797518 0.804936 0.808802 

0.85 
α1 0.819601 0.806085 0.793129 - 0.790081 0.797298 0.799783 

α2 0.815590 0.804186 0.792585 - 0.789393 0.794567 0.793962 

0.90 
α1 0.833297 0.816614 0.799969 0.790081 - 0.797687 0.797349 

α2 0.825356 0.811760 0.797518 0.789394 - 0.797002 0.794797 

0.95 
α1 0.850832 0.831061 0.810603 0.797298 0.797687 - 0.806968 

α2 0.837841 0.822021 0.804936 0.794567 0.797002 - 0.806370 

1.00 
α1 0.867716 0.844219 0.818564 0.799783 0.797349 0.806968 - 

α2 0.849245 0.830317 0.808802 0.793962 0.794797 0.806370 - 

 

APPENDIX B 

%Find the stiffness mod. factor for a segment of a fixed free bar under free  %vibration 

  

e1 = 0 

e2 = 1 

  

for j=1:1:9 

i = j*2-1; 

Aj = 16/(i*i*i*pi*pi*pi); 

     

F1j= Aj*(i*pi*e2/2*cos(i*pi*e1/2) - i*pi*e1/2*cos(i*pi*e1/2) ... 
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- sin(i*pi*e2/2)+sin(i*pi*e1/2))/(e2-e1); 

F2j= Aj*(-i*pi/2*cos(i*pi*e2/2) + i*pi/2*cos(i*pi*e1/2)- ... 

(i*pi*e2/2*cos(i*pi*e1/2) - i*pi*e1/2*cos(i*pi*e1/2) -... 

sin(i*pi*e2/2)+sin(i*pi*e1/2))/(e2-e1)); 

        

u1j = Aj*sin(i*pi*e1/2); 

u2j = Aj*sin(i*pi*e2/2); 

if j==1 

u11 = u1j; 

u22 = u2j; 

end 

                

col1(j,1)=Aj; 

col2(j,1)=F1j; 

col3(j,1)=F2j;     

col4(j,1)=u1j; 

col5(j,1)=u2j; 

             

end 

Col1 = sum(col1); 

Col2 = sum(col2); 

Col3 = sum(col3); 

Col4 = sum(col4); 

Col5 = sum(col5); 

  

if e1==0 && e2<1 

  

format long; 

Table=[col1 col2 col3 col4 col5;Col1 Col2 Col3 Col4 Col5]; 

F1 =- Col2; 

F2 = -Col3; 

u1 = Col4; 

u2 = Col5 ;          

P1 = F1+(u1-u2)/(e2-e1); 

P2 = F2+(-u1+u2)/(e2-e1); 

Q1 = ((e2-e1)*u22*(P2+pi*pi*(e2-e1)*u22/8) - ... 

(e2-e1)*u11*(P1+pi*pi*(e2-e1)*u11/8))/(u22*u22-u11*u11) 

Q2 = ((e2-e1)*u11*(P2+pi*pi*(e2-e1)*u22/8) - ... 

(e2-e1)*u22*(P1+pi*pi*(e2-e1)*u11/8))/(u22*u22-u11*u11) 

format short; 

     

elseif e1>0 && e2<1 

format long; 

Table=[col1 col2 col3 col4 col5 ;Col1 Col2 Col3 Col4 Col5 ]; 

F1 = -Col2; 

F2 = -Col3; 

u1 = Col4; 

u2 = Col5;   

P1 = F1+(u1-u2)/(e2-e1); 

P2 = F2+(-u1+u2)/(e2-e1); 

Q1 = ((e2-e1)*u22*(P2+pi*pi*(e2-e1)*u22/8) - ... 

(e2-e1)*u11*(P1+pi*pi*(e2-e1)*u11/8))/(u22*u22-u11*u11) 

Q2 = ((e2-e1)*u11*(P2+pi*pi*(e2-e1)*u22/8) - ... 

(e2-e1)*u22*(P1+pi*pi*(e2-e1)*u11/8))/(u22*u22-u11*u11)     

format short; 

 

     

else 

format long; 
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Table=[col1 col2 col3 col4 col5;Col1 Col2 Col3 Col4 Col5]; 

F1 = -Col2; 

F2 = -Col3; 

u1 = Col4; 

u2 = Col5 ;       

P1 = F1+(u1-u2)/(e2-e1); 

P2 = F2+(-u1+u2)/(e2-e1); 

Q1 = ((e2-e1)*u22*(P2+pi*pi*(e2-e1)*u22/8) - ... 

(e2-e1)*u11*(P1+pi*pi*(e2-e1)*u11/8))/(u22*u22-u11*u11) 

Q2 = ((e2-e1)*u11*(P2+pi*pi*(e2-e1)*u22/8) - ... 

 (e2-e1)*u22*(P1+pi*pi*(e2-e1)*u11/8))/(u22*u22-u11*u11) 

format short; 

end 

     


