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Abstract: The purpose of this paper is to study the spreading of a contaminant accompanied with natural 

convection in a box heterogeneously heated from below, and to find out the effect of the inlet-outlet 

configuration on the removal of the contaminant and heat from the box by low air rate ventilation. This 

problem, in practice, relates to modeling a living room or a working place where some sources of heat and 

contaminant are in the simultaneous action. This model can be also applied to an enclosure where natural 

convection is caused by the effect that its floor is partly heated by the sunlight. In this study the box bottom is 

supposed to be divided into four separated parts with different boundary conditions for temperature or heat flux. 

An area contaminant source (“hot” or “cool’ –with or without releasing heat respectively) locates in the center 

of the bottom side. Good knowledge of the contaminant spreading process in the box under the influence of the 

natural convection would be useful for setting an efficient ventilation scheme in order to remove more heat and 

the contaminant from the enclosure. The finite difference method based on the Samarski scheme with ADI 

technique as well as the multigrid method is applied for numerical simulations. The results of the simulation 

show that the contaminant density within the box is proportional to the intensity of the heat flux at the 

corresponding domain on the floor. To elucidate the effect of the inlet-outlet configuration on the heat-

contaminant removal efficiency, three inlet locations marked by L (low), M (middle) and H (high) combine in 

pairs with three such positions of the outlet on the opposite wall are chosen. So there are totally eighteen 

configurations are taken for the consideration. The simulations show that the removal efficiency quite depends 

on the inlet-outlet arrangement as well as the direction of the ventilation flow.   

Keywords: box, three-dimensional, natural convection, contaminant spreading, Samarski scheme, multigrid, 

heterogeneous heating.  

 

I. Introduction 
The spreading process of a contaminant accompanied by a convective motion in the air is a much 

known phenomenon that often occurs almost everywhere. The contaminant source may be “independent” on the 

heat source or they are merged together. Combustion reactions are often of the second case. In an industrial 

enclosure a heat source usually  ejects one or several contaminant matters simultaneously. The heat convective 

motion as expected always makes the contaminant spreading more quick. But it is not its unique effect. In the 

case when the temperature or heat flux is not homogeneous on boundaries, in our case on the floor of the box, 

the contaminant distribution in the enclosure is strongly influenced too. This issue is the first primary study 

interest of this paper. 

Natural convection in an enclosure caused by heating from below or the difference in temperature of 

the side walls has been theoretically and experimentally investigated intensively from several decades ago. This 

problem has been attractive for the theoretical investigation as well as application. One of the earliest studies of 

three-dimensional natural convection in a box with differential side heating by numerical simulation was carried 

out by Millinson and De Vahl Davis [1]. They revealed the steady kind of air motion for moderate Rayleigh 

number (Ra). And the motion is essentially three-dimensional. In [2] the same problem was considered for Ra 

ranged from 10
3
 to 2.10

16
. The laminar flows were observed again at not very large Ra. This problem was also 

solved experimentally in [3] for Ra from 10
4
 to 2.10

7
, and numerically by finite difference method in [4] for Ra 

not exceeded 10
6
. It is interesting to note that in [5] the transition from the steady flow to the time-periodical 

natural convective motion in a box was observed. The natural convection considered in [6] is different from that 

of [1-5] by the heating way. Namely, in [6] the box is heated from below and the Rayleigh number is from 3500 

to 10
4
. Four different stable convective structures were recognized. Orhan Aydin and Wen-jei Yang [7] studied 

natural convection in a two-dimensional rectangular enclosure with localized heating from below and 

symmetrical cooling from the sides. Four dimensionless heat source length of 1/5, 2/5, 3/5, 4/5 were taken for 

numerical simulation at Ra from10
3
 to 10

6
. Recently natural convection of nanofluids has been investigated [8]. 

In this paper we consider the natural convection in a box caused by the non-homogeneity of the temperature or 

heat flux applied to different parts of the box bottom. And the way a contaminant spreads in the box in the 

presence of this convective motion is considered. 
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Ventilation of an enclosure with heat or and contaminant source is complicated but important problem. 

It applies not only to living or working places to create good air quality but also to many industrial objects from 

such small as an electronic chip to a huge factory. So in the last decades a lot of works have been done in this 

field. These studies mainly include the constructing model, proposing the methods of solution and a lot of 

specified numerical simulations. One of the early experimental studies is provided in [9] where smoke from a 

cigarette disperses within a room at low air exchange rate and under natural convection motion. The 

characteristic mixing time is determined for some concrete heat sources. A good overview of modeling 

ventilation flows in an enclosure and methods of solution is presented in [10, 11, 12]. As indicated in [12], CFD 

models occupy 70 percents of the works related to the ventilation performance in buildings. Three patterns of 

mixed convection in a two-dimensional room: steady, periodic and oscillatory are reported in [13], [14] and 

[15]. At moderate rate of the ventilation the Grashof number, that express the heat flux intensity, does determine 

the pattern of the flow. The removal of heat or and contaminant as the main applied target of the studies is 

considered in series of works. The way of introducing heat and contaminants into enclosure is diverse as well as 

the inlet-outlet location. In [16] a contaminant is supplied to a two-dimensional room through an inlet with air 

stream, while in [17] a contaminant is assumed to be initially uniformly distributed in a box. In [18] a “cool” 

source of a contaminant locates at the center of a three-dimensional enclosure. A two-dimensional room model 

with a “hot” source of contaminant on the bottom side is considered in [15], [19]. In [20] a heat source and a 

contaminant one are separated in a two-dimensional room. The results of the all mentioned studies show that the 

contaminant removal efficiency clearly depends on the location of the contaminant source as well as the outlet 

arrangement. 

 

Nomenclature 

L: Cub length 

g: Gravitational acceleration 

Gr: Grashof number (=gβΔTL
3
/ν

2
) 

Grc: Grashof number (=gβcΔCL
3
/ν

2
) 

Pr: Prandtl number (=ν/α) 

Ra: Rayleigh number (=Gr.Pr) 

Sc: Schmidt number (=ν/αc) 

Re: Reynolds number (=UL/ν) 

Nu: Nusselt number 

Sh: Sherwood number 

U: Characteristic velocity 

u,v,w: Dimensionless velocity components 

p: Pressure 

T: Dimensionless temperature 

C: Dimensionless contaminant 

Si: Inlet area 

So: Outlet area 

kT: Coefficient of heat conductivity 

kC: Coefficient of mass conductivity 

x,y,z: Dimensionless Cartesian coordinates 

Greek symbols: 

ν: Kinematic viscosity 

α: Thermal diffusivity 

αc: Mass diffusivity 

β: Coefficient of thermal expansion 

βc: Coefficient of mass expansion 

ρ0: Reference density 

Ω=( Ω
x
, Ω

y
, Ω

z
): Dimensionless vector of vorticity 

ΔT: Characteristic temperature 

ΔC: Characteristic contaminant concentration 

 

In this paper our concern focuses on the total influence of complex factors such as the heterogeneous 

heat flux on the box bottom, the hot level of the contaminant source, the Reynolds and the Grashof number of 

heat and contaminant, and the inlet-outlet location on the contaminant removal efficiency. 

 

II. The Problem Formulation 
Our numerical simulation will be carried out on the base of the Boussinesq approximation of the 

Navier-Stokes equations [6], [21], [22]: 
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Taking U, L, ΔT, ΔC as the characteristic velocity, length, temperature and contaminant respectively, 

and making all variables in the above equations non-dimensional we have [22]: 

 

2 2 2

2 2 2

1

Re

u u u u p u u u
u v w

t x y z x x y z

        
        

        
                                (1) 

2 2 2

2 2 2

1

Re

v v v v p v v v
u v w

t x y z y x y z

        
        

        
                               (2) 

2 2 2

2 2 2 2 2
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Re Re Re

cGrw w w w p w w w Gr
u v w T C

t x y z z x y z

        
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        
            (3) 

0
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x y z

  
  

  
                                                              (4) 
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T T T T T T T
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                           (5) 

 

2 2 2

2 2 2

1C C C C C C C
u v w

t x y z Sc x y z

       
      

       
                         (6) 

Note that all the variables in (1)-(6)  are now dimensionless. The boundary conditions for equations 

(1)-(6) will be discussed later. Now we rewrite (1), (2) and (3) in the vorticity variable introducing the vorticity 

vector by the form: 

 , , , , ,x y z x y zw v u w v u
rotV

y z z x x y
     

     
       

     

 
                    (*) 

By differentiating (1), (2) and (3) with respect to appropriate spatial variable and taking account of (4), we have: 

  2 2

1

Re Re Re

x x x x x y z x x x c
t x y z x y z xx yy zz y y

GrGr
u v w u u u T C                  (7) 

 2 2 2

1

Re Re Re

y y y y x y z y y y c
t x y z x y z xx yy zz x x

GrGr
u v w v v v T C                     (8) 

  2

1
0

Re

z z z z x y z z z z

t x y z x y z xx yy zzu v w w w w                                    (9) 

Next, by the differentiation and transformation of (4) one can get the following equations for the 

velocity components: 
y z

xx yy zz z yu u u                                                                            (10) 

z x

xx yy zz x zv v v                                                                            (11) 

x y

xx yy zz y xw w w                                                                          (12) 

In (7)-(12) subscript letters mean variables with respect to which the differential is taken.  

 

These equations will be integrated for determining the vector of vorticity and velocity. Fig. 1 indicates 

the enclosure considered in this paper. It is a box of length L that in the non-dimensional form is the unit box. 



Effect Of Inlet-Outlet Location On Heat And Mass Removal From A Box Heterogeneously Heated… 

DOI: 10.9790/1684-1304071626                                         www.iosrjournals.org                                     19 | Page 

We denote the sides of the box by 
T B L R F KS ,S ,S ,S ,S ,S for top, bottom, left, right, front and back respectively. 

Now for the system of equations (5)-(12) the boundary conditions are set as follows. For velocity components: 

0
all sides

u v w                                                                         (13a) 

0; on : 0, 1; on : 0, /
all sides Si So

u v w Si v w u So v w u Si So
 

                         (13.b) 

0; on : 0, 1; on : 0, /
all sides Si So

u v w Si u w v So u w v Si So
 

                          (13c) 

where (13a) is applied to the natural convection problem, (13b) to the mixed convection with the inlet 

on the left side, the outlet on the right one, (13c) to the case when the ventilation flow is directed from the face 

side to the back.   

From the definition (*) and (13) boundary conditions for vorticity components are set as follows: 

, , ,
0, ,

l R F B B T

x x x

y zS S S S S S
w v                                                   (14) 

, , ,

0, ,
F K L R B T

y y y

x zS S S S S S
w u                                                   (15) 

, , ,

0, ,
B T L R F K

z z z

x yS S S S S S
v u                                                    (16) 

To study the influence of the heat inhomogeneity at the bottom side on the contaminant spreading we 

divide the box base into several parts along the axis Ox (Fig.1). The area ratio of S1, S2, S3, and S4 to the base 

are 1/16, 3/8, 3/8 and 3/16 respectively. The contaminant source occupies whole central part S1. Now for energy 

and contaminant we impose the following conditions: 

 

 
Fig. 1 the box and its base divided into domains with different boundary conditions for temperature and 

contaminant 

 

0
F K L R T

n n S S S S S
T C

   
                                                                        (17a) 

   0, 0, ,
F K L R T

n n n T n CS S S S S Si So Si So So out So So out
T C T C T k T T C k C C

     
         (17b) 

2 3 4,
1, 0n S S S

T T                                                                               (18) 

2 3 4 1, ,
0, 1n nS S S S

C C                                                                           (19) 

1

1
S

T                                                                                       (20a) 

1

0
S

T                                                                                       (20b) 

where (17a) is used for the natural convection case while (17b) for mixed convection one. In line with 

(18), domain S2 is hot while S3 and S4 are cool. Condition (20a) and (20b) mean that the contaminant source S1 

is “hot” and “cool” respectively. It is worth discussing the imposition of the outlet condition for both energy and 

contaminant. Almost works relevant to numerical simulating the heat-contaminant removal from a ventilated 

enclosure have applied the no-flux condition for all the variables at the outlet. In fact this condition is of 

mathematical nature rather than physical. Such condition is usually set on a boundary of a computational 

domain where the perturbation imposed by a submerged object on a uniform fluid flow can be ignored so all the 

variables of the flow may be assumed to be uniform again. For our problem this condition is hardly confirmed 

on the outlet. Meantime (17b) is the general condition for energy so it is more reasonable for our problem. On 
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the other side (17b) assists the calculating the total heat or contaminant expelled through the outlet via the 

Nusselt or Shewood number respectively. Theses values, as known, are calculated as the integral of heat or 

contaminant flux over the outlet. So one has: 

;n n

So So

Nu T ds Sh C ds                                                           (**) 

Thus the problem of natural convection flow with a contaminant source in a box consists of equations 

(7)-(12) (with Re=1), equations (5) and (6), and boundary conditions (13a), (14)-(16), (17a), (18), (19) and (20a) 

or (20b). For the mixed convection problem the system of governing equations are the same (but with Re>1), 

and the boundary conditions include (13b) or (13c), (17)-(19), (20a) or (20b)  

Now for reference, we denote the problem that consists condition (20a) by A-case whilst the problem with (20b) 

by B-case.   

 

III. The Numerical Method 
To integrate the transport equations for vortices (8)-(10) here we apply the ADI and time splitting 

technique for the finite difference method based on the Samarski scheme [23]. We describe this numerical 

procedure in detail for equation (8) as follows. We split every time step of the integration (τ) into three sub 

steps. At the first sub step we integrate equation (8) with all derivatives of x with respect to variable x in the 

left part (x-direction): 

   
       

         
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u u k a u
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

 

             (23) 

At the second sub step the analogous equation for y-direction is integrated: 

   
       
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1
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   

  

  
         

            



 

          (24) 

And finally, at the third sub step the equation for z-direction is solved: 

   
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                 (25) 

In (23)-(25) we denote: 

           

       

   

1, 1, 1

1 1 2

2 2

/ ; / ; 0.5 ;

2 / ; ; 1/ 1 Re ;

1/ 1 Re ; 1/ 1 Re

x i jk ijk i x ijk i jk i x x xijk ijk ijk

xx x x i i i i i ijk iijk

ijk i ijk i

f f f h f f f h f f f

f f f h h h x x a u k h

b v k h c w k h

  

 

     

      

   



                     (26) 

where  f  stands for any component of velocity or the voticity vector. 

The analogous procedure is applied for integrating equations (9) and (10). It is obviously from (26) that 

the central scheme for both the first and second derivatives results in the case when 1 2 0k k  while in the 

case with 1 21, 0k k   one has the upwind scheme. Finally we have the Samarski scheme [10], [11] taking 

1 2 1k k  . In this paper the last scheme is applied.   

To calculate the solution of (10)-(12) the second order central finite difference scheme is used for the 

Laplace operator and the multigrid method [24], [25], and [26] is applied to solve the system of finite difference 

equations. The multigrid method extremely reduces the computational time of our numerical simulation.  

 

IV. Numerical Results And Discussion 
4.1 The contaminant spreading with buoyancy  

The numerical simulation in this paper is carried out for the case when the contaminant-carbon dioxide 

spreads by the natural convection in a box filled with the air. The Grashof number (Gr) ranges from 10
4
 to 5.10

5
, 
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Fig. 4 velocity field on section z=0.5 at Gr=2.10

4 
 

Grc=10
5
 in A-case (left) and B-case (right) 

and Grc is fixed at value 10
5
. The common fixture that our simulation shares with the other studies mentioned in 

the introduction of this paper is the existence of the steady air flow at moderate Grashof number despite the fact 

that the boundary condition for heat in our case is much different from that imposed in the mentioned works. 

Moreover the natural convective motion in our study also includes contaminant spreading process. The 

recording flow parameters at a series of time moments in three points P1(0.5,0.5,0.175), P2(0.5,0.5,0.5) and 

P3(0.5,0.5,0.875) helps to determine the time evolution of the motion. In Fig. 2 we show the change by time of 

the w-velocity component at point P2 (the center of the box) for several Grashof numbers. It is interesting to 

note that condition (20) has a clear effect on the kind of the convective motion in our problem formulation. At 

Gr=2.10
4
 the convective motion in both cases A and B, as indicated in Fig. 2, becomes stationary after a 

relatively short time interval. At Gr=2.10
5
, the flow in A-case (“hot” contaminant source) has clearly fluctuated 

by time whilst for B-case (“cool” contaminant source) a strictly time periodic solution is resulted. This kind of 

time periodic flow for natural convection in enclosures was recognized in studies [13, 14] and [15]. At larger 

Grashof number (Gr=3.10
5
) for B-case an unsteady motion is resulted. Our simulation also shows that when the 

Grashof number increases both the amplitude of the flow fluctuation and its frequency become lager. It should 

note that the behavior of w-component as shown in Fig. 2 is common for all the remain parameters of the flow 

such as u- and v-components of the velocity, temperature, and contaminant in point P1, P2, and P3.  

 

A    B   

Fig. 2 w-velocity component in point P2 at Grc=10
5
 

A-case (1: Gr=2. 10
4
, 2: Gr=2. 10

5
); B-case (1: Gr=2. 10

4
, 2: Gr=2. 10

5
, 3: Gr=3.10

5
) 

 

The effect of the boundary condition (20) on the amount of the contaminant released from the source S1 

is shown in Fig. 3. This amount in A-case (“hot” contaminant source) is nearly ten times bigger than that of B-

case (“cool” source). This is reasonable because heat always assists the emission and spreading contaminant. 

The temperature distribution on the symmetrical axis of the box also clearly indicates the influence of the heat 

condition (20) imposed at the source. As shown in the left part of Fig. 3 for A-case one has 1 2 3T T T   while 

for B-case 2 1 3T T T  . This result is reasonable too because in A-case hot air rises directly from S1 domain 

while in B-case the air layer adjacent to S1 is  always relatively cool due to the effect of the Rayleigh-Taylor 

stability.  

 

    
Fig.  3 temp. (left) and cont. (right) in points P1-P3 at Gr=2.10

4 
, Grc=10

5
.
 
Solid lines (A-case), dash lines (B-

case) 

 

Finally the boundary condition (20) also 

strongly effects on the structure of the air flow in the 

box. This can be seen in Fig. 4 where shown the 

velocity field on the middle horizontal section of the 

cube. The complex structure of the natural convection 

in the box caused by a complicated boundary 

condition for heat on the cube base can be 

demonstrated in Fig. 5. As shown in [6] for the natural 

convection in a box heated from below there are four 

different stable structures. In our case the convective 

structure is more complex because of the inhomogeneity of heat boundary condition on the box bottom.  
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Next our attention focuses 

on the contaminant distribution in 

the box when its base is 

heterogeneously heated from below 

that is expressed by boundary 

conditions (18) and (20). The results 

of the simulation of this study 

indicate that if the contaminant is 

discharged continuously from source 

S1 then at any moment the 

contaminant density is in proportion 

to the intensity of the heat flux 

below. It means that  the 

contaminant distribution on any 

horizontal section of the box follows 

the rule that the hotter region below 

the thicker contaminant above. In 

Fig. 6   the temperature and 

contaminant distribution on three 

sections x=0.875, z=0.125 and   

z=0.875 is presented. It is necessary 

to remind that the hot region at the 

box base arranges within 

0 1, 0.625 1x y     while  

the cool one takes 

0 1, 0 0.625x y    . Note 

that the temperature distribution on 

any horizontal section, as seen in Fig. 6, correctly reflects the location of heat sources on the bottom. Fig. 6 also 

shows that both the contaminant and temperature distribution within the box have the common character 

mentioned above.  

 

 
Fig. 6 A-case: isotherms (three first pictures) and contaminant on sections: x=0.875, z=0.125 and z=0.875 

respectively for Gr=2.10
5
, Grc=10

5
. 

 

For the B-case these characteristics of the temperature and contaminant distribution remain the same as 

for A-case. And this is held for all three types of the flow: steady, periodic and unsteady. This conclusion is 

demonstrated in Fig. 7. 

Fig. 8 shows a picture that illustrates the above conclusion on the way of contaminant spreading in a 

box in the presence of a natural convective flow caused by a complicated heat condition at the box bottom. In 

this picture the box bottom is divided into two equal parts. The left part surface is kept cool by ice below while 

the right part one is heated by a lamp. A point contaminant source locates at the center of the box base. As seen 

in the picture the smoke always tends to spread more into the hot region of the air in the box.  

 

 

 
 

a/ 

b/ 

 c/ 
Fig. 5 vector field on: a/ x-sections, x=0.125, x=0.5, x=0.875; b/ y-

sections, y=0.125, y=0.5, y=0.875; c/ z-sections, z=0.125, z=0.5, 

z=0.875 for B-case at Gr=3.10
5
, Grc=10

5
. 
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Fig. 8. u-component in point P2 at Re=200, 

Gr=2.10
5
, Grc=10

5
. 1: ventilation, 2: mixed 

convection (A-case), 3: B-case 

Fig. 8 experimental 

illustration of the 

contaminant spreading in 

a natural convection in a 

box. 

 

 

 

 

 

 

 

 

 

 

4.2 The effect of the inlet-outlet location on the removal of heat and contaminant 

Now we impose a ventilation flow on the convective motion discussed in § 4.1. The ventilation system 

contains one inlet and one outlet that are located on two opposite sides like 
L RS -S or 

F KS -S . For 

L RS -S location the ventilation flow blows from left to right (along x-axis) and for F KS -S from front to back 

(along y-axis). Thereafter we  refer  these cases as X-X and Y-Y respectively. Both the inlet and outlet are 

square whose length is L/4. The inlet locates in the middle of the box side at three positions with the height from 

the floor to its bottom edge is 0, 3L/8 and 3L/4 respectively. These positions are symbolized by letters L, M, H 

respectively. We consider also three such locations for the outlet on the opposite side. So for both X-X and Y-Y 

case there are totally eighteen the inlet-outlet configurations. In the future symbol LM means the case of low 

inlet-middle outlet and etc. In Fig. 8 we show the change by time of u-component of velocity in point P2 (the 

center of the box) at Re=200 for pure ventilation flow (thin solid 

line 1), mixed convection of A-case (dash line 2)  and mixed 

convection of B-case (bold solid line 3) at Gr=2.10
5
, Grc=10

5
. 

Fig. 9 shows clearly the stabilizing effect of heat convection on 

low rate ventilation flows. The simulations also show that at the 

same set of Re, Gr, and Grc the air flow in the box may be 

steady or unsteady depending on the ventilation direction. In 

fig. 9 we show the temperature in the center of the box as a 

function of time. For A-case and for both directions X-X and Y-

Y after some time interval the temperature remains unchanged. 

Whilst for B-case for Y-Y ventilation the temperature clearly 

varies with time. The results of the simulation indicate that the 

unsteadiness of the solution of B-case is more sensitive to Re-

change than that of A-case. Also Y-Y direction is more 

sensitive than X-X one for B-case. For A-case the contrary takes place. 

 a/ 

b/ 

c/ 

Fig.7 B-case: isotherms (two first pictures of each line) and contaminant on 

sections: z=0.125 and z=0.875 respectively for a/ steady, b/ periodic, c/ unsteady 

flow. 
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A  B  

Fig. 9 change by time of temperature in point P2 of A & B case at Re=200, Gr=2.10
5
, Grc=10

5
, for  X-X 

direction  (1) and Y-Y(2). 

 

It is interesting to note that in some cases of 

the inlet-outlet location the solution of the considered 

here problem can be a so called multiple-periodic 

function of time. Fig. 10 shows a such solution for B-

case at Re=200, Gr=2.10
5
 and Grc=10

5
 for LH 

configuration of X-X ventilation. This solution is 

likely a periodic function with two time periods. The 

interaction between ventilation and natural convection 

in the cube creates complicated air flows whose 

structure is strongly depends on the direction of the 

ventilation. Fig. 11 shows the velocity field at the 

middle horizontal section of the box for some of such 

flows. The pictures indicate the obvious influence of 

the ventilation direction on the formation of the 

resultant flows in both cases A and B. 

 

a/ b/ c/ d/  

Fig11 Velocity field at z=0.5 for Re=200, Gr=2.10
5
, Grc=10

5
: A-case (a/ X-X, b/ Y-Y), B-case (c/ X-X, d/ Y-Y) 

 

Thus as indicated in [13], [14], [15] and by this study, natural convection may make an unsteady 

ventilated flow in an enclosure steady or pseudo steady at low ventilation rate. The next purpose of this paper is 

to elucidate the effect of the inlet-outlet configuration on the efficiency of heat and contaminant removal from 

the box. The answer to this problem has a big practical application. As indicated above, here the simulations are 

carried out for 18 inlet-outlet configurations for each case A and B. For every configuration the Nusselt and 

Shewood number are calculated by (**). The efficiency of any configuration expressed by the ratio of Nu and Sh 

of this configuration to Nu and Sh of LL location respectively is provided in table 1. The cases with both ratios 

greater than unit are marked by bold numbers in two corresponding columns for Nu/Nu and Sh/Sh . These cases 

have a more removal efficiency for both heat and contaminant in the comparison with the lowest inlet-outlet 

location. The bold italic numbers in column Sh/Sh mark the case with a better contaminant removal only.   

 

 
Table 1. Heat and contaminant removal of different inlet-outlet locations in comparison with LL case 

 
Fig. 10 v- component in points Pk (k) of B-case for 

LH, X-X, Re=200, Gr=2.10
5
, Grc=10

5
. 
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The results in table 1 indicate that at low ventilation rates for X-X direction configurations LL,  HL 

would be good choices for both cases, and HL and HM may be very good for B-case at a larger the Reynolds 

number.  For Y-Y ventilation direction configurations LL, ML and HL are nearly equivalent by the removal 

efficiency. If the contaminant removal is the main concern then configurations LM, MM and HM would be the 

first choice in this case.  

 
I-O Re=150, Gr=2.105, Grc=105 Re=200, Gr=2.105, Grc=105 

A-case, X-X/Y-Y B-case, X-X/Y-Y A-case, X-X/Y-Y B-case, X-X/Y-Y 

Nu/Nu Sh/Sh Nu/Nu Sh/Sh Nu/Nu Sh/Sh Nu/Nu Sh/Sh 

LL 0.16 0.82 0.39 6.49 0.25 1.01 0.31 0.39 

LM 0.17 1.87 0.27 1.63 0.16 1.14 0.60 0.15 

LH 0.49 1.23 0.36 0.69 1.46 0.50 0.98 0.89 

ML 0.16 0.79 0.35 10.54 0.25 0.98 0.31 0.48 

MM 0.22 1.08 0.56 40.52 0.19 0.85 0.54 0.11 

MH 0.54 0.94 0.32 0.27 0.82 0.38 5.33 0.65 

HL 0.16 0.82 0.42 6.94 0.25 1.00 0.34 6.57 

HM 0.17 2.17 0.21 1.24 1.88 1.79 2.68 0.51 

HH 0.62 1.54 0.38 0.06 1.59 0.42 0.004 1.78 

Table 2. Comparison of the removal efficiency between X-X and Y-Y ventilation direction 

 

To compare the removal efficiency between X-X and Y-Y ventilation direction we divide Nu and Sh 

for every corresponding inlet-outlet location. The results are shown in table 2. At Re=150, the air flow in the all 

36 configurations are steady or nearly steady. So the heat amount removed by Y-Y ventilation is always larger 

than that of by X-X one for every inlet-outlet configuration. It is appropriate because, in accordance with the 

heat sources location indicated in Fig. 1, the ventilation flow in Y-Y direction involves more “hot” air than that 

in X-X direction. Concerning the contaminant removal for A-case three configurations with the lowest outlet are 

less efficient whilst for B-case such configurations turn out to be with the highest outlet. Generally at low rate 

ventilation for the considered here problem the X-X ventilation is the best choice.  

At Re=200 for some inlet-outlet configurations the flow becomes unsteady. Generally the velocity 

fluctuation assists the temperature diffusion. So, as expected, at the same conditions the unsteady flow expels 

more heat than the steady. The simulation results show that for three configurations LH, HM, HH of A-case and 

for MH, HM of B-case the fluctuation of the flow parameters of X-X ventilation is larger than that of Y-Y 

ventilation. This causes the values at the intersections of the sixth column of table 2 with rows number 6, 11 and 

12 exceeding unit. Analogously for B-case the values at the crossing of the eighth column with the ninth and 

eleventh rows are larger than unit. The simulation results shown in table 2 indicate also that unlike the case of 

Re=150 when X-X ventilation has the obvious advantage over Y-Y, at Re=200 for every direction of X-X and 

Y-Y there exist some very good configurations.  

Finally we compare the amount of heat and contaminant removed from the box in A-case with that in 

B-case. The comparison is provided in table 3. 
I-O Re=150, Gr=2.105, Grc=105 Re=200, Gr=2.105, Grc=105 

A/B, X-X A/B, Y-Y A/B, X-X A/B, Y-Y 

Nu/Nu Sh/Sh Nu/Nu Sh/Sh Nu/Nu Sh/Sh Nu/Nu Sh/Sh 

LL 1.89 1.26 4.59 10.00 2.72 22.66 3.32 8.76 

LM 1.72 11.02 2.78 9.63 0.78 41.97 3.00 5.68 

LH 2.32 33.01 1.69 18.61 3.33 14.65 2.24 26.09 

ML 2.00 0.75 4.40 10.00 2.66 17.93 3.28 8.84 

MM 1.12 0.24 2.78 8.88 0.95 37.36 2.65 4.72 

MH 2.19 59.16 1.30 17.01 0.51 17.81 3.34 30.20 

HL 1.79 1.24 4.70 10.52 2.51 1.40 3.37 9.18 

HM 2.12 15.12 2.59 8.60 0.18 18.93 0.26 5.44 

HH 2.39 27.23 1.45 17.13 9.73 5.54 1.99 23.40 

Table 3. Comparison of  heat and contaminant removed in two cases A and B. 

 

The results in table 3 show that the removal contaminant in A-case (“hot” source of contaminant) is 

larger than that in B-case  (“cool” source) at any configuration and for both values of Re. This is appropriate to 

the fact that temperature always accelerates the releasing contaminant. In the most cases of the inlet-outlet 

location the heat amount removed of A-case is more than that of B-case. It is reasonable because the number of 

heat source of A-case is larger.  

 

V. Conclusion 
The finite difference method and the multigrid technique are applied to simulate the heat and 

contaminant removal from a box by low air rate ventilation. The contaminant distribution in the box under the 

influence of convective motion clearly depends on the distribution of the heat on the floor. The heat convection 
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caused by the heterogeneous heating the box bottom at moderate Grashof number can make a low air rate 

ventilated flow steady, periodic or unsteady. The type of the flow also depends on the location of the inlet and 

outlet on two opposite sides of the cub. The simulations for two Reynolds numbers at the same Grashof number 

show that the heat and contaminant removal efficiency varies with the ventilation rate, the inlet-outlet 

configuration as well as the direction of the ventilation flow. The removal also depends on the characteristic of 

the contaminant source. If this source is dual i.e. it ejects both heat and contaminant at the same time then more 

heat and more contaminant are removed at any time moment than when the source releases contaminant only.  
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