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Abstract: This paper deals with the dynamics of a vibration-driven unidirectionally moving wheeled robot. A 

dynamic model of the robot is proposed and the equations governing the motion are derived. The conditions for 

one-way motion of the robot are likewise obtained. Furthermore the conditions for the motion of the wheels with 

no slippage are also stated. Numerical experiment with the dynamic model of the robot assumed to have linear 

elastic and dissipative characteristics is conducted and the results obtained are visualized by means of 2D and 

3D graphs. The variation of mechanical parameters of the robot on its dynamics are investigated and  analyzed. 

It is found that the mean velocity of the robot is sensitive to the parameters of the mechanical system, mainly: 

the resonance frequency of the propulsion mechanism, the stiffness and the amount of damping in the system, 

the coefficient of friction between the wheels and the ground, the initial value of the phase angle of contra-

rotating unbalanced masses and the rest of the system parameters. A dynamic intensity criterion is introduced 

as a measure of the overload of the propulsion mechanism. It is found that low frequency resonance regimes 

generate smaller dynamic intensity and therefore reduced dynamic load. 

Keywords: Wheeled robots, dynamic model, vibration drive, mean velocity of motion, dynamic intensity. 

 

I. Introduction 

Mobile robots with vibration-propulsion, known also as vibration-driven robots or vibrobots are subject 

of increased interest, motivated by their advantages when working under unusual conditions, combined with 

increased requirements for energy efficiency, tiny size, environmental conditions and human safety. The 

vibration-driven robot have a simple design because it does not have any driving mechanisms such as 

gearboxes, prop shafts, differential etc. like in the contemporary vehicles. In the case of the wheeled robot 

investigated in this study the motion is achieved by the action of inertia forces generated from the periodic 

motion of synchronized unbalanced contra-rotating masses. The driving mechanism is an oscillating single-

degree-of-freedom mechanical system, which operates in close proximity of the main resonance. This 

determines the appearance of nonlinear dynamic phenomenon’s that makes it difficult to study these systems. 

Most of the studies conducted on vibration-driven robots are related to analytical modeling, testing prototypes 

and computer simulation of their dynamic behavior [1], [2], [3], [4]. 

In this study the dynamic model of a one-way moving wheeled robot is investigated based on the 

experimental data obtained in [5] for a prototype wheeled robot studied in [6] and [7]. 

 

II. Dynamic Model 

In Fig. 1 and Fig. 2 the physical and the dynamic model of the real prototype of a wheeled robot is 

presented. It is assumed that all bodies of the mechanical system are shown as plane figures moving in a vertical 

plane coinciding with the XOZ-plane of the absolute coordinate system OXYZ.  

The mechanical system of the robot obeys a dynamic symmetry in the direction of the axis OY. This 

assumption is correct for the propulsion action of the two contra-rotating unbalanced masses m3/2 and for the 

symmetrically located elastic and dissipative ties, but it is approximate in terms of locations of the centers of 

gravity of the respective bodies of the system. 

 The bodies 1 and 2 shown in Fig. 2 having weights G1 and G2 respectively are involved in a rectilinear 

translation motion. The excitation propulsion action of the inertia force, generated by the contra-rotating 

unbalanced masses m3/2 is directed towards the ОX axis. It is defined by the periodic motion of body 3 in 

respect to body 2, the former considered as a mass point of weight G3 = m3g. It is moving according to a known 

periodic harmonic law of motion -  (t) as a result of the rotating unbalanced masses.  

 We introduce three generalized coordinates x1, x2, x3 (Fig. 2), which specify the position of bodies 1, 2 

and 3 with respect to the absolute coordinate system OXYZ. The coordinates x1, x2 and x3 are related through the 

equations:  

   x2(t) = x1(t) + l0 +  (t),         (1) 

  x3(t) = x2(t) + l2 +  (t), 
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where:  (t) =  sin ( t + 
0
) is the periodic harmonic law of oscillation of body 3 (the unbalanced masses) with 

 being the amplitude, ω the angular frequency of rotation and 
0
 the initial phase angle; Also the distance - l0 is 

the original static length of the equivalent spring and l2 is the distance specifying the position of the center of 

rotation of the unbalanced masses. All these distances are constants and are measured from the prototype robot 

shown in Fig. 1 where  - is the value of variation of the length of the equivalent spring as compared to its initial 

static length. The stiffness of equivalent spring is the sum of stiffness of individual springs in the propulsion 

mechanism since they are connected in parallel between bodies 1 and 3 as shown in Fig. 1. 

The wheels 4 and 5 of the robot, performing general plane motion, are considered solid bodies equal in 

pairs in terms of their masses and are of same diameters. Their mass centers (axes of rotation) have the same 

forward velocity V1  dx1/dt as that of body 1, since the wheel axes are fixed to it and therefore involved in the 

forward translation motion of that body. More importantly, the wheels are furnished with one-way roller 

bearings designated as number 6 in Fig. 2. Each wheel is furnished with one, one-way bearing. The bearings 

allow only a forward rotation of the wheels blocking the rotation in the opposite direction. According to the 

manufacturers of these bearings the time required to block the rotation is about 10
-6

 seconds [8]. This means that 

an instant blockage of the wheel’s rotation is achieved during the opposite action of the propulsion force. 

The expressions for the absolute accelerations of bodies 1, 2 and 3 are shown below:  

a1  d
2
x1/dt

2
  dV1/dt,  

a2  d
2
x2/dt

2
  dV2/dt,         (2) 

a3  d
2
x3/dt

2
 = a2 + d

2 
/dt

 2
 = a2 – 

 2, and  

 = a1/r,  

where ε is the angular acceleration of each wheel of radius r, assumed rolling without slipping. 

The differential equations of motion are derived by using the principle of Kinetostatics [12]. The 

system is split into multiple bodies and the free-body diagram of each body is shown schematically in Table 1. 

The weight forces are Gi, i = 1, 2, …, 5; the normal and friction reactions are Nj, and Tj, respectively with 

j = 1, 2; the forces of interaction among the bodies Rv, v = 1, 2, 3; the resultant spring force Fk; the damping 

force Fb; the inertial forces Фl, l = 1, 2, …, 5 and the moments of inertial forces M
Ф

,  = 4, 5. Here Gi = mi g are 

the weights of the individual bodies; Fk = – k, with  = x2 – (x1 + l0) is the value of the dynamic variation of the 

equivalent spring force having an initial value Fk(0) = k(s0 – l0), with s0  x2(0); Fb = – b|V2 – V1| – is the 

measure of the equivalent dissipative force Fb, where  ≡ sign(V2 – V1) is the step function of Kronecker; Фl = –

 ml al and M
Ф

 = – (m r/ 2)a1 – are the D’Alambert’s inertia forces and the moments of inertial forces 

respectively. 

Table 1 shows the free-body-diagrams of the individual bodies 1, 2, 3 acted upon the active forces, 

reactions and the forces of interaction between the bodies along with the inertia forces and the moments of 

inertia forces. According to the principle of D’Alambert’s these systems of forces are in balance. Among the 

forces the unknown are the measures of reactions R1, R2, R3, P1, P2, P3, P4, N1, N2, T1, T2 and the accelerations 

a1, a2, a3 referred to the selected positive directions, as well as the distance l3. From the conditions of equilibrium 

the expressions of the required unknown parameters are:  
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Fig. 1 displays the top view of the 

prototype robot, where: 1 is the outer 

frame (body1), 2 - inner frame (body2),  

3 contra-rotating eccentric masses 

(body3), 4 - spring system, 5 - DC 

motor, 6 - one-way rotating wheels, 7 - 

one-way rotating bearings. Fig. 2 illustrates the dynamic model of the robot 
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  a1 = Fa /[m1 + (3/2)(m4 + m5)],   

a2 = (m3
 2
 – Fa) /(m2 + m3), 

a3 = a2 – 
 2
,   R1 = – m3a3,   R2 = m3g,   R3 = (m2 + m3) g, 

 l3 = l1 + {m3[g(l2 – l1) – a3h2] – Fa(h3 – h1)}/(m2 + m3) g,   P1 = (3/2) m4 a1,  

P2 = {– Fah4 + [(m2 + m3) (d1 – d3) + m1 (d1 – d2)] g – m1a1h5}/d1,   P3 = (3/2) m5 a1,  (3) 

P4 = {Fah4 + [(m2 + m3) d3 + m1d2] g + m1a1h5}/d1, 

N1 = m4g + {– Fah4 + [(m2 + m3) (d1 – d3) + m1 (d1 – d2)] g – m1a1h5}/d1, 

T1 = (1/2) m4 a1,   T2 = (1/2) m5 a1, 

N2 = m5g + {Fah4 + [(m2 + m3) d3 + m1d2] g + m1a1h5}/d1, 

where:  Fa = k(x2 – x1 – l0) + b|V2 – V1| - combines both the elastic and dissipative forces. Here again  

 ≡ sign(V2 – V1) is the step function of Kronecker, as explained above. 

The differential equations governing the motion of mechanical system and the initial conditions are: 

 dx1/dt = V1,  with initial condition x1(t=0) = 0, 

 dV1/dt = [k(x2 – x1 – l0) + b|V2 – V1|] / [m1 + (3/2)(m4 + m5)], with 

 initial condition V1(t=0) = 0,      (4) 

 dx2/dt = V2,   x2(t=0) = s0, 

 dV2/dt = m3
 2 sin(

 
t + 

0
) – [k(x2 – x1 – l0) + b|V2 – V1|] / (m2 + m3); V2(t=0) = 0, 

And the conditions for simulation of the one-way motion of the robot are: 

 V1 = V1(t),  when  V1(t) > 0 and        (5) 

 V1 = 0,  when  V1(t)  0. 

  The conditions (5) are realized by means of one-way roller bearings built into the hub of each wheel, 

allowing a forward rotation of the wheels and preventing the opposite one. 

  The dynamic model described by equations (3), (4) and (5) has physical meaning if at any instant t the 

condition for permanent contact between the wheels and the surface is satisfied, such as:  

  min t {N1(t), N2(t)} > 0.                                                                                                          (6) 

 
Table 1 Free-body diagrams of bodies 1. 2 and 3 with the active, reactive and inertia forces acting on them 

Bodies Free-body diagrams with corresponding forces 
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Body 1 

(is the robot chassis) 

 

 

 

 

 

Bodies 4 & 5 

(stand for one-way 
rotating wheels) 

 

 

 

 

 

 

 

In case that all the wheels are rolling without slipping then the friction forces between them and the 

contact surface are very small (pure rolling friction) or in the border case they may be equal to the maximum 

value of the corresponding friction force Тj*, which is defined as: 

  Тj  Тj* = 0N,          (7) 

where 0 is the static coefficient of friction. 

Furthermore, we also assume that under a stabilized motion of the robot the condition (7) is fully 

satisfied. The mechanical perfection of the robot mechanical system may be assessed by means of various 

criteria [10]. The major criterion for assessment in kinematic aspects under unidirectional motion of the robot is 

the mean velocity taken throughout of a specified time interval, given by: 

 
,d)(

1

0

11 

ft

f

ttV
t

V
   (8) 

where V1(t) satisfies the condition (5). 

For the evaluation of the dynamic strength of the robot components when in motion within the time 

interval t
 


 
[t0, tf ], the ratio of the mean value of the resultant horizontal propulsion force acting on the wheels to 

the driving inertia force is used at the time instances t
 


 
[t0, tf ], t0 > 0 for which P1(t) + P3(t) > 0 and R1(t) > 0.  

As a local criterion for dynamic intensity the ratio K(t) = FE (t)
 
/
 
FD (t) of the applied horizontal 

resultant force on the wheels FE (t) = {P1(t) + P3(t)}
+
 and the driving inertia force FD (t) = {R1(t)}

+
 in the instants 

t
  

[0, t
f 
] for which P1(t) + P3(t) > 0 and R1(t) > 0 is suggested. Then for the evaluation of dynamic strength of 

the propulsion system during the stabilized motion of the VibroBot the average value of (9) can be used as a 

local characteristics for dynamic loading 

 K = FE (t)
 
/
 FD (t),        (9) 

Where K(t) is valid within the interval t
  

[0,
 
t
f 
]. 

 

III. Results of Numerical Experiments 

The dynamic model described by equations (1) to (9) allows to simulate the main kinematic and 

dynamic characteristics of the prototype robot as well as to analyze the effect of variation of mechanical 

parameters of the model on its dynamic behavior. 

Numerical experiment is conducted with the nominal values of parameters of the model involved in 

equations (3), (4) and (5), obtained from [5] and listed in Table 2. The numerical integration of the differential 
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equations (4) and (5) within the time interval t
 


 
[0,

 
tf ] is done by using the MATLAB-program ode113 set with 

relative accuracy of 10
–6

 and absolute accuracy of 10
–8

. 

 

Table 2 Prototype parameters obtained from [5] and used for the numerical experiment 

Designations Values Units Designations Values Units 

l0 0.045 m h5 0.019 m 

l1 0.012 m  0.0125 m 

l2 0.040 m R 0.038 m 

l3 Cal-d by Eq.(1) m m1 1.500 kg 

s
0
  x

2
(0) 0.060 m m2 1.165 kg 

d1 0.200 m m3 0.120 kg 

d2 0.099 m m4 0.240 kg 

d3 d3 = l3 + 0.06   m m5 0.160 kg 

d4 0.050 m  40.19 rad/s 

h1 0.035 m K 2123 N/m 

h2 0.015 m B 6.215 Ns/m 

h3 0.014 m 0 0 rad 

h4 0.004 m tf 4 s 

 

Fig. 3 (a, b, c, d, e, f) illustrate the simulated kinematic characteristics of the robot, which include the 

displacements, velocities and accelerations of bodies 1, 2, 3 having masses m1, m2 и m3 respectively during their 

motions. The functions x1(t), v1(t) and a1(t) of the robot have periodic nature of fluctuation, which determine the 

robot’s non-even (vibrating) motion. 

The variation of accelerations a1(t), a2(t) and a3(t) is a specific feature of vibration driven robots (Fig. 

3c). This makes impossible to achieve uniform change of the acceleration a1(t). To attain maximum asymmetry 

of functions a3(t) and a1(t) it is possible only by using a program controlled propulsion mechanism as this is the 

case with the special class of wheeled robots known as Inerzoids, developed and studied by [9].   

It is noticed that in Fig, 3d the horizontal forces P1 and P3 acting on the wheels bearings are changing in 

phase, whilst the vertical reactions P2 and P4 are varying out of phase Fig. 3 e). It is also seen that the loads on 

the rear wheels are larger than that of the front ones (Fig. 3 d, e). Likewise with an accuracy of a constant, the 

components of friction forces of the ground at points D and E of the wheels 4 and 5 are also found variable.  

Fig. 3(f) shows the variations of the coefficients of friction 
1
 = |

 
T1(t)/N1(t)

 
| and 

2
 = |T2(t)/N2(t)

 
| as 

functions of time. The values of these coefficients are considerably lower than the real coefficient of static 

friction known to be within the range 
0
  [0.35, 0.75]. The latter data are experimentally determined by using 

the prototype robot tested on planes of different materials and surface roughness [7]. Therefore pure rolling of 

the robot wheels without sliding during the pulsing forward motion of the robot is guaranteed. 

 
 

 

(c)                                                                       (d) 

(a)                                                                    (b) 
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The combined effect of any two parameters of the dynamic model on the mean velocity V1 of the 

robot varying within the intervals 
0

 


 
[0, 360], s0

 


 
[0,

 
0.1] m, 

 


 
[30,

 
80]

  
rad/s, b

  
[5,

 
25]

  
Ns/m, k

  
[1000, 

4000]
  
N/m can be seen in Figs. 4 (a, b, c, d, e, f, g, j). 

Fig. 4(a) confirms the need for an appropriate selection of the values of parameters  and k for 

effective performance of the propulsion mechanism (one-degree-of-freedom oscillating system) within a close 

proximity of the main resonance. To achieve a fast forward motion of the robot the resonance frequency of the 

propulsion mechanism should be in the ascending branch of the resonance graph closed to the main resonance. 

From Figs. 4(b, c, d, e) we notice that the parameter s0 - the initial deformation of the equivalent spring 

has limited effect on the increase of the mean velocity of the robot. 

Figs 4(b, f, g, j) illustrate the specific feature of vibration propulsion of the robot that the mean velocity 

V1 is very sensitive to the change of initial phase angle of rotating unbalanced masses 
0
. It is for this reason at 

the beginning of motion of the robot the value of the starting phase angle must be close to the most-suitable 

value of 
0 
= 0. 

The non-linear character of variation of the function V1 reveals the potential opportunity for 

increasing the mean velocity of the robot by reducing the dissipation of energy in the propulsion mechanism. 

This can be clearly observed in Figs. 4(h, i, j) where the simulated values of the damping parameter b are small. 

 

(a) (b) 

 

 

(c)                                                                          (d) 

   (e)                                                                         (f) 

Figs. 3(a, b, c, d, e, f) simulated kinematic and dynamic parameters as a function of time 
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 (e) (f) 

 

 

 (g) (h) 

 

 

 (i) (j) 

Figs. 4 (a, b, c, d, e, f, g, h, i, j) show the variation of mean velocity V1 as a function of two parameters 

 

The criterion accounting for the dynamic intensity 
 
K

  of robot components (9) as a function of 

parameters ω and k is illustrated in Fig. 5. It is seen that it changes very rapidly with variation of these 

parameters because they govern the resonance frequency. The larger the stiffness - k of the equivalent spring 

and the higher the resonance frequency of the propulsion mechanism the greater the dynamic intensity 
 
K. 

Therefore higher dynamic loads are generated in the system and mostly in the one-way bearings contributing to 

their quick wear and damage. To avoid that problem apparently the factor 
 
K has be reduced. 



Dynamics of a Vibration-Driven one-Way Moving Wheeled Robot 

DOI: 10.9790/1684-1303051422                                        www.iosrjournals.org                                      21 | Page 

 

 

Analyzing precisely Fig. 5 it may be concluded that a low frequency resonance creates smaller value of 


 
K

  hence lower dynamic loading conditions will be generated in mechanical components. Vice versa when a 

high frequency resonance is set in the propulsion mechanism, mostly between 45-65 Hz, then the peaks of load 

intensity are getting very high and the possibility of mechanical failure due to overloading rapidly increases. The 

highest peak of the load intensity 
 
K 
 appears at frequencies of 50-55 Hz. This is mainly due to the bigger 

inertia forces inducing surface and bending fatigue in the components resulting into intensive wear. It is for this 

reason a low frequency resonance setup in the propulsion mechanism is recommended. This will generate high 

resonance amplitudes producing an increased mean velocity leading to reduced accelerations. Therefor low 

dynamic loads will provide conditions for an increased durability of the propulsion system of the robot.  

It is also observed in Fig. 5 that at very high resonance frequencies, above 65 Hz, within the variation 

of the system parameters, the load intensity drops rapidly owing to the shorter duration of load impulses. 

Although having high picks these impulses will cause less damage because of the shorter duration of time they 

act on the components and hence lower wear could be expected in the propulsion system. 

IV. Conclusions And Recommendations 

The conducted numerical experiment with the dynamic model of the wheeled robot reveals high 

sensitivity of the mean velocity of motion with respect to the initial pretension so of the equivalent spring, to the 

initial value of the phase angle ϕo of the periodic rotation motion of unbalanced masses and to the dissipating of 

energy in the propulsion mechanism. The passive action of the wheels, since they a not subjected to driving 

torques, ensures pure rolling without sliding over surfaces of different roughness and load carrying abilities. The 

resonance regime of propulsion appears to be promising approach to achieve a reasonable velocity of motion. 

On the other hand if the system operates at frequencies (45-65 Hz) it will be subjected to strong dynamic loads 

and therefore an increased probabilities of fatigue failure of the one-way bearings, the bearings of the contra-

rotating masses, the motor bearings as well as the linear bearings guiding the propulsion mechanism should be 

expected. It was found that low frequency resonance regimes of propulsion cause low dynamic intensity and 

therefore lesser dynamic loads on the propulsion system. It is for this reason these are preferred as compared to 

the high resonance settings since they reduce the strength of components and the robot durability.  

To prove the theoretical predictions it is recommended conducting durability tests with the prototype 

robot at different resonance frequencies. Then the endurance limit of the propulsion components and the damage 

caused should be assessed after certain number of oscillation cycles, or number of revolutions of the contra-

rotating masses to find out how the experimental results match the theoretical predictions. Apparently this 

should be another study to be conducted in determining the life expectancy of the propulsion system. Obviously 

the live of the propulsion mechanism and that of the one-way bearings will govern the robot durability since 

these are the main propulsion elements driving the robot in motion. 

In conclusion it is recommended that the robot design has to be further improved in order to achieve 

reversible motion. This would eventually require installing the one-way bearings out of the wheel’s hubs and 

activate them for forward and backward motion separately in a particular manner. That modification would 

increase ultimately the possible applications of the robot including: In pipe inspection of welded pipes for gas, 

water and crude oil transportation where the quality of welding is of great importance; Examining underground 

tunnels and horizontal shafts in the mining industry; Measuring chemical and radiation contaminations in 

Fig. 5 Variation of dynamic intensity 
 
K

  as a function of ω and k 
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chemical and nuclear plants; Observing the underground animal habitats in detecting living creatures; For 

military applications in detecting land mines, unexploded shells, rockets, ammunitions; Also it may be used in 

the aviation industry for inspecting unreachable spaces where an important equipment need to be checked, etc. 
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