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Abstract: This work considered the height to span ratio (h/L) ratios that would give the most economical
design for portal frames under different static loads. The equations for minimum depth for each section of the
portal frame were first developed. These were used to formulate the equation for the volume of the frame. The
volume of the frame was taken to be proportional to the cost of the portal frame. The usefulness or benefit of the
frame was computed as the ratio of the frame’s cross-sectional area to its perimeter. The economical height to
span ratio (h/L) for any kind of load were the ratios that gave the least cost/benefit value. These values were
found to depend on the ratio of the load to the grade of portal frame material w/o and the thickness b of the
portal frame.
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I.  Introduction

A structure is a system of connected components used to support a load [1]. Portal frames consist of
vertical members called columns and a top member which may be horizontal, curved or pitched with monolithic
joints at the junction of columns [2]. It is estimated that around 50% of the hot-rolled constructional steel used
in the UK is fabricated into single-storey buildings [3]. Portal frames are mostly used in single storey industrial
structures. BS 5950 Part 1[4] allows for a linear elastic analysis or a plastic analysis of portal frames. The elastic
analysis produces heavier structures which are however stable with little need for stability bracing [5]. Under a
plastic analysis the aim is for a hinge to be formed at the point where the highest moment occurs. Failure is
deemed to have taken place when the plastic hinges form a mechanism [6, 7]. In the analysis and design of
portal frames the engineer normally uses his experience in determining the member sizes. Work on an efficient
method for selecting member sizes and rise/span (h/L) ratio was done by John Righiniotis [5], but this was based
on a plastic analysis for steel structures and was not load specific. This work is based on an elastic analysis and
it was tailored to meet the requirements for each design load characteristics. The aim of this work is to provide
rise/span ratios that would give the lowest cost/benefit ratios for frames under different static loads.

Il.  Methods

Four portal frames (frame 1 — frame 4) under different static loads were selected. The internal stresses
generated by external static loads were calculated using formulae obtained from design books. The maximum
stresses (bending moment and axial force) on each element of the portal frame were used in calculating the
minimum depth for each element. With these depths and an assumed thickness b, the volume of each element
was calculated and summed up to give the volume of the frame. The cost of the frame was assumed to be
directly proportional to the volume of the frame. Hence a cost coefficient Cc which is a ratio of the actual cost
of the frame to the product of the unit cost (cost per unit volume) and the thickness b was calculated. This
became a measure of the cost of the frame for the purpose of this work. The usefulness or benefit B of the frame
was calculated as the ratio of the cross-sectional area to the perimeter of the frame. This is a measure of spread
of the section with a square giving the maximum value. The ratio of the cost coefficient to the benefit of the
frame Cc/B was plotted against the different values of height to span (h/L) ratios and the values of h/L
corresponding to minimum Cc/B obtained. These were done for different values of the ratio of load to grade of
frame material w/c. The value of frame thickness was kept constant at b = 0.3m.

I1l.  Calculation
From strength of materials, stress ¢ at a section of a loaded structural member is given by
M N
[8, 9]

Where M is the bending moment at the section, N is the axial force in the member, A is the cross-sectional area
of the member and Z is the section modulus of the cross-section. For rectangular sections
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where b and d are the breadth and depth of the sections respectively.
By substituting equation (2) into equation (1) we have

M N
Equation (3) is an expression of the maximum and minimum stress at a section of a loaded rectangular section.
By assuming that the stress ¢ is the maximum stress that can be resisted by the material of the structure (i.e. the
grade of the material), the depth d of the section can be expressed in terms of the stress o, bending moment M
and axial force N using the almighty formula as

2
d = NH/N"+24Mbo WT . . . _ . _ ()

d=m@) w0

Since the stress ¢ is the grade of the material, M the bending moment at the section, N the axial force at the
section, d is therefore the minimum depth of section that can overcome these internal stresses. When d is
expressed in the form of equation (4a) it would be seen that d depends on the ratio of the internal stress M and N
to the grade of the material. But under an elastic analysis of structures, the internal stresses are proportional to
the load w. hence d is dependent on the ratio of the load w to the grade of material (w/c).

For portal frames consisting of two vertical columns and a horizontal beam, equation (4) can be expressed as

Ni+ |N2+24M;bo
d=—"7-— . . . . (5)

szf
i=1,23 iisthe element number

The cost of a portal frame is proportional to its volume. For a portal frame made up of prismatic members the
cost can be expressed as

cost =KY3 LA .. . ... (6)

where L; is the length of the eIement i, A is the cross-sectional area of the element i and K is a constant of
proportionality equivalent to the cost of a unit volume of the material of the portal frame.

For portal frames made up of rectangular elements of constant thickness b equation (6) reduces to
C.=X3,Ld;. . . : (M

where Cc is a cost coefficient equal to cost/Kb

Equation (7) was used to calculate the cost coefficient of a portal frame as the sum of the cost coefficient of the
individual elements of the portal frame.

A portal frame is useful when internally it is roomy i.e. it has space to permit its use for different purposes. To
satisfy this requirement the portal frame has to be less compact.
The degree of compactness of a solid can be expressed as the ratio of its surface area to its volume.

Compactness = % (8)
But since we are treating the portal frame as a 2D structure, it has to be rewritten as
Perimeter

Compactness = e .(9)

The less compact the frame is the more benefrcral it Would be for range of uses, hence

Benefit o« _Area (10)
Perimeter ’ ' ’

By keeping the constant of proportronal as unity

Benefit = 2D (11)

Where h is the height of the portal frame, L is the width or span of the portal frame.

IV.  Results and Discussion
The equations for the determination of the internal moments M and N of a loaded portal frame is
dependent on the ratio of the second moment of area of the beam section I, to the second moment of area of the
column section 1[5, 9]. If we designate this as m then
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_ L _d}
=LTa . (12)

where d; is the depth of the column member while d, is the depth of the horizontal beam member.

(The frame thickness b is the same for the beam and the column)

While m can be calculated from equation (12) using equation (5) to obtain the required d, m must first
be known before equation (5) can be evaluated. There is therefore need to estimate a suitable value of m that
will produce a set of internal stress M and N which on substitution into equation (5) will yield the same value of
m. For Frame 1 (a portal frame with a uniformly distributed vertical load w) a graph of the estimated m, m,
against m, plotted on the same graph with a graph of the calculated m, m, against m, is shown in Figure 1. The
consensus value of m which is the value at the point where line m, intersects line m is the value of m that can
be used to evaluate m. These were evaluated for different values of the ratio of height to length (h/L) of the
portal frame and presented in Table 1. For values of w/c > 0.75 the two lines ( me and mc) do not meet but can
be close at some values of m as shown in Figure 2. For the cases where m, and m, do not intersect there is no
sizing of the portal frame that would result in each member of the frame being stress optimally at the same time.

By using the consensus values of m and plotting a graph of the cost coefficient per unit benefit (Cc/B)
against h/L for different values of w/c, we obtain cost-benefit curves with minima at certain values of h/L, these
minima were obtained at the highest values of h/L that has got a consensus m. These curves for certain values of
w/c are shown in Figure 3. A detailed results of the values of h/L, m, d; and d, corresponding to minimum Cc/B
is given in Table 2.

The analysis was carried out on Frame 2 ( a portal frame with a uniformly distributed horizontal load
w), but unlike in Frame 1 the estimated m, me and the calculated m, mc only intersect at m = 0 for all values of
w/c and h/L. This is shown in Figure 4. The difference between the values of m, and m. increased at higher
values of m, hence lower values of m are preferable. A value of m = 0.25 was adopted. A graph of the cost
coefficient per unit benefit (Cc/B) against h/L for different values of w/c is presented in Figure 5. The values of
h/L, di, d, and d; are presented in Table 2. Since the loading and internal stress distribution is not symmetrical
the values of d; and d5 obtained from equation (5) are different.

For frame 3 (a portal frame with a vertical concentrated load P at the centre) just like in frame 1 there is
a consensus value of m only for limited values of h/L for each value of P/c. For P/c = 0.001, m exist only for
h/L= 0.1 — 0.35. For values of h/L > 0.35 graphs similar to that presented in Figure 2 are obtained. This implies
that for values of h/L > 0.35 there is no proportioning of the members of frame 3 that would result in each
member being stressed optimally. At a value of m = 5.3, the difference between me and mc is a minimum. By
adopting m = 5.3 the graph of Cc/B against h/L is plotted and presented in Figure 6. From the graph it would be
seen that the cost coefficient per benefit decreased progressively with an increase in h/L. Hence the least cost is
obtained by the smallest possible value of h/L.

For frame 4 (a portal frame with a concentrated horizontal load) there is no consensus value of m for all
the possible values of P/ and h/L. The graph of the estimated m, m, against m, plotted on the same graph with a
graph of the calculated m, m. against m, is similar to that obtained in Figure 4. The lines m, and m; only
intersect at m = 0 but there difference increased at higher values of m.

Just like in Frame 2 a value of m = 0.25 was adopted and the graph of cost coefficient per unit benefit
against h/L produced is presented in Figure 7. The values of h/L, d1 and d2 corresponding to a minimum Cc/B
at different values of P/c are presented in Table 2.

m

V.  Conclusion

As seen in the discussion above, the ratio of load to grade of frame material (material of the portal
frame) and the height to width ratio (h/L) of a portal frame affect the cost of the frame. For portal frames
supporting mostly a uniformly distributed vertical load (frame 1) the economical h/L ratio for various w/c ratio
can be obtained from Table 2. For frames supporting mostly a horizontal uniformly distributed load (frame 2)
the ratio h/L = 0.35 proved to be the most economical for values of the ratio w/c ranging from 0.001 to 0.03. For
values of w/c above 0.03, values of h/L = 0.4 should be adopted.

Frames designed primarily to support a vertical concentrated load (frame 3) should be assigned the
maximum possible value of h/L as the higher the value of h/L the lower the frame’s cost. Finally frames that
support most a horizontal concentrated force should be designed with a h/L ratio of 0.45 as this would give the
most economic design.
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Figure 1: Graph of m, and m; against me for Frame 1
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Figure 1: Graph of m, and m. against me for h/L > 0.75 in Frame 1
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Figure 3: Graph of C¢/B against h/L for Frame 1
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Figure 5: Graph of C¢/B against h/L for Frame 2
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Figure 7: Graph of C/B against h/L for Frame 4

Table 1: Values of Consensus m for different values of h/L

h/L m d; d;

0.20 0.4430 0.8158 0.6216
0.25 0.4550 0.6489 0.4989
0.30 0.4720 0.5373 0.4183
0.35 0.4950 0.4572 0.3616
0.40 0.5220 0.3969 0.3195
0.45 0.5560 0.3496 0.2874
0.50 0.5960 0.3114 0.2621
0.55 0.6480 0.2797 0.2420
0.60 0.7140 0.2526 0.2258
0.65 0.8050 0.2289 0.2129
0.70 0.9420 0.2071 0.2030
0.75 1.2120 0.1850 0.1973
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Table 2: Values of h/L, m, d; and d, corresponding to minimum C./B for different values of w/c

FRAME 1 wiz  h/L m d, d,
D002 075 1063 02604 02740
0003 080 1311 02991 03274
0004 080 11670 03542 03729
0005 080 1079 04020 04132
0006 085 1408 03965 04444
w 0007 085 1253 04390 04732
0008 085 1158 04773 035012
8l J’ l’ J’ J' J’ J' l o oF 0009 085 1080 05131 05279
2 Az 0010 090 1471 04837 05300
Al Ay 0011 090 1310 05198 05687
0012 090 1212 05520 05885
ly Iy h 0013 000 1140 05822 06082
0014 000 1084 06108 06275
A 5 0015 095 1461 03668 06432
* 0016 095 1322 03979 06562
’@ L ’Mf 0017 0095 123 06259  0.6706
= A 0018 005 1161 06521 06853
0019 095 1107 06760  0.7002
0020 100 1554 06184 07165
0022 100 1284 06756 07342
0024 100 1150 0725 07560
0026 105 1515 06801 07811
0028 105 1284 07311 07946
FRAME 2 wiz  h/L d, d, d,
0001 035 03010 0100 02262
0002 035 04258 01421 03200
. . 0004 035 06023 02025 04526
ME la Ag c 0006 035 07379 02495 035545
. 0008 035 08521 02805  0.6404
wi | Ag Ay 0010 035 00520 03250 0.7162
* |, | h 0015 035 11674 04017 08775
> 0020 035 13483 04674 10136
> 0025 035 15078 05261 11336
ol 2 D | 0030 035 16521 05799 12422
AT L A 0040 040 19007 07050 14254
4 + 0050 040 21259 07955 15943
0060 040 23297 0873 17476
0080 040 26919 10205 20197
010 040 30114 11660 22500
FRAME 3 wiz  h/L d, d, d.
=]
B Il Az C ]
Ay Ay Adopt the highest valus of h'L possible for all
Iy Iy h values of wiz
Liz
At
A 3]
AT ) g
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FRAME 4 wiz  h/L 4, d, d,
001 045 05667 02024 03667
002 045 08023 04185 08023

. 003 045 09334 05174 09834
> — c * 004 045 11364 06021 11364

B 2 005 045 12713 06778 12713
006 045 13934 07474 13934

A ) 007 045 1505 08117 15059

| Ay 008 045 16106 08724 16106

: . 009 045 17091 09300 17091

A 5 010 045 18024 09850 18024
pn L Ju 015 045 22116 12316 22116
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