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Abstract: This paper derives the equations that describe the interaction forcesbetween two non-identical 
cylinders spinningaround their stationary and parallel axes in a fluid that isassumed to be in-viscous, steady, in-

vortical, and in-compressible. The paper starts by deriving the velocity field from Laplace equation,governing 

this problem,and the system boundary conditions. It then determines the pressure field from the velocity field 

using Bernoulli equation. Finally, the paper integrates the pressure around both cylinder-surface to find the 

force acting on their axes.All equations and derivationsprovided in this paper are exact solutions. No numerical 

analysesor approximations are used.The paper finds that such cylinders repel or attract each other in inverse 

relation with separation between their axes, according to similar or opposite direction of rotation, respectively. 
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I. Introduction 
Determining the force acting on an objectdue to its existence in a fluid is an important topic, and has 

several important applications. One of these applications is evaluating the lift force acting on an aeroplane wing 

due to the flow of the air. The solution to such a problem might be analytical or numerical, depending upon the 

complexity of the system and the required level of accuracy of the solution. Cylindrical Objects in fluid-flows 

constitute one category of such problems and have vast applications. 

According to the literature reviewed, several such systems have already been studied both numerically 

and analytically,while other systems have attracted no attention. An example ofsuch studiedsystems[1]is the lift 

force acting on a cylinder rollingin aflow. Another example[2] is the interaction forces between two concentric 

cylinders with fluid internal and/or external to them. A third example[3]is the interaction forces between two 

cylinders rotating around two parallel floating axes.A fourth example [4]is the interaction forces among two 

identical cylinders rotating in an ideal fluid around their fixed and parallel axes.No study to the knowledge of 

both authors has been done on the interaction forceswhen the two cylinders are non-identical. 

This paper is dedicated to investigate such a system. For simplicity, the cylinders are assumed infinitely 

long, so asto have a two-dimensional problem in 𝑥𝑦-plane, where rotational axes are parallel to the ignored 𝑧-

axis. 

 

II. Problem Statement 
Fig.1 shows an example of the system targeted by this paper. It depictstwo non-identical circles (for the 

two non-identical cylinders)of radii𝑅𝐴&𝑅𝐵 . The distance between the two centres (for the two axes) is:2𝑎, 

where: 2𝑎 > 𝑅𝐴 + 𝑅𝐵 . 

 
Fig.1: Top view of the system targeted by this paper 
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Bothcircles (cylinders)are rotating around their centres (axes) with fixed angular velocities,𝜔𝐴&𝜔𝐵 (for 

Cylinder-A and Cylinder-B, respectively); in a fluid that is in-viscous, steady, in-vortical, and in-compressible. 

The aim of the paper is to derive the exact equations describing the forcesboth cylindersexert on their fixed axes 

after the entire system reached steady state. 

The next section uses the Laplace equation[5]governing such problems, to find the velocity field of the 

fluid, satisfying its boundary conditions, which are: 

1. the velocity of the fluid at circle-A resemblingthe surface of Cylinder-A is tangential to it, with a magnitude 

of: 𝜔𝐴𝑅𝐴; 

2. the velocity of the fluid at circle-B resemblingthe surface of Cylinder-Bis tangential to it, with a magnitude 

of: 𝜔𝐵𝑅𝐵 ; 

3. the velocity of the fluid at infinity is zero. 

 

III. Fluid Velocity 
As the governing Laplace equation is linear, super-position can be applied to simplify the solution. 

Considering Cylinder-A alone,the steady-state fluid-velocity vector: 

 

𝑉𝐴 𝑥, 𝑦 =  𝑉𝐴𝑥  𝑥, 𝑦 , 𝑉𝐴𝑦  𝑥, 𝑦  ,(1) 

 

isknown [6] to be as shown in Fig.2, where its two components are givenby: 

 

𝑉𝐴𝑥  𝑥, 𝑦 =
−𝜔𝐴𝑅𝐴

2𝑦

𝑥 2+𝑦2
, and:(2) 

 

𝑉𝐴𝑦  𝑥, 𝑦 =
𝜔𝐴𝑅𝐴

2𝑥

𝑥 2+𝑦2 , provided: 𝑥2 + 𝑦2 > 𝑅𝐴
2.(3) 

These velocity equations satisfythe boundary conditions mentioned above. Furthermore, the velocity of 

the fluid due to the spinning of Cylinder-Ais seen to be directly proportional to 𝜔𝐴 , and inversely proportional 

tothe distance from the cylinder axis;i.e. the further from cylinder axis, the slower the fluid is. 

Considering Cylinder-B alone, the steady-state fluid-velocity vector: 

 

𝑉𝐵 𝑥, 𝑦 =  𝑉𝐵𝑥  𝑥, 𝑦 , 𝑉𝐵𝑦  𝑥, 𝑦  ,(4) 

 

can be obtained from Eqs.2&3 (with a positive shift of: 2𝑎, along the 𝑥-axis) as: 

𝑉𝐵𝑥  𝑥, 𝑦 =
−𝜔𝐵𝑅𝐵

2𝑦

 𝑥−2𝑎 2+𝑦2,and:(5) 

 

𝑉𝐵𝑦  𝑥, 𝑦 =
𝜔𝐵𝑅𝐵

2 𝑥−2𝑎 

 𝑥−2𝑎 2+𝑦2 , provided:  (𝑥 − 2𝑎)2 + 𝑦2 > 𝑅𝐵
2.(6) 

 

 
Fig.2: The velocity field of the ideal fluid due to the spinning of Cylinder-A 
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 Hence, applying super-position;the fluid velocity for the system of both cylinders shown in Fig.1, can 

be found using Eqs.1-6 as: 

 

𝑉 𝑥, 𝑦 = 𝑉𝐴 𝑥, 𝑦 + 𝑉𝐵 𝑥, 𝑦 =  𝑉𝑥 𝑥, 𝑦 , 𝑉𝑦 𝑥, 𝑦  ,where:(7) 

 

𝑉𝑥  𝑥, 𝑦 = 𝑉𝐴𝑥  𝑥, 𝑦 + 𝑉𝐵𝑥  𝑥, 𝑦 =
−𝜔𝐴𝑅𝐴

2𝑦

𝑥 2+𝑦2 −
𝜔𝐵𝑅𝐵

2𝑦

 𝑥−2𝑎 2+𝑦2, and:(8) 

 

𝑉𝑦  𝑥, 𝑦 = 𝑉𝐴𝑦  𝑥, 𝑦 + 𝑉𝐵𝑦  𝑥, 𝑦 =
𝜔𝐴𝑅𝐴

2𝑥

𝑥 2+𝑦2 +
𝜔𝐵𝑅𝐵

2 𝑥−2𝑎 

 𝑥−2𝑎 2+𝑦2 ,provided:                                            (9) 

 

𝑥2 + 𝑦2 > 𝑅𝐴
2, and: (𝑥 − 2𝑎)2 + 𝑦2 > 𝑅𝐵

2; i.e. where fluid exists outside both cylinders. 
 

A case of the above fluid-velocity is plotted as shown in Fig.3 below.The next section uses these fluid-

velocity equations and Bernoulli equation to obtain the pressure field. 

 

 
Fig.3: The velocity field of the ideal fluid due to the spinning of Cylinder-A and Cylinder-B in the same 

direction around their stationary and parallel axes 

 

IV. Fluid Pressure 
In this section, the pressure at the boundary of both cylinders is derived, in readiness to find the forces 

exerted on both axes. Ignoring the effect of the gravitational force in the fluid, Bernoulli equation relates the 

pressure magnitude, 𝑃 𝑥, 𝑦 , to the velocity field, 𝑉 𝑥, 𝑦 , as: 

 

𝑃(𝑥, 𝑦) +
1

2
𝜌 𝑉(𝑥, 𝑦) 2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where: 𝜌 is the density of the fluid. (10) 

 

The above equation can be read as:the summation of both static and dynamic pressures is constant 

everywhere in the fluid. In this respect, it is the square of the magnitude of the fluid velocity, |𝑉 𝑥, 𝑦 |², is what 

really matters for the fluid pressure. 

Applying Eq.10 at Cylinder-A border & infinity (where velocity diminishes), then: 

 

𝑃𝐴(𝑥, 𝑦) +
𝜌

2
  𝑉(𝑥, 𝑦) @ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 −𝐴 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  

2
= 𝑃∞, where: 

 

𝑃𝐴(𝑥, 𝑦): is the pressure at Cylinder-A boundary, and: 

𝑃∞:  is the fluid pressure at ∞. Hence: 
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𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
  𝑉(𝑥, 𝑦) @ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 −𝐴 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  

2
.Using Eq.7, then: 

 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
  𝑉𝑥

2 𝑥, 𝑦 + 𝑉𝑦
2 𝑥, 𝑦   

@ 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 −𝐴 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
. 

 

This is substituted using Eqs.8&9 to: 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
  

𝜔𝐴𝑅𝐴
2𝑦

𝑥 2+𝑦2 +
𝜔𝐵𝑅𝐵

2𝑦

 𝑥−2𝑎 2+𝑦2 
2

+  
𝜔𝐴𝑅𝐴

2𝑥

𝑥2+𝑦2 +
𝜔𝐵𝑅𝐵

2 𝑥−2𝑎 

 𝑥−2𝑎 2+𝑦2  
2

 . 

 

This is reduced with:  𝑥2 + 𝑦2 = 𝑅𝐴
2 to: 

 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
  𝜔𝐴𝑦 +

𝜔𝐵𝑅𝐵
2𝑦

𝑅𝐴
2+4𝑎²−4𝑎𝑥

 
2

+  𝜔𝐴𝑥 +
𝜔𝐵𝑅𝐵

2 𝑥−2𝑎 

𝑅𝐴
2+4𝑎²−4𝑎𝑥

 
2

 , which is expanded to: 

 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
 𝜔𝐴

2𝑅𝐴
2 +

𝜔𝐵
2𝑅𝐵

4 𝑅𝐴
2+4𝑎²−4𝑎𝑥 

 𝑅𝐴
2+4𝑎²−4𝑎𝑥 

2 +
2𝜔𝐴𝜔𝐵𝑅𝐴

2𝑅𝐵
2−4𝑎𝜔𝐴𝜔𝐵𝑅𝐵

2𝑥

𝑅𝐴
2+4𝑎²−4𝑎𝑥

  , giving: 

 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
 𝜔𝐴

2𝑅𝐴
2 +

𝜔𝐵
2𝑅𝐵

4

𝑅𝐴
2+4𝑎2−4𝑎𝑥

+
2𝜔𝐴𝜔𝐵𝑅𝐴

2𝑅𝐵
2−4𝑎𝜔𝐴𝜔𝐵𝑅𝐵

2𝑥

𝑅𝐴
2+4𝑎2−4𝑎𝑥

 . This is reduced to: 

 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌

2
 𝜔𝐴

2𝑅𝐴
2 +

𝜔𝐵𝑅𝐵
2(2𝜔𝐴𝑅𝐴

2+𝜔𝐵𝑅𝐵
2−4𝑎𝜔𝐴𝑥)

𝑅𝐴
2+4𝑎²−4𝑎𝑥

 , then to: 

 

𝑃𝐴 𝑥, 𝑦 = 𝑃∞ −
𝜌𝜔𝐴

2𝑅𝐴
2

2
 1 +

𝜔𝐵𝑅𝐵
2(2𝜔𝐴𝑅𝐴

2+𝜔𝐵𝑅𝐵
2−4𝑎𝜔𝐴𝑥)

𝜔𝐴
2𝑅𝐴

2(𝑅𝐴
2+4𝑎2−4𝑎𝑥 )

  , where: 𝑥 ∈ Circle-𝐴. 

 

Converting to polar coordinates, with: 𝑥 = 𝑅𝐴 cos 𝜃,  then: 

 

𝑃𝐴 𝑥, 𝑦 = 𝑃𝐴 𝜃 = 𝑃∞ −
𝜌𝜔𝐴

2𝑅𝐴
2

2
 1 +

𝜔𝐵𝑅𝐵
2(2𝜔𝐴𝑅𝐴

2+𝜔𝐵𝑅𝐵
2−4𝑎𝜔𝐴𝑅𝐴𝑐𝑜𝑠𝜃 )

𝜔𝐴
2𝑅𝐴

2(𝑅𝐴
2+4𝑎2−4𝑎𝑅𝐴𝑐𝑜𝑠𝜃 )

 ,  𝜃 ∈  0,2𝜋 . (11) 

 

𝑃𝐴 𝜃 is seen to be symmetrical about the𝑥-axis. 

 

V. Force Acting On The Rotational Axis Of Cylinder-A 
The fluid pressure,𝑃𝐴 𝜃 ,expressed by Eq.11 is acting perpendicular to the surface of Cylinder-A as 

shown in Fig.4, and can be seen to cause infinitesimal force, 𝑑𝐹𝐴 𝜃 , in the same direction, given by: 

 

𝑑𝐹𝐴 𝜃 = 𝐿 ∙ 𝑅𝐴 ∙ 𝑃𝐴 𝜃 𝑑𝜃, where: 

 

𝐿: is the Length of either cylinder, which is assumed to be equal and infinitely long. 

 

 
Fig.4: Top view of Cylinder-A showing fluid pressure 

 

 

Decomposing: 𝑑𝐹𝐴 𝜃 into two components, and ignoring its y-component due to the symmetry of 

𝑃𝐴 𝜃  about the 𝑥-axis; then: 
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𝑑𝐹𝐴𝑥  𝜃 = −𝐿 ∙ 𝑅𝐴 ∙ 𝑃𝐴 𝜃 cos 𝜃 𝑑𝜃.(12) 

 

Integrating 𝑑𝐹𝐴𝑥  𝜃 around Circle-A (the surface of Cylinder-A) yields the force, 𝐹, exerted on the 

axis of rotation of Cylinder-A. Hence: 

 

𝐹 =  𝑑𝐹𝐴𝑥  𝜃 
2𝜋

0
.  This is expressed using Eqs.11&12, as: 

 

𝐹 = −𝐿 ∙ 𝑅𝐴   𝑃∞ −
𝜌𝜔𝐴

2𝑅𝐴
2

2
 1 +

𝜔𝐵𝑅𝐵
2(2𝜔𝐴𝑅𝐴

2+𝜔𝐵𝑅𝐵
2−4𝑎𝜔𝐴𝑅𝐴 𝑐𝑜𝑠𝜃 )

𝜔𝐴
2𝑅𝐴

2(𝑅𝐴
2+4𝑎2−4𝑎𝑅𝐴 𝑐𝑜𝑠𝜃 )

  cos 𝜃 𝑑𝜃
2𝜋

0
. 

 

The first two of the above three integrandswill integrate to zero, leaving 𝐹as: 

 

𝐹 = 𝜌𝜔𝐵𝐿 ∙ 𝑅𝐴𝑅𝐵
2𝐼 2 , where:(13) 

 

𝐼 =  
2𝜔𝐴𝑅𝐴

2+𝜔𝐵𝑅𝐵
2−4𝑎𝜔𝐴𝑅𝐴𝑐𝑜𝑠𝜃

𝑅𝐴
2+4𝑎2−4𝑎𝑅𝐴𝑐𝑜𝑠𝜃

∙ cos 𝜃 𝑑𝜃
2𝜋

0
. 

 

VI. Solving Its Integral 
 The integral, 𝐼, can be solved [7] by usingthe complex transformation: 

 

𝑧 = 𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃, where:  𝑖 =  −1, 𝑖2 = −1, 𝑑𝜃 =
𝑑𝑧

𝑖𝑧
, and: 

 

cos 𝜃 =
𝑧+

1
𝑧

2
=

𝑧2+1

2𝑧
; 

 

whereby it converts to an integral over the closed contour, 𝐶, of the unit circle:  𝑧 = 1, in the complex 𝑧-plane. 

Hence, removing𝜃, then: 

 

𝐼 =  
2𝜔𝐴𝑅𝐴

2+𝜔𝐵𝑅𝐵
2−4𝑎𝜔𝐴𝑅𝐴𝑐𝑜𝑠𝜃

𝑅𝐴
2+4𝑎2−4𝑎𝑅𝐴𝑐𝑜𝑠𝜃

∙ cos 𝜃 𝑑𝜃
2𝜋

0
=  

2𝜔𝐴𝑅𝐴
2+𝜔𝐵𝑅𝐵

2−4𝑎𝜔𝐴𝑅𝐴 
𝑧2+1

2𝑧
 

𝑅𝐴
2+4𝑎2−4𝑎𝑅𝐴 

𝑧2 +1
2𝑧

 
∙  

𝑧2+1

2𝑧
 ∙

𝑑𝑧

𝑖𝑧𝐶
. 

 

This is simplified to: 

 

𝐼 =
𝑖

2
 

(2𝜔𝐴𝑅𝐴
2+𝜔𝐵𝑅𝐵

2)𝑧−2𝑎𝜔𝐴𝑅𝐴  𝑧2+1 

𝑧2 2𝑎𝑅𝐴 𝑧2−(𝑅𝐴
2+4𝑎2)𝑧+2𝑎𝑅𝐴  

∙  𝑧2 + 1 𝑑𝑧
𝐶

,and can be factored to: 

 

𝐼 =
𝑖

4𝑎𝑅𝐴
 

(2𝜔𝐴𝑅𝐴
2+𝜔𝐵𝑅𝐵

2)𝑧−2𝑎𝜔𝐴𝑅𝐴  𝑧2+1 

𝑧2 𝑧−𝛼  𝑧−𝛽 
∙  𝑧2 + 1 𝑑𝑧

𝐶
,where: 𝛼 and: 𝛽 are the roots of: 

 

2𝑎𝑅𝐴𝑧2 −  𝑅𝐴
2 + 4𝑎2 𝑧 + 2𝑎𝑅𝐴 = 0, given by: 

 

𝛼 =
𝑅𝐴

2𝑎
,and:           

 (14) 

 

𝛽 =
2𝑎

𝑅𝐴
=

1

𝛼
.           

 (15) 

 

Noting that:2𝑎 > 𝑅𝐴 , then: 𝛼 < 1, and is inside 𝐶, while: 𝛽 > 1, and is outside 𝐶.Hence, 

the integrand in 𝐼 has three poles within 𝐶, two at the origin and one at 𝛼. 

Using Cauchy Theorem in complex integrals[7], 𝐼 is found as: 

 

𝐼 =
2𝜋𝑖 ∙𝑖

4𝑎𝑅𝐴
   

(2𝜔𝐴𝑅𝐴
2+𝜔𝐵𝑅𝐵

2)𝑧−2𝑎𝜔𝐴𝑅𝐴  𝑧2+1 

 𝑧−𝛼  𝑧−𝛽 
∙  𝑧2 + 1  

′

 
@𝑧=0

+   
(2𝜔𝐴𝑅𝐴

2+𝜔𝐵𝑅𝐵
2)𝑧−2𝑎𝜔𝐴𝑅𝐴  𝑧2+1 

𝑧2 𝑧−𝛽 
∙  𝑧2 +

1   
@𝑧=𝛼

 . 
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This gives: 

𝐼 =
−𝜋

2𝑎𝑅𝐴
 2𝜔𝐴𝑅𝐴

2 + 𝜔𝐵𝑅𝐵
2 − 2𝑎𝜔𝐴𝑅𝐴 𝛼 + 𝛽 +

 2𝜔𝐴𝑅𝐴
2+𝜔𝐵𝑅𝐵

2 𝛼−2𝑎𝜔𝐴𝑅𝐴  𝛼2+1 

𝛼2 𝛼−𝛽 
 𝛼2 + 1  . 

 

Removing𝛽using Eq.15, this becomes: 

 

𝐼 =
−𝜋

2𝑎𝑅𝐴
 2𝜔𝐴𝑅𝐴

2 + 𝜔𝐵𝑅𝐵
2 − 2𝑎𝜔𝐴𝑅𝐴  

𝛼2+1

𝛼
 +

 2𝜔𝐴𝑅𝐴
2+𝜔𝐵𝑅𝐵

2 𝛼−2𝑎𝜔𝐴𝑅𝐴  𝛼2+1 

𝛼 𝛼2−1 
 𝛼2 + 1  . 

 

Substituting for:𝛼using Eq.14, and simplifying gives:   

 

𝐼 =
−𝜋𝜔𝐴𝑅𝐴

𝑎
 1 −

𝜔𝐵𝑅𝐵
2

𝜔𝐴  4𝑎2−𝑅𝐴
2 

 . 

 

Hence, putting this, in Eq.13, and simplifying gives: 

 

𝐹 =
−𝜋𝜌𝐿𝜔𝐴𝜔𝐵𝑅𝐴

2𝑅𝐵
2

2𝑎
 1 −

𝜔𝐵𝑅𝐵
2

𝜔𝐴  4𝑎2−𝑅𝐴
2 

 , remembering that:2𝑎 > 𝑅𝐴 , hence: 4𝑎2 − 𝑅𝐴
2 > 0. (16) 

 

Defining the spin ratio, 𝑟, as: 

 

𝑟 =
𝜔𝐴

𝜔𝐵
;                   

(17) 

 

then the force,𝐹, will be zero (i.e. no attraction or repulsion) at a critical case, when: 

 

𝑟 = 𝑟𝑐 =
𝑅𝐵

2

 4𝑎2−𝑅𝐴
2 

.(18) 

 

This means that for any system of spacing (2𝑎) and sizes (𝑅𝐴&𝑅𝐵); it is possible to cancel the force, 𝐹, at𝑟 = 𝑟𝑐 . 

If 𝑟 > 𝑟𝑐 , 𝐹 will be negative, i.e. the cylinders repel each other. On the other hand, if 𝑟 < 𝑟𝑐 , 𝐹 will be positive, 

i.e. the cylinders attract each other. 

 

For a given system of sizes and spin ratio, Eq.16 shows that at far enough spacing; the force goes 

asymptotically to: 

 

𝐹 =
−𝜋𝜌𝐿𝜔𝐴𝜔𝐵𝑅𝐴

2𝑅𝐵
2

2𝑎
. 

 

This is a repulsive force with an inverse relationship with the separation between axes of rotation. 

 

VII. Effect Of Opposing Direction 
Eq.16 shows that the effect of sense of rotation does not yield a different relation. 𝜔𝐴  can have the 

same sense as 𝜔𝐵, or it can have different sense. 

 

VIII. Conclusion 

This paper derived the force acting on twonon-identical cylinders spinning atdifferent constantangular 

velocities around their stationary and parallel axes in anin-viscid, steady,in-vortical, and in-compressible 

fluid.The obtained equations showed that each cylinder axis,in such a system,experiences a repelling, attracting, 

or critically noforce.At far enough spacing, the magnitude of that force is inversely proportional to the 

separation between the two axes. It is also proportional to the density of the fluid, their radii, and the product of 

the angular velocities of the cylinders. 

 

Nomenclature: 

This section summarizes the symbols used in the paper in alphabetical order as follows: 

 

𝜌:  Density of the fluid 

𝜔:  Angular speed of spinning of either cylinder 

𝑎:  Half the distance between axes of cylinders 
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𝑑𝐹𝐴 𝜃 : Infinitesimal force acting on Cylinder-A 

𝑑𝐹𝐴𝑥  𝜃 : Component of:𝑑𝐹𝐴 𝜃 along the 𝑥-axis 

𝐹:  Interaction force acting on the axle of Cylinder-A 

𝐹1:  Value of: F when both cylinders are about to touch each other 

𝐹2:  Value of: F when both cylinders are spaced2𝑅 apart 

𝐹3:  Value of: F when both cylinders are spaced4𝑅 apart 

𝐹4:  Value of: F when both cylinders are spaced6𝑅 apart 

𝐹𝑝:  Peak value of: F 

𝐿:  Length of either cylinder 

𝑃(𝑥, 𝑦): Pressure magnitude of the fluid 

𝑃∞:  Pressure magnitude of the fluidat ∞ 

𝑃𝐴 𝑥, 𝑦 : Pressure magnitude of the fluidat Cylinder-A boundary in 𝑥y-coordinates 

𝑃𝐴(𝜃):  Pressure magnitude of the fluidat Cylinder-A boundary in 𝑟𝜃-coordinates 

R:  Radius of either cylinder 

𝑉 𝑥, 𝑦 : Velocity vector of the fluid due to the spinning of both cylinders 

𝑉𝑥  𝑥, 𝑦 : Component of:  𝑉 𝑥, 𝑦 along the 𝑥-axis 

𝑉𝑦  𝑥, 𝑦 : Component of:  𝑉 𝑥, 𝑦 along the 𝑦-axis 

𝑉𝐴 𝑥, 𝑦 : Velocity vector of the fluid due to the spinning of Cylinder-A 

𝑉𝐴𝑥  𝑥, 𝑦 : Component of:  𝑉𝐴 𝑥, 𝑦 along the 𝑥-axis 

𝑉𝐴𝑦  𝑥, 𝑦 : Component of:  𝑉𝐴 𝑥, 𝑦 along the 𝑦-axis 

𝑉𝐵 𝑥, 𝑦 : Velocity vector of the fluid due to the spinning of Cylinder-B 

𝑉𝐵𝑥  𝑥, 𝑦 : Component of:  𝑉𝐵 𝑥, 𝑦 along the 𝑥-axis 

𝑉𝐵𝑦  𝑥, 𝑦 : Component of:  𝑉𝐵 𝑥, 𝑦 along the 𝑦-axis 
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