Comparative Study of Different Geometry Flywheelby Analytical and Ansys

Samshette S.M.¹, Swami M.C.²

¹(Student of M.E.Mechanical Department, M.S.Bidve Engineering College Latur, Maharashtra, India.) ²(Mechanical Department, M.S.Bidve Engineering College Latur, Maharashtra, India.)

Abstract : Flywheel stores the energy when supply is greater than the requirement and release energy when requirement is greater than supply. In Present work initially we design different geometry of flywheel like solid, rim, section cut and six spoke flywheel keeping constant mass. Then we calculate various functional value of flywheel like kinetic energy, specific energy stress etc. for respective flywheel. From this comparative study we conclude six spoke flywheel store more kinetic energy then other flywheel. Lastly with the help of ANSYS we calculate Von-Mises Stress & total deformation of flywheel. From ANSYS we conclude all results are valid & permissible range.

Keywords : Flywheel Design, Stress, Kinetic Energy, Ansys.

I. Introduction

Flywheel is a rotating mechanical element which is store energy of rotational form[1] Flywheels used to achieve smooth operation of machine [2]. Flywheel stores the energy when supply is greater than the requirement and releases energy when requirement is greater than supply[3]. The stored kinetic energy relies on the mass moment of inertia and rotational speed [3]. The performance of a flywheel can be attributed to three factors, i.e., material strength, geometry (cross- section) and rotational speed [4]. Flywheels have become the subject of extensive research as power storage devices for uses in vehicles [4].Flywheel energy storage systems are considered to be an attractive alternative to electrochemical batteries due to higher stored energy density, higher life term, and deterministic state of charge and ecologically clean nature [4]. Flywheel is basically a rechargeable battery [4]. Present investigation deals with kinetic energy Storing capability of different geometry of flywheel, functional value and stress produced in respective flywheel with the help of analytical and ANSYS.

II. Design Of Different Geometry Flywheel

2.1. Design Of Solid Disk Flywheel

Table: 1 Calculation of various Functional values of solid disk flywheel					
Functional values	Formula	Calculation	Value		
Angular velocity (ω)	2×π×N/60 [6]	2×π×750 / 60	78.53 rad/sec		
Surface speed (v _s)	$\pi \times D \times N / 60$ [6]	π×0.500×750/ 60	19.63 m/s		
Energy stored in flywheel (E _k)	$\frac{1}{2} \times I_{\text{total}} \times \omega^2[6]$	$\frac{1}{2} \times 1.7594 \times 78.53^{2}$	5.402 KJ		
Specific energy(E_k,m)	$E_k/M_{total}[6]$	5.402/60	0.090 kJ/kg		
Energy Density (E_{k} , v)	$(E_{\rm k}/M_{\rm total}) \times \rho[6]$	0.090×7510	679.029 KJ/m ³		

Table:2	Calculation	for	Stress in	solid	disk	flywheel
---------	-------------	-----	-----------	-------	------	----------

Stress	Formula & Calculation	Value(Mpa)
Tangential	$\rho\omega^{2}\left(\frac{3+\upsilon}{8}\right) \left(R_{\rm ihu}^{2} + R_{\rm odisk}^{2} - \frac{1+3\upsilon}{3+\upsilon} \times R^{2} \text{mean}\right) [6]$	0.995
Stress(σ_t)	$7510 \times (78.53)^2 \left(\frac{+0.23}{8}\right) (0.025^2 + 0.250^2 - \frac{1+3.623}{3+0.23} \times 0.1375^2)$	
Radial	$\rho\omega^2\left(\frac{3+\nu}{8}\right)\left(R_{\rm ihub}^2+R_{\rm odisk}^2-\frac{{\rm Rihub}^2\times{\rm Rodisk}^2}{R^2}-R^2\right)[6]$	0.788
$Stress(\sigma_r)$	$7510 \times (78.53)^2 \left(\frac{3+0.23}{8}\right) (0.025^2 + 0.250^2 - 0.000625 \times 0.625 / 0.1375^21375^2)$	
Resultant	$\sqrt{\sigma_{t}^{2}} \sigma_{r}^{2} = \sqrt{0.995^{2}} + 0.788^{2} [6]$	1 296
Stress		1.270

2.2.Design Of Rim Flywheel

Various parameters of optimal solid disk flywheel are given as follows. Material used for solid disk flywheel Gray Cast Iron Outer diameter of rim ($D_{o rim}$) = 500 mm Outer diameter of hub ($D_{o hub}$) = 120 mm Width of plate (W_{plate}) =22mm Density (ρ) = 7510 kg/m³[5]Poisons ratio (υ) = 0.23[5] Moment of Inertia(M.I.) = 2.283 kg-m²[7]N = 750RPM[6] Mass of rim flywheel = 60Kg[7]

Functional values	Formula	Calculation	Value
Angular velocity (ω)	2×π×N/ 60[6]	2×π×750 / 60	78.53 rad/sec
Surface speed (v_s)	π×D×N / 60[6]	π×0.500×750/ 60	19.63 m/s
Energy stored in flywheel (E _k)	$\frac{1}{2} \times I_{\text{total}} \times \omega^2[6]$	$\frac{1}{2} \times 2.283 \times 78.53^2$	7.039 KJ
Specific energy(E_k ,m)	$E_k/M_{total}[6]$	7.039/ 60	0.1173 kJ/kg
Energy Density (E _k ,v)	$(E_k/M_{total}) \times \rho[6]$	0.1173×7510	880.92 KJ/m ³

Stress	Formula & Calculation	Value(Mpa)
Tangential Stress(σ_t)	$\rho\omega^{2}\left(\frac{3+\upsilon}{8}\right) \left(R_{ihub}^{2} + R_{odisk}^{2} - \frac{1+3\upsilon}{3+\upsilon} \times R^{2} \text{mean}\right) [6]$ $7510\times(78.53)^{2} \left(\frac{3+0.23}{8}\right) \left(0.22\sigma^{2} + 0.250^{2} - \frac{1+3\times0.23}{3+\upsilon.23} \times 0.235^{2}\right)$	1.533
Radial Stress(σ _r)	$\rho\omega^{2}\left(\frac{3+\upsilon}{8}\right) \left(R_{ihub}^{2} + R_{odisk}^{2} - \frac{Rihub 2 \times Rodisk 2}{R2} - R^{2}\right)[6]$ $7510 \times (78.53)^{2} \left(\frac{3+0.23}{8}\right) \left(0.220^{2} + 0.250^{2} - \frac{0.0484 \times 0.0625}{0.235 \times 0.235} \times 0.235^{2}\right)$	0.0168
Resultant Stress	$\sigma_{t}^{2} + \sigma_{r}^{2} = \sqrt{1.533^{2} + 0.168^{2}} [6]$	1.533

2.3.Design Of Section Cut Flywheel

Various parameters of optimal solid disk flywheel are given as follows.

Material used for solid disk flywheel Gray Cast Iron

Table:5Calculation of various Functional values of section cut flywheel

Functional values	Formula	Calculation	Value
Angular velocity (ω)	2×π×N/ 60 [6]	2×π×750 / 60	78.53 rad/sec
Surface speed (v_s)	π×D×N / 60 [6]	π×0.500×750/ 60	19.63 m/s
Energy stored in flywheel (E_k)	$\frac{1}{2} \times I_{\text{total}} \times \omega^2[6]$	$\frac{1}{2} \times 2.337 \times 78.53^2$	7.206 KJ
Specific energy(E_k,m)	E _k / M _{total} [6]	7.206/60	0.1201 kJ/kg
Energy Density (E_k ,v)	$(E_k/M_{total}) \times \rho[6]$	0.1201×7510	901.951 KJ/m ³

Table:6Calculation for Stress in section cut flywheel

Stress	Formula & Calculation	Value(Mpa)
Tangential Stress(σ_t)	ρVs^2 7510×(19.63) ²	2.893
Bending $Stress(\sigma_b)$	$\frac{\Pi^2 V s^2 D_{o \ rim} \rho / i^2 T_{rim}}{\Pi^2 x 19.63^2 x 0.500 x 7510 / 4^2 x 0.030}$	29.75
Total Stress	³ ⁄ ₄ σ _{t+} ¼σ _b ³ ⁄ ₄ x 2.893 ₊ ¼ x 29.75	9.60

2.4.Design Of Six Spoke Flywheel

Various parameters of optimal solid disk flywheel are given as follows. Material used for solid disk flywheel Gray Cast Iron Outer diameter of rim ($D_{o rim}$) = 500 mm Outer diameter of hub ($D_{o hub}$) = 130 mm Midth of hub (W_{hub}) =90mm Width of hub (W_{hub}) =90mm Density (ρ) = 7510 kg/m³[5]Poisons ratio (υ) = 0.23 [5] Thickness of rim (T_{rim}) =45mm N = 750RPM [6] Mass of optimized solid disk flywheel = 60Kg [7] Moment of Inertia(M.I.) of optimized solid disk flywheel = 2.603 kg-m²[7]

Table:7Calculation of various Functional values of six spoke flywheel

Functional values	Formula	Calculation	Value
Angular velocity (ω)	2×π×N/ 60 [6]	2×π×750 / 60	78.53 rad/sec
Surface speed (v_s)	π×D×N / 60 [6]	π×0.500×750/ 60	19.63 m/s
Energy stored in flywheel (E _k)	$\frac{1}{2} \times I_{\text{total}} \times \omega^2[6]$	$\frac{1}{2} \times 2.6038 \times 78.53^2$	8.026 KJ
Specific energy(E _k ,m)	E _k / M _{total} [6]	8.026/60	0.1337 kJ/kg
Energy Density (E_k ,v)	$(E_k/M_{total}) \times \rho[6]$	0.1337×7510	1004.087 KJ/m ³

Table:8Calculation for Stress in six spoke flywheel

Stress	Formula & Calculation	Value(Mpa)
Tangential	ρVs ²	
Stress(σ_t)	7510×(19.63) ²	2.893
Bending	$\Pi^2 V s^2 D_{o rim} \rho / i^2 T_{rim}$	
Stress(σ_r)	Π ² x19.63 ² x0.500x7510/6 ² x0.030	8.815
	$\frac{3}{4} \sigma_{t+1} \frac{1}{4} \sigma_{b}$	
Total Stress	³ ⁄ ₄ x 2.893 ₊ ¹ ⁄ ₄ x 8.815	4.373

III. Modelling Of Flywheel

Fig.1 Solid Disk Flywheel

Fig.3 Section Cut Flywheel

Fig.2 Rim Flywheel

IV. Analysis Of Flywheel Using Ansys

4.1. Analysis Of Soild Flywheel

Fig.5. EquiVon Mises In Solid Flywheel

4.1. Analysis Of Rim Flywheel

Fig.7. EquiVon Mises In rim Flywheel

Fig.9. EquiVon Mises In Section cut Flywheel

Fig.6.Deflection in Solid Flywheel

Fig.8. Deflection in rim Flywheel

Fig.10. Deflection in Section cut Flywheel

Fig11. EquiVon Mises In Six spoke Flywheel

Fig.12. Deflection in Six spoke Flywheel

V. Result And Discussion

The results obtained for the flywheel on the basis of their functional values and equivalent max. Vonmises stresses and total deformation available into the flywheel. From comparison it is found that energy stored into the flywheel is increasing from solid toSix spoke type flywheel. Equivalent max. Von- mises stresses and total deformation available into the flywheel goes on increasing from solid to spoke type flywheel but it is under permissible limit.

Table:9	Various	functional	value	introduced	in	different	flvwheel

Functional values	Solid Flywheel	Rim Flywheel	Section Cut Flywheel	Six spoke Flywheel
Moment of inertia(I) Kg-m ²	1.7594	2.283	2.337	2.603
Kinetic energy(ΔE) stored KJ	5.402	7.039	7.206	8.026
Spe. Energy KJ/kg	0.090	0.1173	0.1201	0.133
Spe. Density KJ/m ³	679.029	880.92	901.95	1004.087

Table:10 Stress introduced in different flywheel

Stress(Mpa)	Solid Flywheel	Rim Flywheel	Section Cut Flywheel	Six spoke Flywheel			
TangentialStress(σ_t)	0.995	1.533	2.893	2.893			
RadialStress(σ_r)	0.788	0.0168	29.75	8.815			
ResultantStress	1.296	1.533	9.60	4.373			

Table:11 Analysisof different flywheel

Type of Flywheel	Load	Equi.Vonmises stresses(Mpa)	Total Deformation (mm)
Solid Flywheel	ω=78.53 rad/sec	1.017	0.00107
Rim Flywheel	ω=78.53 rad/sec	1.643	0.00206
Section cut Flywheel	ω=78.53 rad/sec	2.736	0.00217
Six Spoke Flywheel	ω =78.53 rad/sec	3.162	0.00446

VI. Conclusion

- Amount of kinetic energy stored in six spoke flywheel is always greater than solid flywheel, rim flywheel, section cut flywheel for constant weight of flywheel.
- Resultant stress introduced in six spoke flywheel is more as comparative to solid disk flywheel but these stress are in permissible range
- Flywheel geometry play very important role in storing kinetic energy.

References

- Mouleeswaransenthilkumar "optimization of flywheel materials using genetic algorithm" Tomev(year 2012)FASCICULE4(oct-[1]. dec)IISN2067-3809
- [2]. Bjorn Bolund, Hans Bernhoff, Mats Leijon "Flywheel energy and power storage systems" / Renewable and Sustainable Energy Reviews 11 (2007) 235-258
- S.M.Choudhary "Design optimization of flywheel of thresher using FEM" IJETA/ Vol. 3/ Issue 2,February 2013. SudiptaSaha "Computer aided design & analysis on flywheel for greater efficiency" IJAERS/Vol. I/ Issue II/299-301. A.P.Ninawe "Analysis and optimization of flywheel" IJMERR 2012vol.1No.2,PP.272-276.
- [3]. [4].
- [5].
- [6]. [7]. Mahesh C. Swami "Mass optimization of solid disk flywheel used in thresher machine" IOSR/Vol 12/Issue III/2320-334X. SagarM.Samshette "Investigation of smart profile of flywheel" IJIET/Volume 5/Issue 4/2319-1058.