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Abstract: Artificial Neural Network (ANN) is used to predicate experimental results for Natural Draft Wet
Cooling Tower (NDWCT) rig using Levenberg-Marquardt back propagation algorithm in MATLAP. The
experimental tests are done in hot and dry weather (Iraqi weather as an example). ANN results show good
agreements with experimental results where average correlation coefficient (R) for all results is (0.994),
average root mean square errors (RMSE) are (5.99, 0.91, 0.24, 0.51, 0.49, 0.2, and 5.46), and average of mean
ratio between the errors and the network output values (MRE) are (1.72%, 1.32%, 3.93%, 1.78%, 3.77%, 8.4%,
and 1.05%) for relative humidity change, tower range, water to air mass flow ratio, cooling capacity, heat
rejected to air, effectiveness, and air enthalpy change respectively.

Keywords: Cooling Tower, Packing Fill, Natural Draft, Artificial Neural Network, Back Propagation.

I.  Introduction

ANN recently growing areas of artificial intelligence and it is started to be used in cooling tower area
because of it is ability to deal with many inlet and outlet parameters while their relations are linear or nonlinear.
ANN usually used as a part of Excel or MATLAP programs depend on complicity and programmers
experiences. One of the main important features of ANN is its Ability to learn. Learning or training algorithms
can be categorized into supervised training and unsupervised training. Supervised training uses pairing of both
input vector with a target vector which represents the desired output. So, this training required a teacher.
Unsupervised training is employed in self-organizing neural nets. Unsupervised training does not require a
teacher, Sivanandam, [1]. Figure (1) shows the supervised and unsupervised training. Seven learning rules are
tabulated and compared in terms of the single weight adjustment formulas, supervised versus unsupervised
learning mode, weight initialization, and required neuron activation function. Learning rules are: Delta,
Perceptron, Hebbian, Widro-Hoff, Correlation, Winner-take-all, and Outstar, Zurada, [2].

ANN is widely used in many engineering fields, in this survey will focus on its use in NDWCT only.
Gao et al., [3], experimentally studied the performance of natural draft counter-flow wet cooling in terms of
heat transfer for cases with cross-wind conditions. It is concluded experimentally that AT and n are influenced
by the cross-wind, and AT and 1 can decrease by 6% and 5%, respectively. When the critical (Fr) number is less
than 0.174 (wind velocity = 0.45 m/s), AT and 1 decrease with increasing cross-wind velocity, and when it is
greater than 0.174, AT and m increase with increasing cross-wind velocity, ANN is used in this research to
predicate experimental results. Gao et al., [4], applied and developed ANN model for prediction of thermal
performance on natural draft wet cooling towers using five, six, three nodes at input, hidden , and output layers.
The nodes were dry bulb temperature of inlet air, wet-bulb temperature, circulating water inlet temperature,
circulating water inlet mass flow rate and inlet wind velocity and output layer included circulating water outlet
temperature, temperature difference and cooling efficiency coefficient. The correlation coefficient (R) and mean
square error (MSE) are used to measure the performance of ANN model where the correlation coefficient in the
range of 0.993-0.999, and the MSE values for the ANN training and predictions were very low relative to the
range of the experiments. Jiasheng et al., [5], used artificial neural network (ANN) technique. Huge data
required for training and predication so extensive field experimental work has been carried out. Tangent sigmoid
transfer function at hidden layer used with ANN model where eleven nodes and a linear transfer function at
output layer with back-propagation (BP) training technique. The predictions have good agreement with the
experimental values with a satisfactory correlation coefficient in the range of (0.9249-0.9988), the absolute
fraction of variance in the range of (0.8753-0.9976), and the mean relative error in the range of (0.0008-0.54%).
Gao et al., [6]. Developed a three-layer back propagation (BP) network model which has one hidden layer
based on the level Froude number (Frl), and four, eight, six nodes at input, hidden, and output layer respectively.
The results were MRE and R in the range of (0.48%-3.92%) and (0.992-0.999), respectively, and RMSE values
for the ANN training and predictions were very low relative to the range of the experiments.

In this research, Levenberg-Marquardt back propagation used to predicate NDWCT experimental
results which are validated firstly by direct comparison and secondly using R, MRE, and RMSE. A software
package for Artificial Neural Network using MATLAP is used to exam experimental results with Delta learning
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rule. ANN structure including (IxHxO) which represent input, hidden, and output layer respectively. Eight
neurons are used as input and seven neurons as output where hidden neurons are varied according different
theories

Il.  Experimental and Artificial Neural Network

[7], describes experimental work and results recorded from experimental test rig which is shown in
figure (2) to evaluate and compare three types of packing fills namely splash, honey cell, and trickle fill where
results show that trickle fill has better heat performance that other fills.

Levenberg-Marquardt back propagation algorithm is used to predicate experimental results because it
has better convergence properties than the conventional back propagation method but required higher storage
capacity. ANN with three layers constructed from eight, ten, and seven neurons at input, output, and hidden
layers respectively as shown in figures (3) and (4). The total operation will early stop if error reaches to (1*10-
7) or it will continue till (1000 iterations) which represent an optimum number using Levenberg-Marquardt back
propagation algorithm. Data divided automatically and randomly into (70%) for training ANN, (15%) for
validation, and the rest (15%) for testing samples. Working by ANN required many tests and huge number of
data to achieve network training. Huge experimental results are recorded from rig by changing water mass flow
rate six times, cross wind velocity five times, [8], three type of fills, and four different thicknesses. These results
are divided as followed.

1 Data collected for different thickness of honey cell fill to study increasing water flow rate effects.

2 Data collected for different thickness of honey cell fill to study effect of cross wind velocity.

3 Data collected for different thickness of splash fill to study increasing water flow rate effects.

4 Data collected for different thickness of splash fill to study effect of cross wind velocity.

5 Data collected for (5) cm thickness of honey cell, splash, and trickle fills to study increasing water flow rate
effects.

6 Data collected for (5) cm thickness of honey cell, splash, and trickle fills to study effect of cross wind
velocity.

7 Data collected for (10) cm thickness of honey cell, splash, and trickle fills to study increasing water flow
rate effects.

8 Data collected for (10) cm thickness of honey cell, splash, and trickle fills to study effect of cross wind
velocity.

Validation of all results can be shown by comparison between experimental results and predicated results
using ANN by direct comparison between exact and predicated results or by checking R, MRE, RMSE values
where exact solution if (R=1) and good agreeing if approach to (1) while approaching to (-1) means that results
are not valid, The less MRE is the better fit predicted results are, and (RMSE) better fit when its value
approaches to zero. First path needs to draw experimental with predicated results together as in figures (5) to
(24). Second path can give all results together in one package as in figure (25).

I11.  Results validation

Number of hidden nodes in hidden layer are determined by many theories mentioned in detail at [2]
which include different theories submitted by Hecht-Nielson, [9], Xin, [10], Ding, [11], Xie, [12], Yao and
Wanyg, [13]. Applying these theories, a range of hidden numbers are found so eight to fifteen nodes are tested to
find the best suitable number. Table (1) list correlation coefficient (R) values using different number of hidden
nodes used to predicate (120) experimental results for honey cell type when water flow is changed from (0.8) to
(2.4) gpm and it is found that best value is (Rall =0.99653) when 10 hidden nodes are used. Up on that ten
hidden nodes will be used to predicate all results in this research.
Validation of predicated and experimental results will be determined by the use of MRE, RMSE, and R where:

a, — b,

100

N
MRE(%):%Z

i=1

MRE, shows the mean ratio between the error and the network output values, Hosoz et al., [14].
(ai and bi) represent experimental and network output values, respectively. (N) Represents the sample number.

g 7o - o

Root mean square error (RMSE), better fit when its value approaches to zero. Gao et al., [1, 2].
cov(a, b)

B Jcov(a, a).cov(b, b)
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IV.  Results predication using ANN

Eight inputs are used {water flow rate (Liter/min), air inlet temperature (°C), inlet air relative humidity
(%), inlet water temperature (°C), fill thickness (cm), wind velocity (m/s), air velocity at outlet (m/s), and
pressure difference (mm water)} and seven outlets {change in relative humidity (%), range (*C), water to air
mass flow rate ratio, cooling capacity (kW), heat transfer to air (kW), effectiveness (%), and air enthalpy change
(kJ/kg)}.

Table (2) list RMSE and MRE for each case as mentioned before. Table shows that maximum RMSE
between predicated and experimental results are (15.25, 4.203, 0.475, 1.508, 0.801, 0.458, and 9.663) found at
cases (5, 5, 1, 5, 4, 8, and 3) and minimum values are (2.288, 0.0183, 0.002, 0.014, 0.272, 0.016, and 0.846)
found at cases (2, 7, 2, 7, 3, 3, and 5) for relative humidity change, tower range, water to air mass flow rate ratio,
cooling capacity, heat rejected to air, effectiveness, and enthalpy change respectively. Maximum and minimum
values of MRE as followed (8.010%, 5.953%, 22.642%, 5.687%, 11.503%, 28.714% and 1.847%) for cases (5,
5, 4,5, 8, 8, and 3) and (0.235%, 0.005%, 0.108%, 0.457%, 0.332%, 0.352%, and 0.320%) for cases (1, 8, 2, 6,
3, 3, and 5) respectively. Correlation coefficient (R) Values for 8 cases are listed in table (3) where (Rall) values
(all means total predicated results for each case including results used for training, validation, and test) are
(0.99653, 0.99562, 0.99397, 0.99548, 0.99201, 0.994, 0.9907, and 0.99445). Remembering that R approach to
(+1) means agreed relation between predicated and experimental results where (R) approach to (-1) means
reverse relation and R approach to zero mean no relation between them. Better results (R= 0.99653) found in
case one and less one is found at case seven (R=0.9907). Figure (25) shows relations between experimental
(target) and predicated (output) results using ANN for eight cases. Best relation between experimental and
predicated results are listed in table (4).

V.  Conclusions
1 Using Artificial Neural Network shows a very good matching with experimental results which can be
expressed by direct comparison or using R, MRE, and RMSE.
Best R, MRE, and RMSE are (0.99653, 0.005%, and 0.002) recorded at cases 1, 8, and 2 respectively.
ANN can be used to find best fit relation for predicated (output) and experimental (target) results, the best
relation is (output= target+0.019) found at case (8).

w N
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Table (1) List regressions values using different hidden number of nodes to predicate results using honey cell

fill.
No. of hidden nodes Tra:iing Valic?ation TeR;ts Aﬁl
3 0.99397 0.99021 0.98514 0.99179
9 0.99687 0.98871 0.98682 0.99412
10 0.99866 0.9923 0.9896 0.99653
11 0.99775 0.99442 0.99269 0.99626
12 0.9989 0.99199 0.99014 0.99592
13 0.99333 0.98677 0.98906 0.99151
14 0.99529 0.99058 0.99457 0.99379
15 0.99622 0.99296 0.99461 0.99533
Table (2) List RMSE and MRE for eight cases and seven parameters using ANN
Parameter type ARH ATw °o e AQu AQ. n Ai
% °C Mw/ Ma kw kw % ki/kg
Result type
1 RMSE 4,179 0.021 0.475 0.255 0.317 0.178 4.760
MRE 0.235% 0.466% 1.723% 1.958% 2.890% 5.401% 0.517%
9 RMSE 2.289 1.149 0.002 0.693 0.747 0.038 6.930
MRE 0.365% 1.424% 0.108% 2.276% 2.137% 7.850% 1.720%
3 RMSE 11.400 0.120 0.078 0.354 0.272 0.016 9.664
MRE 2.198% 0.024% 0.567% 0.629% 0.332% 0.352% 1.847%
4 RMSE 5.458 1.543 0.346 0.137 0.801 0.162 8.703
MRE 1.227% 2.341% 22.64% 1.382% 7.181% 5.820% 1.652%
5 RMSE 15.256 4.203 0.007 1.508 0.741 0.394 0.846
MRE 8.010% 5.953% 0.358% 5.687% 2.869% 3.809% 0.320%
6 RMSE 2.395 0.055 0.423 0.524 0.406 0.214 2.356
MRE 0.666% 0.320% 2.362% 0.457% 0.457% 2.060% 0.475%
7 RMSE 3.459 0.018 0.402 0.014 0.311 0.173 3.816
MRE 0.794% 0.023% 2.393% 1.159% 2.806% 13.15% 1.140%
8 RMSE 3.487 0.152 0.193 0.605 0.344 0.458 6.604
MRE 0.274% 0.005% 1.310% 0.706% 11.50% 28.71% 0.710%
Table (3) List correlation coefficient values for eight cases.
Corre'la'tion R R R R
coefficient Training Validation Tests All
Case number
1 0.99866 0.9923 0.9896 0.99653
2 0.99853 0.99221 0.98705 0.99562
3 0.99782 0.99153 0.9771 0.99397
4 0.99642 0.99177 0.99597 0.99548
5 0.9918 0.99665 0.98836 0.99201
6 0.99823 0.99378 0.97748 0.994
7 0.99916 0.99446 0.94695 0.9907
8 0.9969 0.99469 0.98963 0.99445
Table (4) List best relation between experimental and predicated values
Case number Fit relation for all results
1 Output= 0.98*target+0.12
2 Output= 0.99*target+0.16
3 Output= 0.97*target+0.24
4 Output= 0.98*target+0.078
5 Output= 0.94*target+0.32
6 Output= 0.99*target+0.18
7 Output= 0.99*target+0.28
8 Output= target+0.019
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Hidden Layer

Output Layer

10 7

Fig. (3) Schematic diagram for sigmoid hidden neurons
and linear output neurons using 10, 7, and 8 neurons at
input, hidden, and output layers respectively.
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Fig. (4) Structure of ANN used to model

experimental tests.
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Fig. (5) Tower range due to water mass flow rate
change for different fill types, (u=0 m/s),

(experimental and ANN).

Fig. (6) Tower range due to water mass flow rate
change for different fill types, (u=0.4 m/s),

(experimental and ANN).
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Fig. (7) Tower range due to water mass flow rate
change for different fill types, (u=0.6 m/s),
(experimental and ANN).

Fig. (8) Tower range due to water mass flow rate
change for different fill types, (u=0.8 m/s),
(experimental and ANN).
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Fig. (10) Effectiveness due to water mass flow rate
change for different fill types, (u=0 m/s),
(experimental and ANN).

Fig. (11) Effectiveness due to water mass flow rate
change for different fill types, (u=0.4 m/s),
(experimental and ANN).
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Fig. (14) Effectiveness due to water mass flow rate change for different
fill types, (u=1 m/s), (experimental and ANN).
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Fig. (15) Air relative humidity change due to water Fig. (16) Air relative humidity change due to water
mass flow rate change for different fill types, (u=0 mass flow rate change for different fill types, (u=0.4
m/s), (experimental and ANN). m/s), (experimental and ANN).
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Fig. (17) Air relative humidity change due to water Fig. (18) Air relative humidity change due to water
mass flow rate change for different fill types, (u=0.6 mass flow rate change for different fill types, (u=0.8
m/s). (exoerimental and ANN). m/s), (experimental and ANN).
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Fig. (19) Air relative humidity change due to water mass flow rate change for
different fill types, (u=1 m/s), (experimental and ANN).
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Fig. (20) Cooling capacity due to water mass flow Fig. (21) Cooling capacity due to water mass flow

rate change for different fill types, (u=0 m/s), rate change for different fill types, (u=0.4 m/s),
(experimental and ANN). (experimental and ANN).
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Fig. (22) Cooling capacity due to water mass flow Fig. (23) Cooling capacity due to water mass flow

rate change for different fill types, (u=0.6 m/s), rate change for different fill types, (u=0.8 m/s),
(experimental and ANN). (experimental and ANN).
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Fig. (24) Cooling capacity due to water mass flow rate change for
different fill types, (u=1 m/s), (experimental and ANN).
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Figure (25) Experimental (target) and predicated (output) results using ANN for eight cases.
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