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Abstract: Road transport is one of the dominant contributors to carbon monoxide (CO) pollution in urban 

areas. Exposure to CO poses serious health risks, and because CO behaves as a relatively inert pollutant near 

roadways, it is frequently used as a tracer for understanding the dispersion of traffic-related emissions. The 

increasing scale and severity of traffic-induced air pollution has prompted extensive research focused on 

monitoring and modelling pollutant concentrations in urban roadside environments. This review presents a 

comprehensive synthesis of air quality monitoring techniques and dispersion modelling approaches used in 

urban settings. Special attention is given to CO dispersion in near-road microenvironments, including road 

corridors bounded by high-rise buildings that form street canyons, as well as signalized intersections where 

congestion and idling are prevalent. The review highlights the evolution, applicability, and limitations of 

various air quality models and discusses their relevance for urban planning and pollution mitigation strategies. 
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I. Introduction 
Motor vehicles are a major source of carbon monoxide (CO) emissions in urban environments, 

particularly gasoline-powered light-duty vehicles. Rapid urbanization and increased vehicle ownership have 

made traffic emissions a dominant contributor to urban air pollution, resulting in adverse public health 

outcomes. Numerous studies have identified road transport as a primary pollution source in cities, with strong 

associations between traffic-related pollutants and respiratory as well as cardiovascular illnesses. 

Carbon monoxide is produced through incomplete combustion of fuel and is characteristic of mobile 

sources. Because it undergoes minimal chemical transformation in near-road environments, CO serves as a 

useful indicator for assessing the dispersion and transport of primary vehicular emissions. Over the past few 

decades, extensive research has focused on measuring and predicting CO concentrations in urban areas, 

especially near busy roads and intersections. Given the growing magnitude of the problem, it is essential to 

critically review existing air quality monitoring methods and modelling frameworks. 

This review provides an overview of urban air quality, summarizes key monitoring studies, examines 

major dispersion models, and evaluates their suitability for different urban scenarios. Particular emphasis is 

placed on modelling CO concentrations in complex microenvironments such as street canyons and intersections, 

where pollutant accumulation is often severe. 

 

II. Urban Air Quality 
Urban air pollution is composed of a mixture of gaseous and particulate contaminants originating 

primarily from combustion processes. Suspended particulate matter (PM) consists of solid particles and liquid 

droplets that vary in size and composition. Fine particles generated by combustion activities are of particular 

concern because they can penetrate deep into the respiratory system, bypassing the body’s natural defense 

mechanisms. Health impacts associated with PM exposure depend on particle size, chemical composition, and 

duration of exposure. 

Carbon monoxide is a localized pollutant, with elevated concentrations occurring primarily near 

emission sources such as busy roads. As a colorless and odorless gas, CO poses significant health risks by 

binding with hemoglobin in the blood and reducing oxygen delivery to vital organs. High exposure levels can 

aggravate cardiovascular conditions, impair neurological functions, and reduce exercise tolerance. 

Ozone is a secondary pollutant formed through photochemical reactions involving nitrogen oxides 

(NOx) and volatile organic compounds under sunlight. Although not directly emitted, ozone is a powerful 

respiratory irritant that damages lung tissue and exacerbates asthma and bronchitis. Nitrogen oxides themselves 

originate mainly from fuel combustion and contribute to smog formation, acid rain, and reduced atmospheric 

visibility. 

Sulfur dioxide (SO₂), primarily emitted from fossil fuel combustion, undergoes atmospheric oxidation 

to form secondary pollutants such as sulfur trioxide and sulfate aerosols. Diesel exhaust is another critical 

concern, containing numerous toxic gases and fine particles. Diesel particulate matter is particularly hazardous 
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due to its small size and carcinogenic properties, and mobile sources remain the largest contributors to diesel 

emissions in urban areas. 

 

III. Air Quality Monitoring Studies 
Field measurements conducted near major roadways consistently reveal elevated concentrations of 

traffic-related pollutants, including CO, NOx, PM₁₀, PM₂.₅, ultrafine particles, black carbon, polycyclic 

aromatic hydrocarbons, and benzene. These concentrations are often significantly higher than background urban 

levels. Monitoring studies demonstrate that pollutant levels exhibit strong spatial and temporal variability, 

influenced by traffic volume, meteorological conditions, and road geometry. 

Diurnal patterns are commonly observed, with peak CO concentrations occurring during morning and 

evening rush hours. Spatial variations are also pronounced, with intersections and congested road segments 

exhibiting the highest pollutant loads. Research has shown that pollution levels decrease with increasing 

distance from roadways, although this gradient depends on wind speed and direction. 

Comparisons between fixed-site monitoring stations and passive sampling techniques have generally 

demonstrated good agreement, validating the reliability of different monitoring approaches. However, recent 

studies emphasize that traditional urban background monitoring stations may underestimate exposure levels 

experienced by populations living or commuting near busy roads. 

 

IV. Air Quality Models 
Air quality models are essential tools for predicting pollutant dispersion, assessing exposure, and 

supporting environmental decision-making. Atmospheric dispersion models mathematically simulate the 

transport, diffusion, and transformation of pollutants based on emission characteristics and meteorological 

conditions. Modern models are typically computer-based and involve multiple stages, including data input, 

dispersion calculations, concentration estimation, and result analysis. 

Advancements in atmospheric science have led to improved representations of turbulence and diffusion 

processes, allowing models to better handle complex terrain, urban structures, and long-range transport. 

 

4.1 Major Types of Air Quality Models 

Plume-rise models estimate the initial vertical rise of pollutant plumes due to thermal buoyancy and 

momentum, particularly relevant for emissions from stacks and chimneys. 

Gaussian models are among the most widely used dispersion models. They assume pollutant concentrations 

follow a Gaussian distribution in both horizontal and vertical directions. These models are commonly applied 

for steady-state conditions and are recommended by regulatory agencies. 

Semi-empirical models rely on simplified formulations and empirical parameters, making them suitable for 

practical applications when data availability is limited. Examples include box models and parametric 

approaches. 

Eulerian models solve mass conservation equations on a fixed spatial grid and are often coupled with 

meteorological models. These are particularly useful for regional-scale simulations and complex chemical 

interactions. 

Lagrangian models track individual pollutant parcels or particles as they move with the airflow, accounting for 

both mean wind and turbulence. These models are effective in simulating dispersion under variable atmospheric 

conditions. 

Chemical modules simulate pollutant transformation processes, ranging from simple first-order reactions to 

complex photochemical mechanisms. 

Receptor models work backward from observed concentrations to identify and quantify contributing sources 

based on chemical composition. 

Stochastic models use statistical techniques to analyze trends and forecast pollution episodes, though they do 

not explicitly represent physical cause-effect relationships. 

 

4.2 Suitability of Air Quality Models 

The appropriateness of a model depends on several factors, including terrain complexity, 

meteorological variability, data availability, required accuracy, computational resources, and user expertise. 

Models requiring detailed inputs should only be applied when reliable data are available. Generally, models that 

incorporate finer spatial and temporal resolution provide more accurate assessments of source impacts and 

control strategies. 

 

4.3 Applications of Air Quality Models 

Air quality models are used for regulatory compliance, policy development, public information 

dissemination, and scientific research. Regulatory applications include emission permitting and environmental 



Urban Air Quality Monitoring And Modelling: A Comprehensive Review 

DOI: 10.9790/1684-12118893                                    www.iosrjournals.org                                       90 | Page 

impact assessments. Policy-oriented modelling supports evaluation of pollution control measures and long-term 

planning. Models also play an increasing role in providing real-time air quality information to the public and 

forecasting pollution episodes. In research, advanced models help improve understanding of atmospheric 

processes and guide future model development. 

 

V. Urban Roadway Dispersion Models 
Vehicular emissions are influenced by complex factors such as driving behavior, traffic flow, vehicle 

composition, and roadway conditions. Turbulence generated by moving vehicles enhances mixing, allowing 

roadway emissions to be represented as line sources in dispersion models. Due to variability in emissions during 

acceleration, deceleration, idling, and cruising, roadway modelling often requires integration with detailed 

emission models. 

 

5.1 CALINE-4 Model 

CALINE-4 is a Gaussian line-source dispersion model developed for evaluating air quality impacts of 

roadway traffic. It incorporates a mixing zone concept and can simulate various roadway configurations, 

including intersections, street canyons, parking facilities, and bridges. The model is widely used for predicting 

short-term CO and NO₂ concentrations and is recommended by regulatory agencies for roadway impact 

assessments. However, certain legacy features, such as outdated modal emission assumptions for intersections, 

limit its applicability without appropriate adjustments. 

 

5.2 Urban Roadway Dispersion Modelling Studies 

Numerous studies have evaluated the performance of CALINE and other line-source models under 

diverse traffic and meteorological conditions. Improvements in emission modelling have enhanced 

representation of real-world driving patterns. Comparative studies demonstrate that simple Gaussian-based 

models can produce reliable predictions when properly calibrated, even in complex urban settings. Other 

approaches, including finite line-source, Lagrangian, and empirical models, have also been successfully applied 

to roadway pollution studies. 

 

5.3 Street Canyons with High-Rise Buildings 

Urban streets flanked by tall buildings often experience severe air pollution due to restricted 

ventilation. Several models have been developed to simulate airflow and pollutant dispersion within street 

canyons, ranging from simplified operational models to more complex numerical approaches. Operational 

models such as OSPM strike a balance between accuracy and data requirements, making them suitable for 

routine assessments. Comprehensive reviews have demonstrated that canyon geometry, wind direction, and 

traffic intensity are key determinants of pollutant accumulation. 

 

5.4 Urban Roadway Intersections 

Intersections are pollution hotspots due to frequent vehicle idling and stop-and-go traffic. Studies 

consistently report higher CO concentrations near intersections compared to roadway links. Hybrid modelling 

approaches combining traffic flow analysis and dispersion modelling have been developed to address these 

conditions. Among these, CAL3QHC has demonstrated strong performance in predicting intersection-level CO 

concentrations. Research also indicates that intersection geometry, orientation, and traffic volume significantly 

influence pollutant levels beyond traditional traffic performance indicators. 

 

VI. Conclusions 
Urban air quality studies consistently identify vehicular emissions as a dominant source of carbon 

monoxide pollution. High traffic density, frequent congestion, poor traffic management, unfavorable 

meteorological conditions, and low wind speeds contribute to pollutant accumulation and limited dispersion. 

Advancements in emission modelling have improved representation of real-world vehicle behavior, 

enhancing prediction accuracy. In street canyons, pollutant concentrations are strongly influenced by wind 

speed, street width, and building height. At intersections, fluctuating driving modes significantly affect emission 

rates and resulting concentrations. 

Overall, effective assessment of urban traffic pollution requires integrated approaches combining 

accurate emission estimates, appropriate dispersion models, and detailed local meteorological data. Such efforts 

are essential for informed urban planning, policy formulation, and public health protection. 
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