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Abstract: In this study, parallel machines makespan minimization problem, where the jobs are non-resumable 

and the machines are subject to unavailability periods of known starting times and durations, was considered. 

The problem was formulated as an Integer Linear Programming mathematical model. An efficient solution 

procedure was proposed for the problem through two algorithms. The first algorithm utilizes the Longest 

Processing Time dispatching rule which generates an initial solution (makespan) used to obtain an upper bound 

which is used to backtrack through the second algorithm. The second algorithm adopted the greedy algorithm 

approach to iteratively achieve an optimal solution for the scheduling problem. The developed algorithms were 
implemented in software using Visual Basic programming language to facilitate the solution procedure. The 

developed software was validated using a typical numerical example while the model was validated using two 

industrial problems as case studies. The makespans obtained for the first and second case studies using the 

developed model are respectively about 49% and 40% lower than the makespan when the jobs were carried out 

in the industry. This showed that, in the long run, the model would efficiently serve machine shops in machines-

jobs scheduling problem. 
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I. Introduction 
In machine-shop environments, machines are usually subjected to down periods, which may be 

deterministic (as in the case of a planned preventive maintenance) or stochastic (as in the case of a sudden 

machine breakdown or unexpected material shortage). In general, intelligent scheduling methods are needed to 

assign activities to mechanical machines when faced with limited execution time and scarce resources. Many 

researchers have worked on the topic, especially in the area of machine scheduling (Lee, 1991; Brucker, 1994; 

Chen and Lee, 1999; Lee, 1996). However, most assume that the processors or machines are always available 

over the course of the production horizon (Brucker, 1994; Chen and Lee, 1999). This assumption is not realistic 

in many practical situations. The operation of a machine can be interrupted for a certain period of time due to 

accidental breakdown, preventive maintenance, periodic repair or other reasons, which render the machine non-

productive for a certain period of time. This situation is referred to as the machine availability constraint and it is 

essential that it is considered to appropriately schedule mechanical machines for relevant activities. 

Parallel machines scheduling with machines availability constraint has attracted a great interest, 
especially in the aspects of makespan and total completion time minimization problems. Such problems have 

been solved optimally by priority rules like LPT (Lee, 1991), List Scheduling (LS) (Lee, 1996) and 

approximation scheme (Lenstra et al., 1990), and in solving the problem, the online scheduling or resumability 

constraint were rarely considered, due to the complexity of the problem (Tan and Yong, 2002). Moreover, the 

case where the machines are related has received more attention than when they are unrelated (Vallade and 

Ruiz, 2011). 

In the aspect of related parallel machines scheduling, Liao et al. (2005) studied two machines 

makespan minimization problem with availability constraint only on one of the machines. The problem was 

solved by partitioning it into four sub-problems and each sub-problem is solved optimally by using versions of a 

lexicographical search algorithm originally proposed in Ho and Wong (1995). Tan and Yong (2002) also studied 

the same problem with non-resumable jobs when the period of unavailability occurs on both machines at 

different period of time. Online algorithm was used in jobs assignment. Lee (1991) studied parallel machines 
makespan minimization problem with one unavailability period on all machines, except one, which is always 

available, and the unavailability periods are assumed to start at time zero. The study also considered 

unavailability periods as already scheduled jobs on the machines and are called special jobs. Modified Longest 

Processing Time (MLPT) dispatching algorithm was used to assign jobs on the machines with the condition that 

each machine cannot have more than one special job (unavailability period). The same parallel machines 

problem was solved in Lin et al. (1997) and Kellereer (1998) using MLPT and dual approximation algorithm 
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respectively. However, Lee (1996) studied parallel machines scheduling problem with unavailability periods 

that may not necessarily start at time zero. It also assumed that one of the machines is available and proposed 

the LPT2 algorithm to assign jobs on the machines. 
Moreover, in the aspect of unrelated parallel machines scheduling problem, Liao and Sheen (2008) 

studied unrelated parallel machines scheduling problem with availability constraint and solved the problem 

using a binary search algorithm. Blazewicz et al. (2000) also studied uniform and unrelated parallel machine 

problems with arbitrary patterns of unavailability with the makespan and tardiness minimization objectives. The 

study proposed a network flow approach for the uniform, and a linear programming approach for the unrelated 

machine problem. The unrelated parallel machines problem was also investigated in Yang et al. (2012) with 

aging effect and multi-maintenance activities considered simultaneously as availability constraints. The study 

proposed two efficient algorithms to optimally solve the problem when the maintenance frequencies on the 

machines are known. Chang et al. (2011) studied the same problem with deteriorating maintenance activities, 

with the objective of minimizing the total completion time or the total machine load. The study also showed that 

both versions of the problem considered in Yang et al. (2012) and Chang et al. (2011) can be solved with the 
same complexity irrespective of whether the processing time of a job after the unavailability period is greater 

than that before the unavailability period. Furthermore, Yang (2013) considered the problem with special 

availability constraint in form of simultaneous deteriorating effect and deteriorating multi-maintenance 

activities, with the objective of determining optimal maintenance frequencies and positions and optimal job 

sequences of minimized total completion time. 

However, consequent upon the studies already discussed, it is essential to consider the situation in 

which there may be multiple unavailability periods on each machine during scheduling horizon, and with non-

resumable jobs. This research therefore focuses on optimizing parallel machines scheduling problem with non-

resumable jobs by considering multi-fixed machine availability constraint with the objective of minimizing the 

machines makespan. 

 

II. Materials And Method 
 The method used involves the formulation of the problem as a mathematical model; development of 

efficient solution procedure; implementation of the model with its solution procedure through software; 

validation, and evaluation of the developed software and the model respectively. These are presented in sections 

2.1 to 2.2.6. 

 

2.1 Mathematical Formulation of the Problem 

 The problem is formulated as an Integer Linear Programming Mathematical (ILP) model. It is assumed 

that all machines can perform each operation at the same rate; each job should be processed on exactly one 

machine; all jobs and machines are available at time zero; processing time of each job is known in advance i.e. it 
is deterministic; starting time and the duration of the unavailability period of each machine are also deterministic. 

The indices, parameters and decision variables that are used in developing the mathematical model as well as the 

solution procedure are defined as thus: 

Indices 

i   machine index    i = 1,2,..........., m 

N   job index   N=1,2,.............., N 

c, k  unavailability indices  c = 1,......., k;  k = 1,2,......., μi 

j  job type index   j = 1,2, ……… n 

 

Parameters 

pj   processing time of job j 

N  number of jobs 

n  number of job types 

m  number of machines 

sik   starting time of kth unavailability period on machine i 

eik   ending time of kth unavailability period on machine i 

dik   duration of the kth unavailability period on machine i 

M  a large positive integer 

μi  number of unavailability period(s) on machine i 

vj    the number of jobs having processing time of pj , yet to be scheduled  

uj    number of jobs with processing time pj  which the load of the current machine can optimally   

  accommodate  

zbj   number of jobs with processing time pj  in the load of bth batch of the current machine 

qi   number of batches in machine i 
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ti idle time of machine i, which is the space of time within a batch without jobs, which is insufficient to 

 complete any given job. 

di           total period of time for which a machine is unavailable over the scheduling horizon 

∝ number of machines (including the current machine) on which jobs have already been scheduled 

Ti   decision parameter during assignment of jobs to machines 

Mi  total load of a machine (including load of jobs, unavailability and idle periods) 

Li    load of the jobs scheduled on a machine (i.e. load of jobs only) 

Limax      makespan without unavailability and idle periods 

i∗∗ index of machine from which a new iteration starts 

l iteration counter 

r Machine feasible load counter. Increases by one when a new feasible load is achieved on a machine 

imax index of machine with load Limax  

 

Decision variables 

xij =   
1, 𝑖𝑓 𝑗𝑜𝑏 j is scheduled on machine i 
0, 𝑜𝑡herwise

  

 

yik =   
1, 𝑖𝑓 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠 𝑠𝑐heduled on machine i have been completed before sik

0, 𝑜𝑡herwise
  

 
h  makespan 

 

The ILP model formulated is as given in equations 1-9. 

Min h            (1) 

Subject to 

 pjxij +  ( (dic + tic )yi k+1 +  (dik + tik )(1 − ( yik ))
μ i
k=1

μ i
k=1

k
c=1

μ i−1

k=1 ≤  sik yik + M(1 −
μ i
k=1

N
j=1

(k=1μiyik))                        ∀i  (2) 

 pjxij +  ( (dic + tic )yi k+1 +  (dik + tik )(1 − ( yik ))
μ i
k=1

μ i
k=1

k
c=1

μ i−1

k=1 ≤ hN
j=1      ∀i  (3) 

 xij = 1m
i=1              ∀j  (4) 

 yik ≤ 1
μ i
k=1              ∀i  (5) 

xij ∈  0, 1                                                                                 ∀i, ∀j  (6) 

yik ∈  0, 1              ∀i  (7) 

h ≥ 0            (8) 

 

 The objective function (eq. 1) is the makespan to minimize. Constraint set (eq. 2) ensures that the 

duration of unavailability period(s) is/are only added to the total processing times of jobs assigned to machine i, 

when the starting time of the unavailability period(s) is/are before the completion of the jobs. Constraint set (eq. 

3) ensures that the makespan of each machine, when unavailability period is considered, is at most as large as the 

makespan. Constraint set (eq. 4) ensures that each job is assigned to exactly one machine. Constraint set (eq. 5) 

ensures that no more than one yik  is equal to one for each job. Constraint set (eq. 6) ensures that no more than 

one zijk  is equal to one for each job and machine. Constraint sets (eq. 7) and (eq. 8) show that xij  and yik  are 

binary variables (i.e. can either be 0 or 1). Constraint set (eq. 9) is a non-negativity constraint. 

 

2.2    Solution Procedure 

Longest Processing Time (LPT) rule for job dispatching is known to perform better for minimizing 

makespan (Lee, 1996; Baker and Trietsch, 2009). The LPT dispatching rule is first applied to develop a suitable 

solution procedure for the problem. Then, the solution of the LPT-based algorithm is used as the initial feasible 
solution to iteratively backtrack better feasible solutions in the main algorithm, which is formulated using the 

greedy algorithm approach, until the optimal solution is obtained. 

At any point in time, assume that the current feasible solution (makespan) is h, a better solution, h∗, is 

expected to be less than h by at least one unit, in the case of an integer processing time of jobs. 

Hence, an upper bound of a feasible makespan is defined as thus: 

 UB = h − 1            (9) 

 

2.2.1 Loading of the Machines 

Jobs are scheduled on a machine in batches such that each batch refers to the period of availability of 

the machine which is the period of time between the end of an unavailability period and the start of the next 
unavailability period.  
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Machines loads are determined in lexicographical order in which jobs are grouped into job types, according to 

the processing time of each job, in descending order and the number of each job type (except the first job type) 

scheduled on a machine depends on the loads of other job types already scheduled on the machine. 
For the first job type: 

u1 = min   
LUB

p1
 , v1     (10) 

For other job types: 

uj = min   
LUB − pa ua

j−1
a =1

pj
 , vj                         j = 2,3, ……… . n   (11) 

Where 𝑝𝑎  and 𝑢𝑎  are respectively the processing time and the number of job type(s) already loaded on the 

machine prior to loading the current job type on the machine. 

The number of each job type scheduled in each batch of a machine is likewise determined as thus: 

For the first batch: 

𝑧1𝑗 = 𝑚𝑖𝑛   
𝑠1− 𝑝𝜃 𝑧1𝜃

𝑗−1
𝜃=1

𝑝𝑗
 , 𝑢𝑗      ∀𝑗  (12) 

For other batches: 

𝑧𝑏𝑗 = 𝑚𝑖𝑛   
(𝑠𝑖𝑏 −𝑒𝑖(𝑏−1))− 𝑝𝜃 𝑧𝑏𝜃

𝑗−1
𝜃=1

𝑝𝑗
 ,  𝑢𝑗 −  𝑧𝜏𝑗

𝑏−1
𝜏=1        𝑏 = 2,3, ……𝑞; ∀𝑗     (13) 

Where:  

𝑝𝜃  and 𝑧𝑏𝜃  are respectively the processing time and the number of job types already loaded on a batch prior to 
loading the current job type on the batch.  

𝑧𝜏𝑗  is the number of jobs with processing time 𝑝𝑗  already scheduled in the previous batches before the current 

batch. 

The machine’s makespan is then determined as thus:         

ℎ𝑖 = 𝐿𝑖 + 𝑑𝑖 + 𝑡𝑖     
 (14) 

Where: 

𝐿𝑖 =   𝑝𝑗 𝑧𝑏𝑗
𝑛
𝑗=1

𝑞𝑖
𝑏=1    (15) 

𝑑𝑖 =  𝑑𝑖𝑘
𝑞𝑖−1
𝑘=1    

  (16) 

and 

𝑡𝑖 =   𝑠𝑏 − 𝑒𝑏−1 −  𝑝𝑗 𝑧𝑏𝑗
𝑛
𝑗

𝑞𝑖
𝑏=1               (17) 

 

2.2.2 Feasibility Test of Machine Loading 

As each machine is loaded, the feasibility of the load is tested using the following lemmas 

(a) The makespan of the machine load must not be greater than the current upper bound 

i.e ℎ𝑖 ≤ 𝑈𝐵 (18) 

(b) At any point in time during loading of a particular machine, if the remaining average load is less than 

the current load upper bound 𝐿𝑈𝐵 , 

That is; 

If   
 𝑝𝑗

𝑁
𝑗=1 − 𝐿𝑖

∝
𝑖=1

𝑚−∝
≤ 𝐿𝑈𝐵          (19) 

is satisfied, then the load is feasible and the next machine is loaded. Else;  

(c) Test will be carried out if there may still be a feasible solution for the current upper bound. This is done 

by assuming that the machines are loaded to their current upper bound load, 𝐿𝑈𝐵𝑖
. If remaining average load in 

this condition is less than 𝐿𝑈𝐵 , that is; 
If  

 
 𝑝𝑗

𝑁
𝑗=1 −  𝐿𝑈𝐵 𝑖

∝
𝑖=1  

𝑚−∝
≤ 𝐿𝑈𝐵        (20) 

 

then feasible solution may be possible. Otherwise, feasible solution is no more possible. 

(d) Also, if the feasibility test conducted in (c) is feasible, there is need to determine whether the possible 
feasible solution is on the current machine. If the remaining average load, when the machines are loaded to their 

upper bound except the current machine, is less than 𝐿𝑈𝐵 , 

That is; 

 If  
 𝑝𝑗

𝑁
𝑗=1 −  𝐿𝑖

∝−1
𝑖=1 +𝐿𝑈𝐵 ∝ 

𝑚−∝
≤ 𝐿𝑈𝐵        (21) 
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then the current machine is reloaded. Else, the immediate previous machine is reloaded. 

The machine reloading is done as thus: 

where  𝛾 = 𝑚𝑎𝑥 𝑗 𝑢𝑗 > 0  𝑎𝑛𝑑 𝑗 ≠ 𝑛   

  𝑢 𝑗 = 𝑢𝑗 ,                 𝑗 = 1, 2, ……𝛾 − 1;       (22) 

                             𝑢 𝑗 = 𝑢𝑗 − 1,         𝑗 = 𝛾; (23) 

                             𝑢 𝑗 = 𝑚𝑖𝑛   
𝐿𝑈𝐵 − 𝑝𝑎 𝑢 𝑎

𝑗−1
𝑎=1

𝑝𝑗
 ,   𝑣𝑗        𝑗 = 𝛾 + 1, … . . 𝑛;  (24) 

The job type with the highest number of jobs, in the load of the machine to be reloaded, is determined and 

denoted as 𝛾. The number of each job type(s) before 𝛾 will be left as they were before reloaded. This is done 

using equation (22). The number of jobs in 𝛾 is decreased by one (equation 23). The job type(s) after 𝛾 are 
determined, in decreasing order of their processing time using equation (24), in the same manner as in equation 

(11). 

 

2.2.3 Algorithm Development 

The steps involved in the LPT-based algorithm, henceforth referred to as the initial solution algorithm 

and the main algorithm developed for the scheduling problem are presented as thus:  

 

Initial Solution Algorithm 

Step 1. Specify values for: m; n; 𝑝𝑁 𝑁 = 1,2, … . . 𝑁 ; 𝑠𝑖𝑘 , 𝑑𝑖𝑘  𝑖 = 1,2, …𝑚; 𝑘 = 1,2, … . 𝜇𝑖  
Step 2. Arrange the N jobs in decreasing order of their processing time 

Step 3. Set:  

  𝑀𝑖 = 0    (𝑖 = 1,2, ……… . , 𝑚) 

  𝑗 = 1 

Step 4. Determine the job assignment decision variable, 𝑇𝑖  

 𝑇𝑖 =  
𝑝𝑁 + 𝑠𝑖𝑘 + 𝑑𝑖𝑘                          𝑀𝑖 < 𝑠𝑖𝑘 <  𝑀𝑖 + 𝑝𝑁  
𝑀𝑖 + 𝑝𝑁                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Step 5. Assign job j to machine i, such that; 

 𝑖 = 𝑚𝑖𝑛 𝑇𝑖 :             ∀𝑖  
Step 6. Set: 

   
𝑀𝑖 = 𝑇𝑖                                    𝑓𝑜𝑟 𝑖 = 𝑚𝑖𝑛(𝑇𝑖 :    𝑠𝑡𝑒𝑝 5)  
𝑀𝑖 = 𝑀𝑖                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

   

             and   

                         𝑗 = 𝑗 + 1 

Step 7. If 𝑗 ≤ 𝑁, Go to 4 

 

Step 8.  𝑑𝑖 =  𝑑𝑖𝑘
𝑞
𝑘=1         (∀𝑖)  

  𝐿𝑖 = 𝑀𝑖 − 𝑑𝑖 ,         (∀𝑖) 

Step 9. ℎ = 𝑚𝑎𝑥 𝑀𝑖 :             ∀𝑖  
 𝐿𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐿𝑖 :          ∀𝑖) 

 

Main Algorithm 

Step 1. Set:  𝑙 = 1;  𝑟 = 0 

Step 2. Determine the upper bound of makespan and the upper bound of makespan load ( i.e. makespan without 

unavailability and idle periods) using the solution obtained by the initial solution algorithm 

 𝑈𝐵 = ℎ − 1;  𝐿𝑈𝐵 = 𝐿ℎ − 1  

Step 3. Determine 𝑖∗∗ using 

 𝑖∗∗ = 𝑖𝑚𝑎𝑥    OR 𝑖∗∗ = 1  (𝑖𝑓 𝑙 = 1) 

Step 4. If    𝑖∗∗ = 𝑚,  then  𝑖 = 𝑖∗∗ − 1 

 Else,  𝑖 = 𝑖∗∗ 

Step 5. Load machine i using equations (10) to (13) 

Step 6. Determine the values of 𝐿𝑖 , ℎ𝑖 , 𝑑𝑖 , 𝑎𝑛𝑑 𝑡𝑖  using equations (15), (14), (16) and (17) respectively. 

Step 7. If   ℎ𝑖 ≤ 𝑈𝐵, Go to 10, 

Step 8. If  𝑖 = 𝑚,  set    𝑖 = 𝑖 − 1. Otherwise, set  𝑖 = 𝑖 
Step 9. If    𝑢𝑗

𝑛−1
𝑗=1 > 0    𝑓𝑜𝑟  𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖, Go to 18. Else, Go to 21 

Step 10. If 𝑖 = 𝑚, Go to 20 

Step 11. Determine the feasibility of the load using equation (19)                             

Step 12. If equation (19) is feasible, set: 

 𝑖 = 𝑖 + 1;  𝑟 = 𝑟 + 1 
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Go to 5 

Step 13. Else, if equation (19) is infeasible, determine, using equation (3.31), whether there may still be a 

feasible solution for the current upper bound. 
Step 14. If equation (20) is infeasible, Go to 21 

Step 15. Else, if equation (20) is feasible, check the feasibility of other possible loads on the    current machine 

using equation (21). 

Step 16. If equation (21) is feasible, Set  𝑖 = 𝑖. Go to 18    

Step 17. Else, if equation (21) is infeasible; set: 

 If 𝑟 > 0, Set 𝑖 = 𝑖 − 1. Else, Go to 21    

Step 18. Reload machine i using equations (22) to (24), then (12) to (13). Go to 6 

Step 19. Determine the new feasible solution (makespan) as thus: 

 ℎ = 𝑚𝑎𝑥(ℎ𝑖 :   𝑖 = 1,2, ……… . , 𝑚) 

 𝐿𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐿𝑖 :     ∀𝑖) 

Step 20. Set: 

 𝑙 = 𝑙 + 1;  𝑟 = 0 

Go to 2 

Step 21. Set: 

 ℎ = 𝑈𝐵 + 1 

 

2.2.4 Software Development 

The solution procedure, demonstrated through the initial solution algorithm and the main algorithm, is 
implemented through a software that was developed using Microsoft Visual Basic Programming Language.  

 

2.2.5 Software Validation 

A typical numerical example was used to validate the developed software. This numerical example is 

solved manually using the proposed solution procedure demonstrated through the initial solution algorithm and 

the main algorithm. The same numerical example problem is then run on the developed software and the result 

obtained is compared against that of the manual solution. 

A problem of ten jobs on three machines with availability constraints on each machine is used in this example. 

The processing times of the jobs are as in Table I. 

Machine 1 is unavailable for 4 units of time at every 20 units of time after the end of last unavailability period. 

Machine 2 is unavailable for 4 units of time at every 15 units of time after the end of last period of unavailability. 

Machine 3 is unavailable for 4 units of time at every 10 units of time after the end of last unavailability period. 
The parameters of the numerical example are: 

𝑚 = 3  𝑛 = 4  𝑁 = 10  𝑑𝑖𝑘 = 4    (∀𝑖, ∀𝑘) 

𝑠11 = 20;  𝑠12 = 44;  𝑠13 = 68   etc. 

𝑠21 = 15;  𝑠22 = 34;  𝑠23 = 53   etc. 

𝑠31 = 10;  𝑠32 = 24;  𝑠33 = 38   etc. 

Solving through the numerical example, manually, using the solution procedure; 

Optimal makespan, ℎ = 34. 

The solution schedule obtained by the manual calculation is presented in Table II. 

 

2.2.6 Model Validation 

Industrial data were collected, for validation of the developed model, at Dinehin Engineering Workshop 

situated at Ondo-Ore road, Akure Nigeria and Afolabi and Sons Engineering Limited, Akure, Nigeria. The 

workshops respectively specialize in grinding of crankshaft and boring of engine block of different vehicles. 

Data collected include the standard time, to bore an engine block and that to grind a crankshaft to various sizes. 

These data were obtained by direct observation (using a stop watch) during operations on the machines. Also, 

information on the preventive maintenance schedules of the machines was obtained. 

The industrial data collected were run on the developed, and already validated, software for the purpose 

of validating the model. Two case studies were used. One case representing validation through the data collected 

on the grinding machines and the other case represents that of the boring machines. The data collected for the 
validation of the model, on the two cases, are as presented in Tables III to VI. 

 

Case Study 1: Data on Crankshaft Grinding Machine 

Twenty jobs are considered on three parallel crankshaft grinders. The details of the jobs and the 

unavailability periods of the machines are presented in Tables III and IV respectively.  

Case Study 2: Data on Engine Block Boring Machine 
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Fifteen jobs are considered on three parallel engine block borers. The details of the jobs and the 

unavailability periods of the machines are presented in Tables V and VI respectively.  

 

III. Results And Discussion 
Model for scheduling non-resumable jobs on parallel machines subject to predictive unavailability 

constraints has been developed and its solution procedure has been implemented in computer software. 

Illustration 1 shows the input data interface of the software used for inputting jobs and machines details. 

Validation of the developed software which was done using a typical numerical example showed that 

the software generates a makespan of 34 units of time (see Illustration 2) which is the same as the one obtained 

from manual calculation. The initial and optimal schedules obtained by the software and the manual calculation 

are as presented in Illustration 3 and Table II respectively. 

In order to ascertain the potential of the developed model in production or process optimization, the 
model developed with its solution procedure is validated using the data collected for the two case studies. Case 

study one is a problem of twenty jobs on three crankshaft grinders. An optimal makespan of 160 mins is obtained 

by the model using the software against a makespan of 315 mins used in the company when the jobs were done. 

Case study two is a problem of fifteen jobs on three engine block borers. Optimal makespan of 187 mins is 

obtained by the model using the software while makespan of 310 mins was used when the jobs are carried in the 

company. Tables VII and VIII give the initial and optimal schedule obtained by the software for case studies 1 

and 2 respectively. 

Comparatively, the model developed produced a better (lower) makespan than what is being expended 

when the jobs are carried out in the company from which the data were obtained. Hence, the company can 

increase its level of productivity of completing jobs in a shorter period of time than its present scenario, if it can 

make use of the developed model and its software for jobs scheduling. 
Moreover, it can also be said that the model developed has been effectively facilitated through efficient 

computer software. Through the software, a scheduling problem involving three machines and ten jobs was 

scheduled within a period of five to ten seconds, while the same problem took about two hours when solved 

manually using the developed solution procedure. In this sense, the developed software will save a great deal of 

time when used in an industrial setting. 

 

IV. Conclusion 
Although there have been various studies in the field of machine scheduling especially in recent years, 

there are still many unexplored problems. In this research, parallel machines makespan minimization problem, 
where the jobs are non-resumable and the machines are subjected to preventive maintenance activities of known 

starting times and durations, was considered. 

The problem was formulated as an integer linear programming and an effective algorithm was 

developed to solve the problem. The algorithm developed is in two parts; the first part (initial solution algorithm) 

generates an initial solution which was employed in the second part (main algorithm) to iteratively generate 

better feasible solution. The second part is a backtracking algorithm which seeks for all the possible better 

feasible solution until the optimum solution is attained. 

The model developed with its solution procedure (algorithm) was then implemented in flowcharts 

which were used to develop computer software. The computer software was validated using a numerical 

example. In validating the model developed, the validated software was used to solve two different real life 

industrial scheduling problems; grinding of twenty crankshafts of different vehicles on three crankshaft grinding 

machines and boring of fifteen engine blocks on three engine block boring machines, when the machines were 
subject to preventive maintenance activities of known starting times and durations. A better makespan were 

obtained by the software, in the two problems presented, than what were expended in the company where the 

jobs were carried out. 

The use of the developed model and software will assist industries in time management, elimination of 

process delay, meeting jobs due dates towards production/process optimization and maintenance schedule 

management.  

 

V. Tables And Illustrations 
5.1 Tables 

Table I: Numerical Example Job’s Processing Times 
j 1 2 3 4 5 6 7 8 9 10 

Pj  10 10 9 9 7 7 6 6 6 6 
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Table II: Solution Schedules Obtained by the Manual Calculation 

 

 

 

 

 

 

 

Table III: Jobs details for data collected on crankshaft grinders 

  

Table IV: Machines details for data collected on crankshaft grinders 
Machine Maintenance schedule 

Duration (mins) Interval of Time till the next delay period (mins) 

1 5 60 

55 

50 

2 5 

3 5 

 

Table V: Jobs details for data collected on engine block borers 
S/N Job description No. of jobs Processing time of 

each job (mins) Vehicle Grinding work 

1 Nissan  Standard to 020 3 27 

2 J5 Standard to 020 6 22 

3 Nissan Standard to 010 3 26 

4 Bedford 030 to 040 3 35 

  

Table VI: Machines details for data collected on engine block borers 
Machine Maintenance schedule 

Duration (mins) Interval of Time till the next delay period (mins) 

1 5 60 

2 5 55 

3 5 50 

 

Table VII: Solution Schedules Obtained for Case Study 1 
INITIAL SOLUTION OPTIMAL SOLUTION 

Job  Processing time Machine assigned to Jobs Processing time Machine assigned to 

1 37 1 1 37 2 

2 37 2 2 37 2 

3 37 3 3 37 1 

4 37 3 4 37 1 

5 23 1 5 23 2 

6 23 1 6 23 1 

7 23 2 7 23 1 

8 23 1 8 23 1 

9 17 2 9 17 3 

10 17 1 10 17 3 

11 17 3 11 17 3 

12 17 2 12 17 2 

13 17 3 13 17 2 

14 17 1 14 17 2 

15 13 2 15 13 3 

16 13 3 16 13 3 

17 13 1 17 13 3 

18 13 2 18 13 3 

19 13 1 19 13 3 

20 13 3 20 13 3 

 

S/N Job description No. of jobs Processing time of each 

job (mins) Vehicle Grinding work 

1 Mazda Standard to 010 4 17 

2 Mazda Standard to 040 6 13 

3 Toyota 020 to 030 4 23 

4 Bedford 030 to 040 4 37 

5 Toyota  010 to 020 2 17 

INITIAL SOLUTION OPTIMALSOLUTION 

Job  Processing time Machine assigned to Jobs Processing time Machine assigned to 

1 10 1 1 10 1 

2 10 2 2 10 1 

3 9 3 3 9 2 

4 9 1 4 9 1 

5 7 3 5 7 2 

6 7 2 6 7 2 

7 6 1 7 6 3 

8 6 2 8 6 3 

9 6 3 9 6 3 

10 6 1 10 6 2 
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Table VIII: Solution Schedules Obtained for Case Study 2 
INITIAL SOLUTION OPTIMAL SOLUTION 

Job  Processing time Machine assigned to Jobs Processing time Machine assigned to 

1 35 1 1 35 1 

2 35 2 2 35 2 

3 35 3 3 35 3 

4 27 3 4 27 3 

5 27 2 5 27 2 

6 27 1 6 27 1 

7 26 2 7 26 2 

8 26 1 8 26 1 

9 26 3 9 26 3 

10 22 2 10 22 2 

11 22 1 11 22 1 

12 22 3 12 22 3 

13 22 2 13 22 2 

14 22 1 14 22 1 

15 22 3 15 22 3 

 

5.2 Illustrations 

 
Illustration 1: Input Data Interface of the Software 

 

 
Illustration 2: Optimal Makespan for the Numerical Example 

 

 
Illustration 3: Obtained Initial and Optimal Schedules for the Numerical Example 
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