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ABSTRACT : This work is aimed at the active vibration control of a flexible structures using piezoelectric 

material. A simple supported plate structure, which is supported at two opposite ends, is taken as the flexible 

structure with piezoelectric materials as sensors and actuators. Sensors and actuators, which are square in 
shapes, are embedded to the parent structure. The active controller was designed to control first three modes 

of vibration of plate. First, the analysis for the transient vibrations in a simple supported plate structure was 

performed which was followed by the analysis of the same simple supported plate structure when embedded 

upon with a pair of sensor and actuator. The plate was discretised into several small rectangular elements 

(6X6, 7X7… 11X11) of identical size in order to assign the different locations to sensors and actuators, 

which were assumed to be of the exact shape of the discretized plate elements. Further a LQR controller is 

applied for attenuating the global structural vibration. Settling time for each different location of 

piezoelectric patch location was observed which was then followed by an interpretation for the optimal 

location for piezoelectric patch for maximizing the vibration control. The model designed for study was duly 

verified with the results from past literature and an agreement between the both was observed.

Keywords -Active Vibration Control, Plate, Vibration Control, Smart Structure, LQR, POF 

I. INTRODUCTION 
A Smart Structures is the structure that can produce some responses to the external disturbances and 

actively control the same in real time to maintain the mission requirements. The smart structure essentially 

consists of a host structure with sensors and actuators which are intelligently coordinated by a controller. 

Self- diagnosis and adaptability to the environmental variations make this integrated system a smart structure. 

Over the last few years the technology of Smart Materials and Structures and in specific Piezoelectric Smart 

Structures has grown up considerably which widely found its application in suppressing the unwanted 
structural vibrations. The present document attempts analysis of a simple supported plate for Active 

Vibration control using piezoelectric material as sensors and actuators in the form of patches. An exhaustive 

literature has been reviewed and analysed for having reached at consensus on what has been done so far and 

highlighting where there are the scopes available for further improvement. Researchers have studied the 

behavioural aspects of piezolaminated plates. Using piezoelectric smart structures for the active vibration 

control has paid considerable attention in the last decade.  Balamurugan V. and Narayanan S. [3] studied the 

mechanics for the coupled analysis of piezolaminated plate and curvilinear shell structures and their vibration 

control performance. A plate/shell structure with thin PZT layers embedded on top and bottom surfaces is 

considered. Active vibration control performance of plates and shells with distributed piezoelectric sensors 

and actuators have been studied. Caruso G. et al. [8] studied the vibration control of an elastic plate, clamped 

along one side and excited by impulsive transversal force acting in correspondence of a free corner. A modal 
model obtained by employing a suitable finite-element formulation together with a modal reduction, was 

used in the controller design. Tylikowski A. [5] analysed the capacitive shunting distributed piezoelectric 

elements perfectly glued to the vibrating annular plate excited by harmonic displacement of the inner plate 

edge. The equations of piezoelement were coupled with the equations of plate motion by the surface strain 

terms. 

 

Different finite element methods have been proposed by researches for the modelling of 

piezolaminated plates. Lam K. Y. et al. [1] developed a finite-element model based on the classical laminated 

plate theory for the active vibration control of a composite plate containing distributed piezoelectric sensors 

and actuators from the variation principle. A negative velocity feedback control algorithm coupling the direct 

and converse piezoelectric effects was used. Verification of the proposed model was on a cantilever 

composite plate. Narayanan S. and Balamurugan V. [10] studied the finite element modelling of laminated 
structures with distributed piezoelectric sensor and actuator layers. Beam, plate and shell type elements have 
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been developed incorporating the stiffness, mass and electromechanical coupling effects of the piezoelectric 

laminates. Lin J. C. and Nien M.H. [15] discussed the adaptive modelling and shape control of laminate 

plates with piezoelectric actuators. A finite element formulation was developed for dynamic and static 

response of laminated plates. A composite plate with different location of mechanical load was studied 

analytically and experimentally. 

 

Studies on active vibration controlling capabilities of these plates have been done. Yaman Y. et al. 

[7] presented the theoretical and experimental results of the modelling of a smart plate for active vibration 
control. The smart plate consists of a rectangular aluminum plate modelled in cantilever configuration with 

surface bonded piezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. The 

study used ANSYS(v.5.6) software to derive the finite element model of the smart plate. The optimal sensor 

locations were found and actual smart plate was produced. Mukherjee A. et al. [6] presented the active 

vibration control of stiffened plates. A stiffened plate finite element with piezoelectric effects was 

formulated. A velocity feedback algorithm was employed. Numerical examples for vibration control of 

isotropic and orthotropic stiffened plates were presented. Costa L. et al. [14] derived a reduced model for a 

piezoelectric plate and to study its actuator and sensor capabilities. Study on the actuator and sensor 

capabilities of this model was done. Two discrete non-differentiable multi-objective optimization problems 

were used, which were solved by genetic algorithms. 

  

Optimal design techniques have been worked out for the piezolaminated plates. Li Y. et al. [4] 
formulated a new optimal design methodology for the placement of piezoelectric actuator and the feedback 

gains in vibration suppression of flexible structure. The effect of changes in the mass and the stiffness of the 

structure combined with control performance index lead to solutions that were independent of initial 

conditions of the flexible structure. Qiu Z. C. et al. [17] used piezoelectric ceramics patches as sensors and 

actuators to suppress the vibration of the smart flexible clamped plate. A method for optimal placement of 

piezoelectric actuators and sensors on a cantilever plate was developed. An experimental setup of 

piezoelectric smart plate was built up. Yang Y. and Zhang L. [13] studied a simply supported rectangular 

plate subject to in-plane forces, resting on an elastic foundation and excited by a PZT actuator. The optimal 

placement of the PZT actuator discussed. A general procedure to determine the optimal excitation locations 

was proposed. 

 
Several controllers have been proposed by researchers for the active control of vibration using 

piezoelectric materials on plates. Pai P. F. et al. [2] investigated non-linear saturation control, non-linear 

internal resonance control, and linear position-feedback control of steady-state and transient vibrations of a 

cantilever beam by using PZT patches. To test this SIMULINK software was used. Both numerical and 

experimental results proved efficient. Li Y.Y. et al. [9] analysed the design of l-synthesis controller for 

vibration control of a plate with piezoelectric patches. A numerical model was derived and a controller was 

synthesized. Experiments were then performed with MATLAB/Simulink.Shimon P. et al. [11] developed an 

efficient controller for vibration reduction in a fully clamped plate and an investigation between control 

methodologies and actuators was done. Theoretical and experimental studies were undertaken with verifying 

results. Luo Q. and Tong L. [12] presented a high precision control for the specified plate twisting and 

bending shapes using the orthotropic piezoelectric actuators. Finite element analysis for composite plates 

with the adhesively bonded piezoelectric stiffeners was derived and verified on NASTRAN. Shirazi A. H. N. 
et al. [19] investigated the active vibration control of a simply supported rectangular plate with fuzzy logic 

control and compared to the results obtained with the application of PID control. Differential equation of 

motion for a rectangular plate made of functionally graded material equipped with piezoelectric patches is 

derived. A comparison is made between the application of PID control and FLC to dampen the plate 

vibration. Kang Z and Tong L. [18] investigated the optimal spatial distribution of single-channel actuation 

voltage in static structural shape control problem. The Mindlin plate theory was used. A problem was 

transformed into a continuous one and a power-law function relating the design variables and the applied 

voltages was proposed. Nguyen Q. et al. [16] presented a new evolutionary algorithm to solve various 

structural shape control problems of smart composite plate structures with active piezoelectric actuators. The 

linear least square method and the features of evolutionary strategies were employed. The evolutionary 

piezoelectric actuator design optimization was proposed. Several numerical examples were presented for 
verification. 
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II. METHODOLOGY 
2.1 Finite Element Formulation 

An isotropic elastic rectangular plate of homogenous material is considered with its dimensions 

length L, breadth B, and thickness H. then the plate is discretized into some finite number of smaller 

elements of identical shapes and sizes. Considering M is the number of elements along the length of the plate 

and N are the number of elements along the breadth. Each element is considered to be rectangular in shape 
with nodes i, j, l and m; and with dimensions length 2a and breadth 2b and thickness h. 

 

Considering all three degree of freedom for each node viz. , xw  and y  where w  is the 

transverse, x  and y are the rotational degree of freedom in x and y  directions respectively. The local 

coordinates therefore are /x a  and /y b  which lie at the center of element. The transverse 

displacement of element is: 

 ( , ) ( , ) ( , ) ( , )
m Ei j lw N N N N u            

Where    ...........
i xi yi m xm ymE

T

u w w     

 

Where 
k

w  being the transverse displacement at node k , 
xk

  and 
yk

  are the rotational displacements about 

x -axis and y-axis respectively. 
xk

 &
yk

 are given by  

x

dw

dy
    ,

y

dw

dx





        

 

The shape function elements at node k  are given by  



Analysis of simple supported plate for active vibration control with piezoelectric sensors and 

actuators 
 

www.iosrjournals.org                                                       29 | Page 

 

2 2

2

2

(1 )(1 )(2 )
1

( , ) (1 )( )( 1)
8

( )( 1)(1 )

k k k k

T

k k k

k k

N b

a

  

   



         
 

       
 
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Where , , ,k i j l m ; 

k
 , 

k
  are the co-ordinates of a node k  (taking ( 1, 1)k    and ( 1, 1)k    ). There exists three 

degrees of freedom for each node , ,x yw    and as each element has four nodes so twelve degrees of 

freedom. The kinetic energy and strain energy of element are  

     
1

2
E

T

E E E
T u m u  

       

 

     
1

2
E

T

E E E
U u k u  

        

 

The element mass matrix  
E

m  and element stiffness matrix  
E

k  are given as [2] 

     
1 1

1 1

( , ) ( , )

T

E
m ab N N d d   

 

    
    

 

      
1 1

1 1

T

E
k Dab B C B d d

 

  
      

 

Where, D  is the flexural rigidity,  B  the bending stiffness of the element and  C  

   

2

2 2

2

2 2

2

1

1
( , )

2

a
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b

ab






 
 

 
 

  
 

 
 

  

,  

1 0

1 0

0 0 (1 ) / 2

C

v





 
 


 
       

 

Total number of elements in plate is 

*EN M N , 

Total kinetic energy (T ) and strain energy ( EU ) are 

          
1

1 1

2 2

EN
T T

E E E
E

T u m u q M q


     
   

 

 

          
1

1 1

2 2

EN
T T

E E E E
E

U u k u q K q


 
     

 

Where  q is a vector consisting of all the independent nodal displacements ( , ,x yw   ) and  M & K

are the global mass and stiffness matrices that are assembled from the element mass  
E

m and stiffness 

 
E

k matrices. Applying the Lagrange’s approach  



Analysis of simple supported plate for active vibration control with piezoelectric sensors and 

actuators 
 

www.iosrjournals.org                                                       30 | Page 

 

   .
0

d T U

dt q
q

 
  
   

  
 

       

The second order governing differential equation is 

      0M q K q    

This is the discretized model of free vibration of plates 

{ } { }sinq x t
      

 

Putting the values of ,q q   in equation  

2[ ]{ } [ ]{ }M x K x 
      

 

The natural frequency of the system ( w ) and the associated mode shapes are denoted by x . The natural 

frequencies or the Eigen values are the roots of the characteristics equation 
2( [ ] [ ]) 0M K    

Material properties and dimensions for plate 

Parameter Plate

Length (L) 160/1000

Breadth (B) 160/1000

Height (H) 0.6/1000

Density (rho) 7800

Modulus of Elastisity (E) 207 Gpa

Modulus of Rigidity (v) 0.3

 

First three natural frequencies for different mesh sizes for a plate 

Mesh Size 6X6 7X7 8X8

Freq 1 8.94896 8.93994 8.93398

Freq 2 14.9334 14.9334 14.9334

Freq 3 33.5536 33.661 33.7338

Mesh Size 9X9 10X10 11X11

Freq 1 8.92984 8.92685 8.92463

Freq 2 14.9334 14.9333 14.9332

Freq 3 33.7851 33.8226 33.8507

 
 

 

III. INDENTATIONS AND EQUATIONS 
3.1 Analytically by Rayleigh Method 

The deflection function is the product of beam functions 

( , ) ( ) ( )W x y X x Y y
      

 

Where ( )X x  and ( )Y y are chosen as the fundamental mode shapes of beam having the boundary 

conditions of plate 
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Frequency parameters are defined in terms of 
2wa

D


   where a is length dimension which is 

independent to  but as D depends upon  so do frequency. 

For simple supported plate supported at 0&x x a   

 

 1
( ) sin

m x
X x

a

 
  

 
    

( 2,3,4, )m    

And, free at 0&y y a   

( ) 1Y y      ( 0)n   

2
( ) 1
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Y y

b
      ( 1)n   

1

1

1

1 12
( ) ( ) cosh
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Y y cos
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
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
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      
   
 
   

( 2,4,6, )n    

The value of 1 are obtained as the roots of  

1 1tan tanh 0
2 2

    
    
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2

2

1 12
( ) sin ( ) sinh

2 2

2

sin
y y

Y y
b b

sinh






 
 

      
   
 
 

 ( 3,5,7, )n    

The value of 2 are obtained as the roots of  

2 2tan tanh 0
2 2

    
    

   
 

The indicators &m n  are the number of nodal lines lying in &x y directions, respectively including 

the boundaries as nodal lines, except when the boundary is free 

Solving, deflection function or mode shape is sin
x

a


 

The associated natural frequency as 
4

2

4

DK
w

a N






        

 

And fluxral rigidity D  is given by 
3

212(1 )

Eh
D





 

Frequency response for first three mode shapes  

Mode Freq        

1 8.926854

2 14.93329

3 33.82255
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3.2 Experimental values 

The experimental values of frequency parameter in “Stress, Strain and Structural Dynamics- An 

interactive handbook of formulas, solutions and Matlab Toolboxes” 

 

 

Frequency response for first three mode shapes  

Mode Freq        

1     8.6325    1.3739

2    14.4408    2.2983

3    32.7073    5.2055

 

Comparing first three natural frequencies conclude is drawn that the best mesh size is 10X10 and 

further piezo-electric patch is placed on the plate at all position in 10X10 mesh and further the global 

stiffness and mass matrices are calculated considering the effect of smart material used in the form of patches 

and state space formulation is done to find out the settling time for each patch. 

Finite element formulation and first three modes of vibrations of plate 

 

     

   
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 

 
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 

 


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      

    
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 
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Material Properties and dimensions of Piezo-Patch 

Parameter Piezo-Patch

Length (L) 0.02

Breadth (B) 0.02

Height (H) 1.06/1000

Density (rho) 7500

Modulus of Elastisity (E) 63 Gpa

Modulus of Rigidity (v) 0.3

 

3.3 Piezoelectric constitutive equations 

According to IEEE standards, in an unstressed 1D dielectric medium if  is the dielectric constant 

for material, the electric displacement  D  is related to electric field E  

D E  

Similarly, in 1D elastic body placed in a zero electric field if s is the compliance of material (inverse of 

young’s modulus of elasticity) strain S  and stress T  are related by  

S sT  

The electric and mechanical constitutive equations for a piezoelectric material are coupled by 
ES s T dE   

TD dT E   

 

3.4 Piezo patch bonded as sensor 

The charge per unit area and strain are related by 

31 11p

D eS

D E d 



 
 

The control voltage produced is, 
31

( ) [ '( ) '( )]
p p

o

f f

E d hQ
V t b a

C C
 


      

Thus sensor output is proportional to the difference of slopes at the extremities of the piezo strip. 

3.5 Piezo patch bonded as an actuator 
The resisting stress produced is 

11 11 31ep

p

V
E

h
           

ph is the height of piezo-patch bonded as an actuator 

 

3.6 State space analysis                          
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3.6.1 Model Reduction  

The final equation after embedding the piezoelectric sensor and actuator to the plate, when external 

force is taken as unit impulse force, is 

controlMp Kp q   

, , controlM K q are the mass, stiffness and the force co-efficient vectors of plate. The structure is modelled to 

retain large number of degrees of freedoms for better accuracy. In active vibration control of flexible 
structures, however the use of smaller order model has computational advantages. Therefore, it is necessary 

to apply a model reduction technique to the state space representation. The reduced order system model 

extraction techniques solve the problem of the complexity by keeping the essential properties of the full 

model only. The frequency range is selected to span first two or three frequencies of the smart plate in order 

to find the reduced order model of the system. Its state space mathematical model in principal coordinate 

system is obtained in Matlab from the modal analysis results. Consider a generalized co-ordinate for 

reduction as 

p Vz  

V is the modal vectors corresponding to the first two Eigen values. These are the first two columns in the 

modal matrix.  

control

T T T

control

T

red

MVz KVz q

V MVz V KVz V q
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 

 


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
  

T
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T
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 
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 
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y
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





 
 

  
 
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3.6.2 State space formulation 

In state space formulation, the second order differential equations are converted to first order 

differential equations. Considering the following notations,  

1 2 3

1 4

2 5

3 6

4 5 6

, , ;

,

,

;

, ,

x y

x

y

x y
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
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  
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 

 

 
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4 1

e 5 e 2 e

36

r d r d r d

x x
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xx

   
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 
   
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


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Multiply both sides by 
1

redM 
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A is known as the system matrix, B  is input matrix, C  is the output matrix, D  is the direct transmission 

matrix and ( )w t is the smallest input force. 
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IV. CONTROL LAWS 
In the present work one classical control law, which is based on output feedback and one optimal 

control law based on state/output feedback is considered. Linear quadratic regulator (LQR) optimal control 

theory is used to determine the active control gain. The following quadratic cost function is minimized 

0

1
( )

2

T Tj x Qx u Ru dt



   

Q & R  represent weights on the different states and control channels and their elements are selected to 

provide suitable performance. They are the main design parameters. J represents the weighted sum of energy 

of the state and control.  Assuming full state feedback, the control law is given by 

u Kx   

with constant control gain 
1 TK R B P  

 Matrix P  can be obtained by the solution of the Riccati equation, given by 
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1 0T TA P PA Q PBR B P     

The closed loop system dynamics with state feedback control is given by 

( ) ( )x A BK x Er t    

Alternatively, output feedback control provides a more meaningful design approach in practice. Measured 

outputs y  from sensors are directly feed back to actuators through 

( ) ( )

c

u Ky

x A BKC x Er t

A A BKC

 

  

 

  

The quadratic cost function can be written as 

0

1
[ ( ) ]

2

T T Tj x Qx C K RKC x dt



   

POF controller 

Here the minimum settling time is for the patches at 25, 26, 75 and 76th position in 10X10 mesh as 

shown in the graph between settling time and patch location. 

 

 

 

LQR controller 

Here the minimum settling time is for the patches at 25, 26, 75 and 76 positions for LQR controller 

in 10X10 mesh as shown in the graph between settling time and patch location. 

control off vs direct proportional feedback vs LQR controller 
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The optimal locations of sensor actuator pair (shown at 25)  

 

LQR control law is used to find the optimal location of sensor actuator pair attached in the form of 

piezo patch, hence the impulse response using LQR controller isTip displacement response and frequency 

response for control off and control on (LQR having Q=103, R=1) 
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Hence The optimal locations are 25, 26, 75 and 76  and the optimal size for patch for the plate 

having  size (0.16x0.16) and mesh size (10X10) our patch size comes out to be (0.02x0.02) 

V. CONCLUSION 
This research manuscript shows the basic technique of analysis of simple supported plate for Active 

Vibration Control using piezoelectric sensors and actuators. The optimal location and size of sensor actuator 

pair for a simple supported plateand control effectiveness of POF and LQR controller is obtained.The 

numeric example demonstrated the ability of developed method for optimal placement and size of sensor 

actuator pair based on LQR control strategy.  Results concluded that the sensor actuator pair is optimally 

located based on the lower settling time criteria. It is noted that the control effectiveness of POF controller is 
insignificant when compares to the LQR controller’s. Study also revealed that LQR controller offers optimal 

effectiveness with lower peaks in settling time as compared to other classical control strategies. 

 

REFERENCES 
[1] Lam K. Y. et al., 1997, “A finite-element model for piezoelectric composite laminates”, Smart Mater. Struct. , 6: 583–591. 

[2] Pai P. F. et al., 1998, “Structural vibration control using PZT patches and non-linear phenomena”,Journal of Sound and 
Vibration, 215(2): 273-296. 

[3] Balamurugan V. and Narayanan S., 2001, “Shell finite element for smart piezoelectric composite plate/shell structures and its 

application to the study of active vibration control”, Finite Elements in Analysis and Design, 37:713-738. 

[4] Li Y. et al., 2001, “Simultaneous optimization of piezoelectric actuator placement and feedback for vibration suppression”, PII: 
S0094-5765(01)00185-0. 

[5] Tylikowski A., 2001, “Control of circular plate vibrations via piezoelectric actuators shunted with a capacitive circuit”, thin-
Walled Structures, 39: 83–94. 

[6] Mukherjee A. et al., 2002, “Active vibration control of piezolaminated stiffened plates”, Composite Structures, 55: 435–443. 

[7] Yaman Y. et al., 2002, “Active vibration control of a smart plate”, ICAS2002 CONGRESS. 

[8] Caruso G. et al., 2003, “Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators”, 

Simulation Modeling Practice and Theory, 11: 403–419. 

[9] Li Y.Y. et al., 2003, “Modeling and vibration control of a plate coupled with piezoelectric material”, Composite Structures, 62: 
155–162. 

[10] Narayanan S. and Balamurugan V., 2003, “Finite element modeling of piezolaminated smart structures for active vibration 
control with distributed sensors and actuators”, Journal of Sound and Vibration, 262: 529–562. 

[11] Shimon P. et al., 2005, “Theoretical and experimental study of efficient control of vibrations in a clamped square plate”, Journal 

of Sound and Vibration, 282:453–473. 

[12] Luo Q. and Tong L., 2006, “High precision shape control of plates using orthotropic piezoelectric actuators”, Finite Elements 
in Analysis and Design, 42: 1009 – 1020. 



Analysis of simple supported plate for active vibration control with piezoelectric sensors and 

actuators 
 

www.iosrjournals.org                                                       39 | Page 

 

[13] Yang Y. and Zhang L., 2006, “Optimal excitation of a rectangular plate resting on an elastic foundation by a piezoelectric 

actuator”, Smart Mater. Struct.,15: 1063–1078. 

[14] Costa L. et al., 2007, “Modeling and numerical study of actuator and sensor effects for a laminated piezoelectric plate”, 
Computers and Structures, 85: 385–403. 

[15] Lin J. C. and Nien M.H., 2007, “Adaptive modeling and shape control of laminated plates using piezoelectric actuators”, 
Journal of Materials Processing Technology, 189: 231–236. 

[16] Nguyen Q. et al., 2007, “Evolutionary piezoelectric actuators design optimization for static shape control of smart plates”, 

Comput. Methods Appl. Mech. Engrg., 197: 47–60. 

[17] Qiu Z. C. et al., 2007, “Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate”, Journal 
of Sound and Vibration, 301: 521–543. 

[18] Kang Z. and Tong L., 2008, “Topology optimization-based distribution design of actuation voltage in static shape control of 
plates”, Computers and Structures, 86: 1885–1893. 

[19] Shirazi A. H. N. et al., 2011, “Active vibration control of an FGM rectangular plate using fuzzy logic controllers”, Procedia 
Engineering, 14: 3019–3026. 

[20] Yang B., 2005, “Stress, Strain and Structural Dynamics- An interactive handbook of formulas, solutions and Matlab 

Toolboxes”, Elsevier Academic Press 

[21] Liessa W.,  1990, “Vibration of Plates”, U.S. government printing press 

[22] Petyt M., 1998, “Introduction to finite element vibration Analysis”, Cambridge University Press 


