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 ABSTRACT: Modeling monsoon flows are difficult as they are characterized by irregularly spaced spiky large 

events and sustained flows of varying duration. This paper investigates the efficiency of the couple wavelet-

autoregression model (WR) for forecasting monsoon flows in a large river. WR combines two techniques, 

discrete wavelet transform (DWT) and autoregression (AR). DWT decomposes the original flow time series 

(OFTS) into its constituent wavelet components. Thereafter, a modified flow time series (MFTS) is obtained by 

removing the noise and recombining effective wavelet components. WR is an autoregression model implemented 

upon MFTS. The performance of WR models are evaluated using monsoon flows of the Kosi River at 

Barahchhetra gauge-site. During monsoon (June to September), the Kosi carries large flows submerging a 

large part of Bihar State of India. The results of the study show that the proposed WR models forecast river 

flows more reliably than autoregression (AR) and artificial neural network (ANN) models, developed for the 

comparison purpose. The best performing WR model, with three previous days’ flows as inputs, predicted the 

Kosi flows with 90.4% accuracy, while the best ANN and AR models forecasted them with only 87.8% and 

82.2% accuracies respectively. In addition, WR models predicted relatively reasonable estimates for the 

extreme flows, showing little bias for under- or overprediction. 

Keywords - Artificial neural network, autoregression, discrete wavelet transform, floods, Kosi, India  

1. Introduction 
Forecasting river flows constitutes major input information for issues such as water resources planning and 

management, water diversion, flood fighting and environment sustainability. Most of the previous works on 

river flow forecasting reported in literature can broadly be kept into two major groups, conceptual and data-

based. The conceptual models, despite adequately describing the hydrological processes based on physical laws, 

are not very popular as they require intensive data and complicated differential equations for their 

implementation. On comparison, data-based models have recently gained popularity in hydrological applications 

due to their rapid development times, fewer data requirement and ease of real-time implementation [1]. These 

models establish input-output relationships without accounting explicitly to the physical laws which govern the 

hydrological processes. Autoregression and artificial neural network are very popular data-based forecasting 

techniques; however, autoregression models are found unsuitable for handling data with transitory 

characteristics such as drifts, trends and abrupt changes. Though, artificial neural network has the ability to learn 

relationship between non-stationary inputs and outputs [2], its optimal structure is hard to determine. In 

addition, the surface of the objective function of a neural network is non-convex and contains multiple local 

optima where the network solution gets easily trapped.  

     In the last decades, the wavelet transform has become a useful data-based technique for analyzing variations, 

periodicities and trends in a time series. [3] used discrete wavelet transform for classifying streamflows into 

distinct hydro-climatic categories. [4] applied wavelet methods to model rainfall and runoff measured at 

different sampling rates, from daily to half-hourly. [5] used DWT for updating wavelet coefficients of a unit 

hydrograph and convoluted these coefficients with effective rainfall for predicting one-step-ahead runoff in a 

Taiwanese Basin. [6] used wavelet analysis to identify variability in annual flows in Canadian Rivers. [7] 

implemented wavelet regression for modeling daily flow rates of Arkansas River at Syracuse and Kendail gauge 

stations in USA.  [8] successfully used DWT for determining possible trends in the annual precipitation in 

Turkey. [9] developed wavelet network model to forecast seasonal mean discharge, mean daily discharge and 

annual mean discharge for Three Gorges dam in Yangtze River of China. [10] developed a wavelet regression 

model as an alternative to neural network for monthly streamflow forecasting. [11] developed a hybrid model of 

wavelet and artificial neural network to predict sediment load in rivers. [12] developed a combined model of 

generalized regression neural network and wavelet for monthly streamflow prediction. [13] developed 

continuous wavelet transform to investigate the variability of lake levels in four lakes in the Great Lakes 

Region.  [14] developed a wavelet-ANN conjunction model to predict the monthly concentration of diffuse 

pollution in a stream. [15] developed wavelet regression models for forecasting river stages and found them 
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superior to ANN and AR models. [16] developed wavelet-ANN and wavelet-support vector machine models for 

reservoir inflow prediction.  

     The foregoing discussion suggests a time series when pre-processed by wavelet transform improves the 

accuracy of a forecasting tool. This is because in dissociation of a time series by wavelet transform, the noise 

component can be easily identified and removed. In the present study, the efficiency of a coupled model of 

discrete wavelet transform and autoregression was investigated for predicting monsoon flows. Predicting 

monsoon flows poses greater challenge as their magnitude and variation are very high. Autoregression was 

selected as a forecasting tool as it is simple to develop and widely used for hydrologic modeling. We also 

included ANN as it is well suited for modeling nonlinear, nonstationary and nongaussian processes like those 

encountered in hydrological contexts. A case study of the developed models was made to the Kosi River in 

India. The Kosi, also nicknamed ‘Sorrow of Bihar’, has a long history of flooding and meandering. Accurate 

flow forecasting should go a long way in taking up flood fighting and water diversion measures.  
 

2. Adopted Methodologies 
The following subsections describe the methodologies adopted in the present work: 

2.1 Artificial Neural Network 

ANN, first introduced by [17] as a mathematical structure capable of representing the complex nonlinear 

processes that relate the inputs to the outputs of a system, is inspired by the neural structure of our brain. It can 

be characterized as massively parallel interconnections of simple neurons that function as a collective system. 

This ability of ANNs to capture relationships from given patterns has enabled them to be employed in various 

hydraulic and hydrologic problems such as  rainfall-runoff modeling, stream flow prediction, ground water 

modeling, water quality, water management, precipitation forecasting, time-series analysis, reservoir operations 

and other hydrologic applications. A review of ANN applications in hydrology is presented in [18]. 

     The most widely used ANN structures are three-layer feed forward networks. A typical three-layer feed 

forward ANN has g, n, and m nodes or neurons in the input, hidden, and output layers, respectively. Neurons of 

a layer are connected to every neuron of the succeeding layer but are not connected among themselves. The 

parameters associated with each of the connections nodes, called weights, signify relative importance of the 

connections. All connections are feed forward, i.e., they allow information transfer only from an earlier layer to 

the next consecutive layers. Each node j receives incoming signals from every node i, (
i ), in the previous layer 

magnified by the weight of the connection (
ji ). The effective incoming signal (αj) to node j is the weighted 

sum of all the incoming signals plus a bias (
j ), i.e. 

              (1)  

     The effective incoming signal, αj, is passed through a transfer function g (also called an activation function) 

to produce the outgoing signal (yj) of the node j. In this study, sigmoid nonlinear transfer function has been used 

in the hidden as well as the output layers, i.e.  

           (2) 

     In the above equation, the incoming signal αj can vary on the range (-∞, ∞), and the output signal yj on the 

range (0, 1).  Because of  sigmoid transfer function in the present study, data variables are normalized onto 

range (0, 1) before applying  the ANN methodology.  To determine the set of optimal weights and biases, the 

created ANN network is first trained using known inputs and outputs in some ordered manner, adjusting the 

interconnection weights and biases until the desired outputs are achieved. The Levenberg-Marquardt training 

algorithm [19] was employed in this study. The algorithm assumes that the underlying function modeled by 

ANN is linear. The number of nodes in the hidden layer is determined by trial and error. In the present work, 

ANNs with range of 1-12 hidden nodes were tried on the training datasets. The ANN producing the best 

performance, i.e., the minimum root mean square error on the verification dataset was selected for forecasting 

the Kosi flows. [20] has given a good illustration of the working of ANN.  
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2.2 Autoregression 

It has been observed that the values of a discharge series of a river at a particular time-step are highly related 

with the values that precede and succeed them; therefore, the system can generate internal dynamics between 

inputs and outputs. A P
th

 order autocorrelation, i.e., AR (P), which refers to the size of the correlation between 

values in a time series that are p periods apart is given by 

                  (3) 

     where  are the autoregression coefficients,  is the time series under investigation and P is the order 

(length) of the AR model. The residue term, εt, is assumed to be the Gaussian white noise.  P is generally much 

less than the data length of the series. Thus, in autoregression, the current discharge can be estimated by a linear 

weighted sum of previous discharges in the series. The weights are the autoregression coefficients which are 

normally estimated using the least square method based on Yule-Walker equation. AR has been a popular 

method in a wide spectrum of engineering problems. Some of the recent applications of AR in water resources 

engineering may be found in [21] and [22]. 

2.3 Discrete Wavelet Transform 

Wavelet analysis is a windowing technique in which signals are broken up into shifted and scaled versions of an 

original wavelet, called as the mother wavelet (Fig. 1). A wavelet is a waveform of effectively limited duration 

that has an average value of zero. On comparison, sine waves, which are the building blocks of Fourier analysis, 

have unlimited duration extending from minus infinity to plus infinity. Also, wavelets are irregular and 

asymmetric unlike sinusoids which are smooth and predictable.  These attributes make wavelets suitable for 

analyzing signals with transitory characteristics such as drifts, trends and abrupt changes.  

     A wavelet transform involves convolving the signal against particular instances of a wavelet at various time 

scales and positions. To perform these convolutions at every position and scale, a mathematical technique called 

continuous wavelet transform (CWT) is implemented. CWT of the time series, f (t), with respect to a mother 

wavelet,  (t), is defined as the sum over all time of the signal multiplied by the scaled and shifted version of the 

mother wavelet  (t):  

                                   (4) 

     The results of CWT are many wavelet coefficients. They are functions of scale and position and give a 

measure of correlation between the scaled and shifted wavelet and the original signal. The conjugate wavelet 

basis functions, are derived from a common mother wavelet function  by scaling (or dilating) 

it by  and translating it by  :  

         (5) 

     Determining wavelet coefficients at every possible scale is an enormous task and time consuming. Moreover, 

actual flow data are measured at specific time intervals and are discrete in nature. DWT is found more suitable 

in analyzing such time series. DWT normally uses dyadic scheme of wavelet decomposition where alternate 

scale and position is adopted for calculating transform coefficients, reducing the computational burden. For a 

discrete time series   with integer time steps, DWT in dyadic decomposition scheme is defined as  

               (6) 
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     where,  is the wavelet coefficient for scale a=2
m

,  and location b =2
m 

n,  m and  n being positive integers. 

N is the data length of the time series and is an integer  power of 2, i.e., N=2
M

. This gives the ranges of m and n 

as 0 < n < 2
M-m 

-1 and 1 < m < M, respectively. The original time series may be reconstructed employing 

inverse discrete transform: 

                  (7) 

or, in a simple format as: 

                                                                                               (8) 

where,  is called approximation sub-time series (denoted by A in this study) at level M and  are 

details sub-time series (denoted by D in this study)  at levels . 

    [23] devised an efficient way of estimating DWT coefficients at every subset of scale and position utilizing 

filters. The process consists of a number of successive filtering steps in which the time series is decomposed into 

‘approximation’ and ‘details’ sub-time series/wavelet components. Approximation wavelet components 

represent the slowly changing coarse features of a time series and are obtained by correlating stretched version 

(low-frequency and high-scale) of the mother wavelet with the original time series, while detail coefficients 

signify rapidly changing features of the time series and are obtained by correlating compressed version of the 

mother wavelet (high-frequency and low-scale) with the original time series. The decomposition process can be 

iterated, with successive decomposition of approximation wavelet components so as to break the original signal 

into many lower resolution components (Fig. 2).  

2.4 Wavelet-Autoregression 

A conjunction model, WR, is formed by combining DWT and AR. DWT decomposes OFTS into its wavelet 

components on suitable decomposition levels. With the increase in decomposition level, fluctuation reduces and 

we see a smooth series at the third resolution level. This can be observed from Fig. 3 which shows the 

decomposed wavelet components of the Kosi River on three decomposition levels. For accurate and reliable 

modeling, it is important to remove the noise components from a time series. With this objective, a correlation 

study between the sub-time series and the original time series was carried out (Table 1).  In Table 1, Dit-1 

denotes the sub-time series on i
th

 resolution level at time t-1 and Qt denotes the original time series at time t. As 

can be seen, the coefficient of correlation increased with increase in resolution level. MFTS is developed 

combining sub-time series components D2, D3 and A3. Thus, MFTS is the denoised version of OFTS and WR is 

essentially an autoregression model that uses MFTS hydrograph for input. The working structure of WR model 

is shown in Fig. 4.  

 

3. Model Implementation 
Three models each of WR (e.g., WR1, WR2 and WR3), AR (e.g., AR1, AR2 and AR3) and ANN (e.g., ANN1, 

ANN2 and ANN3) were developed. Table 3 shows the structures and inputs for the developed models. WR3, for 

example, had qt-1, qt-2 and qt-3, i.e., 1-day-, 2-days- and 3-days-before flows respectively from MFTS for inputs, 

while inputs for AR3 and ANN3 consisted of Qt-1, Qt-2 and Qt-3, i.e., 1-day-, 2-days- and 3-days-before flows 

respectively from OFTS. The desired output in all models was the current flow, i.e., Qt. For performance 

evaluation, prediction by WR, AR and ANN models are compared using statistical indices like coefficient of 

correlation (CC), root mean square error (RMSE), discrepancy ratio (DR) and % accuracy, which are defined as 

         (9) 

                    (10) 

           (11) 
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          (12) 

     where 
pQ and mQ are the predicted and measured flow rates in the river respectively; Sp and Sm are standard 

deviations in the predicted and measured flows, respectively; N is the total  number of observations and 
'N  is 

the number of predictions lying between 80% and 120% of the measured values (i.e., DR value lying between -

0.1 and 0.1). From Eq. (11), DR=0 suggests exact match between the measured and the predicted flows, 

otherwise, there is either underprediction [DR<0 i.e., 
pQ < mQ ] or overprediction [DR>0, i.e., 

pQ > mQ ].  

3.1 Study Area 

The Kosi River, a transnational river, originates at an altitude of over 7000 m above MSL in the Himalayas. Its 

upper catchment lies in Nepal and Tibet. Mount Everest, the highest peak in the world, lies in its catchment. Its 

basin is surrounded by the ridges separating it from the Brahmaputra in the north, the Gandaki in the west, the 

Mahananda in the east and the Ganga in the south. The Kamla, the Baghmati (Kareh) and the Budhi Gandak are 

major tributaries of the Kosi in India, besides many other minor tributaries. Through Nepal, the Kosi enters the 

Indian Territory near Hanuman Nagar in Bihar State of India where it flows through a length of 260 km before 

meeting the Ganga River in Katihar District of Bihar. The Kosi River drains a total catchment area of 74030 sq 

km, out of which only 11410 sq km lies in India and the rest in Tibet and Nepal. The catchment map of the Kosi 

in India along with the other adjoining river basins is shown in Fig. 5. Flooding in the Kosi Basin is a recurrent 

event. Any heavy downpour in its upper catchment rushes toward the Indian Territory which takes away many 

lives and causes damage to infrastructure, agriculture and industrial production. In the year 2008, a breach in the 

Kosi embankment caused the biggest ever flood disaster in India that spread to over 0.4 million hectares of land 

affecting over three million people. Because of steep gradient and loose nature of soil in its upper catchment, the 

Kosi carries heavy silt and has tendency to move sideways. In the last 200 years, the river has moved laterally 

by about 170 km. To confine the river and to control the flood damages, long embankments measuring 798 km 

on both sides of the river are constructed. Although, the embankments have confined the lateral shift of the river 

to a large extent, frequent breaches and over-toppings of the embankment have made flooding a perpetual 

challenge in the area. The hydro-meteorological data is collected in the region through a network of gauge and 

discharge stations on the various North-Bihar Rivers by government agencies like Central Water Commission 

and Water Resources Department.  

     For deriving and verifying the developed models, the Kosi’s flow data for five years at Barahchhetra gauge-

site for the monsoon period were used. While 492 daily flow data for the years 2001-04 were used for deriving 

the models, 241 daily flow data for the years 2006-07 were utilized for verifying the models. Due to 

unavailability of the data, the year 2005 could not be included in this study.  Table 2 summarizes the statistical 

information on the observed flow data of the Kosi River for the monsoon period.  

     To derive WR models, first, OFTS is decomposed into its sub-time series by DWT on suitable resolution 

levels. [24] suggested log (n) resolution levels, where n is the length of the time series. In our study, 492 daily 

data were used for deriving the models, hence three decomposition levels were considered sufficient. The sub-

time series, i.e., D1, D2 and D3 represent detail sub-time series corresponding to 2-, 4- and 8-days’ scale or 

periodicity respectively, while A3 represents approximation sub-time series of 8-days’ scale. According to [2], 

D1 components make forecasting time series difficult as it has the lowest correlation and may contain the noisy 

part of the original time series, therefore, D1 was excluded and a modified flow time series was obtained by 

adding D2, D3 and A3 sub-time series. The selection of a suitable mother wavelet in decomposing the time 

series is a critical issue as the efficiency of WR models is also dependent on it. Widely used wavelets in 

hydrological modeling are haar, db3, db6, db10, sym9, coif5, bior6.8, rbio6.8 and dmey. In this study, db6 was 

found the most suitable mother wavelet for simulating the Kosi River flows.  

4. Results and Discussion 
The performance of the developed models was evaluated for forecasting the Kosi flows at Barahchhetra gauge-

site for the monsoon period. Table 3 summarizes the performance of the models for the derivation as well as the 

verification datasets. It shows WR models performing better than AR and ANN models. Even the simplest 

wavelet regression model,  WR1, with just one input, predicts the flows with accuracy as high as 89.6% for the 

verification dataset, where % accuracy is defined as the percentage of predicted values lying between 80% and 

120% of the measured values. On comparison, ANN1 and AR1 have the accuracies of only 84.7% and 81.3% 
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respectively. The other performance indicators, CC and RMSE are also found superior for WR1 than for ANN1 

and AR1. For the derivation dataset also, WR1 performs better than AR1 and ANN1. Another input, q t-1/Qt-1 

was added to WR2, AR2 and ANN2 to see the effect of an additional input on the performance of the models. 

As can be seen from Tables 3, the performance of the wavelet and the  neural network models improves with 

better CC, RMSE and % accuracy parameters, however, there is hardly any improvement in autoregresson 

model.  Models WR3, ANN3 and AR3 were developed with three antecedent days’ flows as inputs. As can be 

observed from Table 3, their performance is only marginally better than the previous models. In fact, there is no 

improvement in AR model for the verification dataset while RMSE slightly decreases from 502 m
3
/s to 501 m

3
/s 

for the derivation dataset. Also, the performance of ANN3 deteriorates for the derivation dataset as RMSE 

increases from 483 m
3
/s to 485 m

3
/s, however, for the verification dataset, it decreases from 593 m

3
/s to 590 

m
3
/s.   

     Of all the developed models, WR3 (Eq. 13) predicts the Kosi flows best with CC of 0.934, RMSE of 544 

m
3
/s and %accuracy of  90.4 for the verification dataset. For the derivation dataset also, its performance is better 

than AR3 (Eq. 14) and ANN3, which are found the best performing models in autoregression and artificial 

neural network categories. WR3 successfully predicts the highest three flows of 9149 m
3
/s, 8518 m

3
/s and 8395 

m
3
/s from the whole dataset as 8674 m

3
/s, 7570 m

3
/s, and 8252 m

3
/s, respectively. On comparison, prediction 

for the highest three flows by AR3 and ANN3 are 5597 m
3
/s, 6855 m

3
/s and 6276 m

3
/s respectively, and 7948 

m
3
/s, 8135 m

3
/s and 7659 m

3
/s respectively. The prediction by WR3 for the low discharges also seems to be in 

good agreement to the measured data, estimating the lowest three flows of 853 m
3
/s, 878 m

3
/s and 993 m

3
/s as 

921 m
3
/s, 1115 m

3
/s, and 951 m

3
/s respectively, while AR3 and ANN3 predict them as 1126 m

3
/s, 1219 m

3
/s 

and 1098 m
3
/s  respectively, and 1055 m

3
/s, 1166 m

3
/s and 1026 m

3
/s  respectively. This implies that WR3 

captured the input-output pattern well even for the extreme flows.  

        (13)   

       (14) 

     Fig. 6 shows the predicted and measured flows of the Kosi River for the verification dataset by WR3, AR3 

and ANN3. It shows WR3 to have the least deviation between the measured and predicted Kosi flows. Another 

performance indicator of a model, the DR range, which shows proximity between the predicted and the original 

flow time series, for WR3, is -0.20 to 0.16, showing little bias for underprediction. However, models AR3 and 

ANN3 show greater positive and negative skewnesses respectively with DR ranges -0.25 to 0.28 and -0.24 and 

0.22 respectively. Fig. 7 shows percentage of predicted values by different models falling into different 

discrepancy brackets. It shows an even distribution for the predictions by WR3 with 97% of predictions lying 

between DR range of -0.2 and 0.2, the best among all models. 

     Though, the above discussion suggests WR models efficient in monsoon flow forecasting, it should be 

understood that the present study used daily flow data for only 5 years which may not be representative of 

complexity of a large river system like the Kosi. Furthermore, the developed models are location and period 

specific; hence, these models are sensitive and may have significant phase problems if made to forecast flows 

for non-monsoon periods, as the causes of floods are different at other points of the year. For example, monsoon 

rainfall brings floods in North Bihar Rivers during June–Sept, while glacier-melt contributes significantly to 

their flows during Jan-May. Therefore, the forecasting models should be developed for a specific period by 

considering the data for that period only. 

 
5. Conclusions 

A coupled method, wavelet regression, was developed combining discrete wavelet transform and autoregression 

to predict monsoon flows in a large river. Monsoon flows are irregular high flows with large variations, 

modeling of which poses great challenge. Three WR models were developed and a practical application of the 

developed models was made to the Kosi River at Barahchhetra gauge site. The performance of WR models was 

evaluated along with AR and ANN models, developed for the comparison purpose. Based on several statistical 

indices like coefficient of correlation, root mean square error and discrepancy ratio, it was concluded that WR 

models predict flows with greater accuracy than AR and ANN models. The best performing WR model, with the 

last 3 days’ antecedent flow rates as inputs, predicted the current Kosi flows with 90.4% accuracy while the best 

performing AR and ANN models predicted these flows with  only 87.8% and 82.2% accuracies respectively. 
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Figure 1. Decomposition of time series into wavelets 

 

Figure 2. Decomposition of time series into approximations and details 

 

Figure 3. Decomposition of the Kosi flow series into wavelet components (derivation dataset) 

 

Figure 4. Working structure of WR model 
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Figure 5. Basin map of the Kosi and the adjoining rivers (FMIS 2013) 

 

 

Figure 6. Observed and predicted flows in the Kosi River (verification dataset) 

 

 



IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) 

e-ISSN: 2278-1684, p-ISSN: 2320-334X 

PP 43-53 

www.iosrjournals.org 

International Conference on Innovations in Civil Engineering                                                 52 | Page 

SCMS School of Engineering and Technology 

Figure 7. Comparison of discrepancy ratio 

 

Table 1: CC between the wavelet components and the flow time series 

of the  Kosi at Barahchhetra  

Wavelet 

component 

Dit-1/Qt Dit-2/Qt Dit-3/Qt Dit-4/Qt Avg. 

Di (i=1) -0.053 -0.073 0.028 0.058 -0.010 

Di (i=2) 0.083 0.061 0.131 -0.101 0.044 

Di (i=3) 0.436 0.253 0.121 -0.043 0.192 

Wavelet 

component 
A3/Qt A3/Qt A3/ Qt A3/Qt Avg. 

A3 0.761 0.673 0.575 0.573 0.646 
 

                           Table 2. Statistical characteristics of the Kosi’s monsoon flows at Barahchhetra  

 

 

Data set Mean 

 

(m
3
/s) 

Minimum 

 

(m
3
/s) 

Maximum 

 

(m
3
/s) 

Standard 

Deviation 

(m
3
/s) 

Skewness 

 

 

Derivation 

(2001-04) 
3437 764 9149 1530 1.0 

Verification 

(2006-07) 
2981 853 6826 1053 1.0 

Whole 3136 764 9149 1453 1.0  
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Table 3.  Performance indices of the developed models  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  Qt-n and qt-n are n-day antecedent flows for OFTS and MFTS, respectively; n=1..3 

 

Input 

variables 
Model 

Derivation 

dataset 
Verification dataset 

CC 
RMSE 

(m
3
/s) 

CC 
RMSE 

(m
3
/s) 

DR Range 

 

Accuracy    

(%) 

qt-1 

 
WR1 0.923 392 0.928 570 -0.22  to 0.17 89.6 

Qt-1 

 

AR1 0.900 503 0.881 664 - 0.25 to 0.28 81.3 

ANN1 

 
0.916 478 0.907 616 - 0.24 to 0.26 84.7 

qt-1 & 

qt-2 
WR2 0.935 373 0.934 545 - 0.20 to 0.16 90.2 

 

Qt-1 & 

Qt-2 

 

AR2 0.901 502 0.882 664 - 0.26 to 0.28 82.2 

ANN2 

 
0.916 483 0.915 593 - 0.24 to 0.22 87.0 

qt-1, 

qt-2 &  qt-3 
WR3 0.935 373 0.934 544 - 0.20 to 0.16 90.4 

Qt-1, 

Qt-2 & Qt-3 

 

 

AR3 0.901 501 0.882 664 - 0.25 to 0.28 82.2 

ANN3 

 
0.921 485 0.919 590 - 0.24 to 0.22 87.8 

 


