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Abstract: A model has been designed to analyze the arc-anode interaction and fluid flow in a transferred arc 

based system. Computational domain consists of an aluminium anode and a transferred arc plasma torch 

situated in cylindrical chamber, which is cooled by water. This model symmetry about its axis and it is 

considered as axis symmetric model. CFD commercial code FLUENT is used to model the plasma flow, solid 

anode and computation of vapour flow in plasma gas. Argon gas is used to form plasma. Different rates of 

current are used during computations and fluid flow is constant. Rate of cooling for particles for different 

current is measured. For 125 Amp current & 5 lpm gas flow rate, cooling rate of particle is computed to be 

41,340 K/Sec. 
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I. INTRODUCTION 
In transferred arc systems, interaction between arc and anode is important because heat transfer from 

arc to anode governs the rate and profile of vaporization. The nucleation and growth of the particles then 

depends on how the vapour flows in the plasma gas. Current has important effect on the flow of gases near the 

anode and their effect on the vapour flow need to be understood. Thus in our study, we have focused on 

computing and analysing the arc-anode interaction and the flow of plasma gas under the effect of various forces. 

For our study, we have chosen a system, which is used for producing vapour flow in plasma gas. 

The system employs a transferred arc torch and an aluminium block as anode. The torch and anode are 

located in a cylindrical chamber, which is cooled by water.  This configuration provides symmetry about its axis 

and two dimensional axis symmetric models has been employed. 

The aim of this study is two folds, simulation of the arc in the system and understanding the electrical 

and thermal interaction between the arc and the anode. We have then applied this understanding to analyze the 

flow of vapour speared from the anode into the plasma gas. We model the following for our study: the plasma 

column, the anode, the energy transfers between the plasma column and anode taking into account the current-

carrying path both in the plasma and anode block. Calculations are carried out using the commercial software 

FLUENT version 6.3.26, with user defined function added to take in the effects specific to thermal plasmas. 

The computations are done for different flow rates of plasma forming gas. Effect of heat and current 

between plasma and anode is calculated. Effect of temperature and velocity is analyzed. Rate of cooling of 

particles are also reckoned.  

 

II. ASSUMPTIONS 
We have carried out our simulations under the following assumptions:  

The arc is axially symmetric, which means that the hydrodynamic equations could be written in two-

dimensional cylindrical coordinates (r, z).  

The plasma column is assumed to be in LTE.  

The plasma is a Newtonian fluid.  

The flow is assumed to in steady state.  

Properties of the plasma gas depend on the local temperature.  

The anode surface is supposed to be spatially and temporally not deformable.  

Effect of the evaporation from the anode surface and the presence of metal vapour in the plasma are neglected. 

Flow in the molten metal is not modelled and thus we have not modelled the welding pool effects (magnetic 

pressure, Marangoni effect, arc pressure, etc.).  

The effects of gravity are neglected. As explained by Lowke [1] in his paper, the gravity term is negligible when 

the current is higher than 30 A due to the magnitude of the weight compared with the axial gradient of the 

pressure. 

 

III. GOVERNING EQUATIONS 
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In this section, we present the mathematical model for a two dimensional system. System consists of a 

transferred arc torch, an aluminum anode located at an axis symmetric position in a cylindrical chamber. 

Location of outlet makes the overall process non axis symmetric but in a large chamber, effect of this non 

symmetry on the near arc processes is neglected. Thus, system is modeled as a two dimensional axis symmetric. 

As the plasma can be approximated to a fluid, the Navier-Stokes equations are used to describe the plasma 

column. Apart from the Navier-Stokes equations, which solves current conservation equation, has been added. 

The conservation equations for various quantities such as energy, mass, momentum, current, turbulent kinetic 

energy and its dissipation rate etc. can be written in the generalized form suggested by Patankar [2]: 

∇    .  ρυ  ϕ =  ∇    .  Γϕ∇   ϕ + Sϕ 

where, ɸ represents the scalar quantity for which the conservation equation is to be solved, ρ is the fluid mass 

density, vthe velocity vector, Γφ the diffusion coefficient for the scalar, Sɸthe source term. 

Table 1 Conservation equations in the generalized form of Patankar 
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Mass fraction Xi ρD 0  

The various quantities for which the conservation equations are solved for a two dimensional axis 

symmetric system are presented in Table 1. ɸ is replaced by T, the temperature, u, v, and the axial & radial 

components ofthe velocity or V, the electric potential V while solving for energy, momentum and current 

conservation equations respectively. It assumes the value of 1 when we solve for the mass conservation 

equation.  Γɸ, the diffusion coefficient and S, the source term for each conservation equation is also given in the 

Table 1. In equations (2) - (7), µ, κ, CP and σ are, respectively, the viscosity, the thermal conductivity, the 

specific heat and the electrical conductivity of the gas.The thermodynamic and transport properties depend on 

the local temperature. 

P represents the pressure. The source term, S, in the energy equation represents Joule’s effect, the 

radiation losses (U) and the electronic enthalpic flux. The losses by radiation can be written as 4πεN, where εN is 

the net emission coefficient taken, in our case, for a 3 mm radius. jzand jrare the axial and radial current density 

components, and Bθis the azimuthal magnetic induction. Argon is used as the plasma gas for all our study. For 

argon, the transportcoefficients come from data generated by Thiagrajan using the computer code developed by 

Murphy. The emission coefficients for argon were taken from [3]. 

Current density jzand jr are obtained by solving the electric potential distribution equations (8) and (9). 

jz =  −σ
∂V

∂z
 

jr =  −σ
∂V

∂r
 

The magnetic field in the theta direction is calculated using vector potential approach [5]. Here Arand Az are the 

radial and axial component of vector potential. 

Bθ =  
μ0

r
 jz r 

R

0
rdr 

System description, Computational domain and Boundary conditions 

(9) 

(1) 

(8) 

(10) 
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To analyze the fluid flow behavior in a transferred arc we have chosen a geometry, which has been 

used for producing metal vapour flow in the system.  Schematics of cross section of the chamber are shown in 

the Figure 1. The chamber is of 450 mm height and 225 mm radius. Though in the actual system [4, 5] the gas 

outlet of the chamber makes it non axis symmetric but as the outlet is located far from the axis, its effect on the 

near axis processes is assumed to be negligible and the system is modeled as two dimensional axis-symmetric. 

The important dimensions of the system are given in Table2. 

The boundary conditions are listed in Table 4. Due to axis symmetry only one half of system shown in Figure 1 

is used as computational domain. 

 

 
Fig. 1 Schematic of system 

Table2 System Dimensions 

Boundary Dimension (mm) Description Boundary Dimension (mm) Description 

1 – 2 320 Chamber wall 13 – 11 20 Insulating wall 

1 – 14 175 Chamber wall 11 – 10 30 Anode base wall 

8-8` 4 Cathode tip 11 – 12 30 Anode side wall 

3-3` 20 Outlet 8 – 9 52 Symmetry axis 

6 – 7 4.5 Inlet 5 - 8` 1 Tourch nozzle 

13 – 14 70 Chamber wall    

All the external boundaries except the anode base are taken as water cooled boundaries. The water cooled 

boundaries are defined as convection heat transfer boundaries with the value of heat transfer coefficient h is 

taken to be 4000 w/m
2
K. The anode base is taken as fixed temperature boundary. 

Table3 Boundary conditions 

Boundary u V T V Boundary u V T V 
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9 – 12 

u = 0 v = 0 Eq.(15) Eq.(16) 
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Current density profile at the cathode tip is taken to be linear as suggested by [5] and given by the equation (11). 

rspotis the radius of the arc spot at cathode, I is the total arc current and r is the distance from the axis. 

j r =  
3I

ΠrSpot
2  1 − 

r

rSpot
  

The computation domain was meshed using quadrilateral elments. The mesh consist of 5345 cells and 5594 

nodes. Total arc flow was 5 lpm and the rate of current was varied from 125 A to 200 A. 

IV. RESULTS 

(11) 
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Simulations have been done by varying current between 100 Amp to 200 Amp and the flow rate of 

plasma gas is constant 5lpm. These values are chosen keeping in mind the range of values generally used in 

systems described in previous section. We have presented cooling rates of different particles. Implications of 

these data to the evaporation and subsequent vapor flow are then discussed.  

Pathlines are used to visualize the flow of mass less particles in the problem domain. The particles are released 

from one or more surfaces that we have created with the tools in the Surface menu. A line or rake surface is 

most commonly used. 

The Transform Surface panel allows us to create a new data surface by rotating and/or translating an 

existing surface, and/or by specifying a constant normal distance from it. Transform Surface contains a list of 

existing surfaces from which you can select the surface to be transformed. The selected surface will remain 

unchanged; the transformation will create a new surface. 

       
Fig. 2 Temperature Pathlines of transform 37&Fig. 3 Temperature Pathlines of transform 35 

 

Here, first we separated cathode in to 8 different cathode segments. After that we transformed those 

cathodes to 5 mm in negative x-direction. Transformed 37 are transformed of cathode 0 and cathode 1. 

Similarly, transformed 38, 39 and 40 are transformed of cathode 2 & 3, transformed of 4 & 5 and transformed of 

cathode of 6 & 7. 

For 125 A & 5 lpm case, Temperature vs. Time graph for particle 1 of Transform 37, which is most 

outer particle of the all particles, is shown in Figure2 and similarly, Temperature vs. Time graph for particle 4 of 

Transform 35, which is last particle to go out of inside stream, is shown in Figure3. 

Transform 35 has 8 particles and all 8 particles are travel inside the chamber as shown in Figure 3.Cooling rate 

for Transform 37 Particle 1 (most outer particle) = 32.71e03 K/Sec.Cooling rate for Transform 35 Particle 4 

(first outer particle) = 49.97e03 K/Sec. 

 
Fig. 4 Temperature vs. Time graph of  Fig. 5Temperature vs. Time graph of 

particle 1 of transform 37    particle 4 of transform 35 

 

Table4 shows the cooling rates of particles for different cases. Here, we can observe that when the gas 

flow rate is increased, average cooling rate of particle is increased. Similarly, when the current is increased, 

average cooling rate of particle is also increased. 

Table4 Cooling rates for the particles for different cases 

Sr. No Case Data for Particle Cooling Rate (K/sec) Avg. CoolingRate 

1 125 A 5 lpm 
Transform 37 Particle 1 32.71e03 

41.34e03 K/Sec 
Transform 35 Particle 4 49.97e03 

2 150 A 5 lpm 
Transform 37 Particle 1 22.55e03 

54.76e03 K/Sec 
Transform 35 Particle 2 86.37e03 

3 175 A 5 lpm Transform 37 Particle 1 17.78e03 67.66e03 K/Sec 

x 
y 

Fig. 2 
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Transform 35 Particle 2 117.55e03 

4 200 A 5 lpm 
Transform 37 Particle 1 12.03e03 

87.45e03 K/Sec 
Transform 35 Particle 2 162.88e03 

Equation (12) is used to find the cooling rate of the particle. Differentiate equation (12) with respect to 

time, so that we can find the slope for the curve and this is the rate of cooling for that particle. We can find the 

values of B1 and B2 from Table5 for respective particle. T = temperature and t = time. 

T = B1*t + B2*t
2
 + C 

Cooling rate of particle dT/dt = B1 + 2*B2*t 

Table 5Various details to find cooling rates of particles for different cases 

Sr. No Case 
Data for 

Particle 
B1 B2 C 

Time at 

2000 K 

1 125 A 5 lpm 
Transform 35 Particle 4 -8.1e05 7.8e06 2.3e04 0.02366 

Transform 37 Particle 1 -8.9e04 1.1e06 3.5e03 0.02602 

2 150 A 5 lpm 
Transform 35 Particle 2 4.1e05 -1.6e07 9.6e02 0.01622 

Transform 37 Particle 1 -7.5e04 9.3e05 3.4e03 0.0339 

3 175 A 5 lpm 
Transform 37 Particle 1 -1.6e05 6.9e05 3.3e03 0.03762 

Transform 35 Particle 2 -3.5e05 7.0e06 5.9e03 0.01676 

4 200 A 5 lpm 
Transform 35 Particle 2 -1.9e05 9.2e05 4.8e03 0.01610 

Transform 37 Particle 1 -5.9e04 6.6e05 3.2e03 0.03826 

 

V. CONCLUSION 
 

Fig. 6 Rate of change of cooling rate for different particles 

Rate of cooling of vapour is computed 41,340 K/Sec for 125 A current and 5lpm gas flow rate and it is 

increasing with the increase rate of current. 
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