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 ABSTRACT: Plates supported on elastic foundations are encountered in many Civil Engineering 

applications. Conventionally such systems can be analysed using regular plate bending element plus discrete 

soil springs. The present work aims at an element formulation suitable for analysis of such systems without the 

use of explicit discrete soil springs. The scope of the work includes static analysis of an isotropic rectangular 

plate resting on elastic foundation with various boundary conditions, various types of load applications for 

varying properties of foundation. In this paper, finite element analysis has been carried out for an isotropic 

rectangular plate by using a four noded Kirchhoff rectangular element with three degrees of freedom per node, 

with Winkler model for Elastic foundation. The finite element formulation has been carried out by integrating 

the properties of the plate with those of elastic foundation using Galerkin’s approach instead of the commonly 

used potential energy approach. Numerical analysis has been carried out by suitable MATLAB code and the 

results obtained are in good agreement with those reported in earlier studies.  

Keywords – Elastic foundation, Galerkin’s method, Kirchhoff theory, rectangular plate, Winkler model  

1. INTRODUCTION 
Plates on elastic foundation have wide application in structural engineering such as foundations, storage tanks, 

swimming pools, floor systems of buildings and highways and airfield pavements etc. Several numerical 

methods have been used by researchers to solve the plate-bending problem. Among the numerical methods the 

finite element method is the most versatile one. The field of plate bending has been an area of intensive research 

since the introduction of the finite element method in the early 1960s and still remains to be one of the active 

research fields. This is, mainly, due to the wide application of plate elements in engineering as indicated above 

and also due to the complexity of modelling the plate elements. The complexity of modelling plate elements 

generally stem from the difficulties of obtaining suitable shape functions that preserve strain or slope continuity 

and satisfying the compatibility conditions in the case of thin plates. Also, failure of formulations based on thick 

plate theory to give good results when plate thickness becomes small is another daunting problem that haunted 

the development of successful thick plate bending elements.  

     The mechanical modelling of plate-subsoil interaction problem is mathematically quite complex 

phenomenon and the response of subgrade is governed by many factors. A simple and widely used one is 

Winkler model where it is assumed that the foundation soil consists of linear elastic springs and each spring is 

independent of the others. Generally, analysis of the bending of plates on an elastic foundation is developed on 

the assumption that the reaction forces of the foundation are proportional at every point to the deflection of the 

plane at that point.   

2. Modelling the behaviour of Plates 

2. 1.General 

Plates are structures with very small thickness compared to its planar dimensions. Slabs in civil engineering 

structures, bearing plates under columns, parts of mechanical components,etc. are common examples of plates. 

The bending properties of a plate depend greatly on its thickness. Hence, in classical theory we have the 

following groups, viz: (i) thin plates with small deflections, (ii) thin plates with large deflections and (iii) thick 

plates [1]. 

     There are mainly three theories of plate analysis. Namely: Kirchhoff or Classical Plate Theory (thin plates), 

Mindlin or thick Plate theory also known as First Order Shear Deformation Theory (thick plates) and Third 

Order Shear Deformation Theory (laminates).The most widely used plate theory is classical Kirchhoff thin plate 
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theory which ignores the effect of the shear deformation through plate thickness. However, the effect of the 

shear deformation becomes important as the thickness of plate increases. For this reason, it is obvious that shear 

deformations have to be taken into account especially for thick plates. Mindlin plate element that includes the 

effect of shear deformation is fundamentally simple to adopt for analysis of plates on elastic foundation. 

However, Mindlin plate elements cause shear locking when the plate becomes thin [2].  

 

 

 

 

 

 

 

Figure 1. Kirchhoff Plate Element used for study 

2. 2.Kirchhoff plate element with twelve degrees of freedom 

Kirchhoff or Classical Plate Theory is used to model the plate behaviour. In these elements. C
1
-continuity is 

considered, i.e. at each node, three degrees of freedom, namely w, ∂w/∂x and ∂w/∂y are treated as basic 

unknowns [3]. Hence it leads to 12 degrees of freedom per element. This type of element is shown in Fig. 1. The 

typical element has size 2a × 2b. If Ni is the shape function at node i and i= 1 to 4. Typically Ni’s are derived 

from the polynomial: w = α1+ α2x + α3y + α4x
2
 + α5xy + α6y

2
 + α7x

3
 + α8x

2
y + α9xy

2
 + α10y

3
 + α11x

3
y + α12xy

3
 , (1) 

The displacement field for any point can be expressed as: w = ΣNi1wi+ ΣNi2xi+ ΣNi3yi,    (2)  

 3. Modelling the behavior of Winkler Foundation 

The effect of a foundation can be modeled by various approaches on the plate. The best realistic model is to 

represent the foundation as a continuum model where the elasticity solution represents the behavior of the 

foundation. On the other hand, the elastic foundation can be modeled as a set of springs. 

     The simplest model presented for the elastic foundation is the Winkler model. Winkler model assumes that 

shear resistance of the foundation is ignorable compared to the shear capacity of foundation and models the 

foundation as a set of independent springs. Therefore, there is no lateral interaction between the springs.                       

     The hurdle with the Winkler model applied for analysis of plates on elastic foundations is the necessity of the 

evaluation of the modulus of the subgrade reaction, ks, which does not have a unique value for a particular soil 

or a particular loading on the plate. The main disadvantages of this model are the discontinuity in the soil 

displacement between the soil under the structure and that is immediately outside the structure. Winkler model 

gives a constant displacement of the plate for a uniformly distributed load which results in a zero bending 

moment and shear force in the plate, thus creating non-conservative design criteria. However, the Winkler 

model has been used for everyday design by practicing engineers because of its simplicity. 

4. Formulation of the Integrated Finite Element by Galerkin’s Method 

The finite element formulation is done by integrating the properties of the plate with those of elastic foundation 

using Galerkin’s approach instead of the commonly used potential energy approach. The Galerkin method is 

extended to solving the plate equation of plate on elastic foundation. From Plate theory, if w is the displacement 

and ks is the modulus of subgrade reaction of soil, the equilibrium under an applied vertical loading of intensity 

q demands:D∇ 
4
w+ksw = q            (3)                        

As an approximation to the displacement field of the element on elastic foundation, the same field as in the case 

of an unsupported plate element is employed. The approximate solution, w ̃ is of the form w ̃ =[N]{Δ}, where 

[N] is shape function matrix and {Δ} is nodal displacement vector,  Substituting this in Galerkin Criterion on 

weighted residual yields:       ∫∫ {N}
T
 { D( ∇ 

4
 w ̃)- ksw ̃}dxdy = 0     (4)                                                                                                                                        

5. Numerical Analysis and Results 

Numerical modelling of the plates on Winkler foundation has been carried out with the above integrated finite 

element in a MATLAB environment, and results obtained are compared with those available in literature for 
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verification. When the value of non-dimensional soil stiffness K is zero then the structure is equivalent to an 

ordinary plate, for which the exact solution is available. Comparing, the model is found to be in good agreement 

with these exact values, which validates the numerical MATLAB coding. 

      Plates on Winkler foundation for different support conditions, different loading conditions are modeled for 

different values of non-dimensional soil stiffness K. The results obtained for these are comparable with previous 

studies [4],[5]. and a comparison is made here with Mishra and Chakrabarty [6], O¨zgan and Dalo˘glu [7], Y.I. 

O¨zdemir[8],[9]. as given in Figs. 3 to6 and Tables 1 to 4. The central deflection of the structure is used for 

comparison in all cases. The element used in present study compares well with PBQ8,MT8 andMT17 which are 

higher order elements.  

Table1.Non-dimensional central displacements for the clamped plates with uniformly distributed load 

PBQ4 PBQ8 MT8 MT17

0 0.136 0.1228 0.1369 0.1369 0.1372 0.1334

3 0.127 0.1154 0.1277 0.1277 0.128 0.1247

6 0.062 0.0596 0.0622 0.0622 0.0622 0.0621

9 0.017 0.0173 0.0172 0.0172 0.0172 0.0175

K
Present 

study

Mishra and 

Chakrabarti 

O¨zgan and Dalo˘glu Y.I. O¨zdemir 


 

  
 Figure 2. Non-dimensional central displacement of clamped plates with different K values subjected to udl 

Table2Non-dimensional central displacements for the clamped plates with concentrated load 

PBQ4 PBQ8 MT8 MT17

0 0.654 0.5914 0.6507 0.6509 0.6419 0.62

3 0.623 0.5656 0.6186 0.6188 0.6097 0.5876

6 0.392 0.3667 0.3854 0.3855 0.3761 0.3489

9 0.214 0.2006 0.2062 0.2063 0.197 0.1631

K
Present 

study

Mishra and 

Chakrabarti

O¨zgan and Dalo˘glu Y.I. O¨zdemir
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Figure 3. Non-dimensional central displacement of clamped plates with different K values subjected to 

concentrated load 

Table3 Non-dimensional central displacements for the simply supported plates with uniformly distributed load 

PBQ4 PBQ8 MT8 MT17

0 4.13 3.8487 4.1539 4.3629 4.3746 4.1881

3 3.39 3.2025 3.4066 3.5454 3.5553 3.4321

6 0.87 0.8695 0.8741 0.882 0.8821 0.8801

9 0.18 0.1791 0.1758 0.1758 0.1758 0.1771

K
Present 

study

Mishra and 

Chakrabarti 

O¨zgan and Dalo˘glu Y.I. O¨zdemir 


 

 
Figure 4. Non-dimensional central displacement of simply supported plates with different K values subjected to 

uniformly distributed load 

Table4Non-dimensional central displacements for the simply supported plates with concentrated load 

PBQ4 PBQ8 MT8 MT17

0 1.25 1.1578 1.246 1.2911 1.2844 1.2569

3 1.065 0.9968 1.0605 1.0896 1.082 1.06

6 0.427 0.4062 0.4197 0.421 0.4119 0.3845

9 0.214 0.2008 0.2063 0.2064 0.1973 0.1632

K
Present 

study

Mishra and 

Chakrabarti  

O¨zgan and Dalo˘glu Y.I. O¨zdemir


 

 
Figure 5. Non-dimensional central displacement of simply supported plates with different K values subjected to 

concentrated load 

CONCLUSION 

In this study, a four noded rectangular Kirchhoff’s plate element with Winkler foundation integrated and having 

three degrees of freedom per node is developed for the analysis of plates resting on elastic foundation. The 
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element is tested for different boundary conditions and different types of loads for different cases of elastic 

foundations and it gives satisfactory results comparing with exact classical solutions and results available from 

literature. It is seen that the above element can be used for the analysis of thin and moderately thick plates on 

Winkler foundation. The element is free from the problem of shear locking and having C
1
 continuity. It gives 

more realistic deformed shape. Instead of using higher order finite elements which are more complex and 

requires more computational effort, this element is a better alternative as it is simple and requires less 

computational effort. 
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