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Abstract: Analysis of a dam break flow numerically is an essential part of hydraulic engineering practice. 

Estimation of peak flood flow depth, its time of occurrence at a specified location, wave fronts and assessment 

of its fetch can be done through numerical models. In the following paper a numerical method based on the Mac 

Cormack finite difference scheme is presented. The approach was followed for simulating two-dimensional 

shallow water equation presenting a dam break flow. This paper describes the use of the Mac Cormack explicit 

time-splitting scheme in the development of a two-dimensional (in plan) hydraulic simulation model that solves 

the St. Venant equations. The basic Mac Cormack scheme is enhanced by using the method of fractional steps 

forsimplifying application, treating the friction slope, a stiff source term, point-implicitly, for numerical 

oscillation control and stability which is validated by comparing the current data with the benchmark results, 
and good agreement is achieved in the case of a partial dam-break simulation. The present numerical analysis 

is able to resolve shocks, complex bed geometry including the influence of bed slopes and roughness. Here 

MATLAB software is used for coding and mesh generation. 

Keywords: Dam break, Maccormack method, SWE, finite difference method 

 

I. Introduction 
 A wide variety of physical phenomenons are governed by mathematical models based on shallow water 

equations. An important class of problems of practical interest involves water flows with the free surface under 

the influence of gravity. This class includes tides in ocean, breaking of waves in shallow beaches, flood waves 

in rivers, surges of dam break wave modelling etc. Although safety criteria have been considered in design, 
construction and operation of dams, dams may be broken under unpredictable events. If the water surface 

elevations, travel time resulting from dam break, area to be flooded, wave fronts, arrival time can be estimated 

or approximated in any way then we can go for planning to prevent all the failures and losses due to the dam 

break. This things can be evaluated by the mathematical or numerical models because real time field 

measurements are prohibitively difficult to make in case of dam break. Mathematically, the dam-break problem 

is commonly described by the shallow water equations (also named the Saint Venant equations for the one 

Dimensional case). Prominent characteristics of hyperbolic equations of this type is the formation of bores (i.e., 

the rapidly varying non continuous flow). It is a crucial base for substantiating the numerical method whether 

the scheme can capture the dam-break bore waves exactly or not. This gives rise to heightening the concern in 

solving such a problem. 

Studies to understand the basic mechanics of DBF date back to the earliest attempt by Ritter in 
1892[1]. Ritter (1892) derived an analytical solution for the hydrodynamic problem of instantaneous dam break 

in a frictionless and horizontal channel of rectangular shape. Later, Dressler (1952) and Whitham (1955)[2,3] 

included the effect of bed resistance in the analysis of DBF and derived analytical expressions for the velocity 

and height of the wave front. Stoker (1957)[4] extended the Ritter solution to the case of wet-bed conditions on 

the downriver side. He deduced analytical aspects for the surface profile in terms of the initial depths, upstream 

and downstream of the dam. Ritter‟s and Stoker‟s solutions assume that the reservoir is non-finite. On the other 

side, the analytical equations has been deduced by Hunt (1982, 1987)[5,6] by considering finite length 

reservoirs. In this study, the Massflow-2D code based on the MacCormack- TVD scheme with variable 

computational domain is proposed as a solution for the shallow water equations associated with the mountainous 

hazard dynamic procedure in natural terrains. The scheme has the following attributes: 

1. Being able to simulate discontinuous flows such as those associated with shock propagation. 

2. It is suitable to natural terrain as it isconsidering the additional acceleration and deceleration of topography. 
3. Time efficiency along with 2

nd
 order accuracy in both time and space. 
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II.   Research Methodology 

2.1 Governing equation 
The flow of water after the breaking of a dam can be described by the shallow water equation that is 

derived from Navier-stokes equation for an incompressible fluid by assuming that the depth of water is 

sufficiently small compared with some other significant length like wavelength of the water surface. Thus 

vertical velocity is neglected and the horizontal velocity is assumed to be constant through any vertical line 

between bottom and water surface. Integrating the N-S equation in vertical direction yields the shallow water 

equation (SWE). The general form of shallow water equation is given follow: 

                                                            ∂U/∂t + ∂F/∂x + ∂G/∂Y=S 

Where 

U=[h uh vh]T       F=[uh  hu2+0.5gh2  uvh]T    G=[vh  uvh  hv2+0.5gh2]T  S=[0  gh(S0x-Sfx)  gh(S0y-Sfy)]
T 

Where U is the vector of conserved variables, Fand Gare the flux vectors in the x- and y-directions and 

Srepresents a source term vector. The vectors U, Fand G can be expressed in terms of the primary variables u, 

vand h.where g is the acceleration due to gravity, h the liquid depth, u and v are the stream velocity in the xand 
y-directions, respectively. While S0x and Soyare the bed slopes in the two-Cartesian directions[7]. The friction 

slopes S fx and S fy have been estimated using the Manning resistance lawin which η is the Manning resistance 

coefficient. If the bed is taken as constant in depth and the friction was ignored, source term is considered to be 

zero. 

Sfx = [uƞ2 (u2+v2)0.5]/h4/3 Sfy = [vƞ2 (u2+v2)0.5]/h4/3 

Discretisation of Governing Equation  
Before discussing the various numerical approaches for approximating the SWE, we must define the mesh and 

then look at the numerical boundary conditions required to implement the numerical approaches correctly. We 

will use a fixed mesh over the finite region xo≤x≤xIand 0≤t≤tN , Here, the numerical solution is denoted by ui
n 

=u(i∆x, n∆t)where Δx = xi − xi−1 and Δt = tn − tn−1 for all i and n.The computational domain is discretized as xt 

=i∆ x and tn = n∆t, where x is the size of a uniform mesh, and is the time increment. The classical finite 

difference scheme suitable for the discretization of Saint-Venant Equation. With source terms, is the explicit two 

step predictor-corrector MacCormack method, as follows 

 

2.1.1 Predictor step: 
[Un+1

i,j]p= Un
i,j+∆t(B(Un

i,j)-[F(Un
i,j)-F(Un

i,j)]/ ∆x- [G(Un
i,j)-G(Un

i,j )]/∆y) 

 

2.1.2      Corrector step: 
(∂Ui,j/ ∂t)n+1

cor=B([Un+1
i,j]p)-[F([Un+1

i,j]p)-F([Un+1
i-1,j]p )]/ ∆x- [G([Un+1

i,j]p)-G([Un+1
i,j-1]p )]/∆y) 

Then, we have the solution at time step n + 1 with an average between thepredictor and corrector step 

Un+1
i,j={Un

i,j+[U n+1
i,j]p}/2+∆t/2(∂Ui,j/ ∂t)n+1

cor 

Being second order accurate in space and time, it offers a good resolution and has a great abstract easiness, 

however it is well recognized that definitive second order schemes show oscillatory behavior near discontinuous 

and Mac Cormack‟s scheme is no exception as shown in fig.1. So, this scheme can be reformulated in a way that 

leads to the improvement of the performances to avoid oscillation. 
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Fig.1. Time Step Discretisation 

Initial and Boundary Conditions 
To solve discretised equations provision of initial and boundary conditions for inflow and outflow. Prior to dam 

breach the upstream section acts as a reservoir. 

At time t = 0, the initial conditions are given as 

h(x, y)│ t=0= h0(x, y) 
qx (x, y)│t=0 = qx0 (x, y);     qy(x, y) │ t=0 = qy0 (x, y) 

For a 2D dam-break problem, the initial water depth h0 is commonly the discontinuous function of coordinates 

(i.e., it has a water elevation difference from the upstream to the downstream). The initial discharge components 

qx0 and qy0 are given as zero here as there is no flow prior to the dam break. For a general shallow water 

problem, the boundaries of the computational domain have solid boundaries and open boundaries. In the case of 

solid boundaries, the governing equations do not include the turbulent viscosity, but the bottom friction, free-

slip conditions may be considered, and the normal discharge to the wall is set to zero in order to represent no 

flux through the solid boundaries.The open boundary conditions, in particular need to be treated. The local value 

of the Froude number, or whether the flow is subcritical or super critical, is the basis for determining the number 

of boundary conditions. For the 2D subcritical flow, two external conditions are specified at the inflow 

boundary, and one is specified at the outflow boundary. For the supercritical flow, three boundary conditions at 
the inflow boundary and none at the outflow boundary have to be specified. 

Stability condition 
The Courant-Friedrichs-Lewy (CFL)[8] stability condition for 1-D problem is restricted by  

∆t = CFL( ∆xmin)/(│q/h│+ √(gh))max 

Where Courant number 0<CFL≤1. FOR 2D problem, the time step is restricted by  

∆t = CFL[ min(∆x,∆y)]/max[(│qx/h│+√(gh),│ (qy/h│+√(gh)] 

Where qx&qyare the unit discharge along x and y directions. “g” is the acceleration due to gravity and “h” is the 

depth of water. 

Wetting/drying Algorithm 
In some cases the complex wetting/drying phenomenon is simulated by imposing a thin layer of water across 

dry cells. In this way, the computation is always carried out everywhere regardless of the wet/dry condition. 

However, this simple treatment is not suitable for uneven ground conditions, where the dry area must be 

accepted and omitted from the normal finite difference calculation. Otherwise, water level gradients over 

comparatively steep dry grounds will induce unreasonably large velocities[9,10]. 

At the beginning of each step, all the grid points whose depths are smaller than a prescribed value, Hmin, are 

regarded as being dry. The velocities are set to zero at dry grid points. This drying process is followed by 

wetting process, where the neighbouring grid points around each dry grid point are examined. 
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III.      Application And Validation Of The Model 
 This model is validated with a hypothetical dam break problem for which analytical solution is 

available. The 2-D asymmetrical dam break problem has been a benchmark test case for shock-capturing 

numerical models. A square domain is considered, with a side length of 200m. The bed is considered frictionless 

with negligible slope 0.0001. A dam is located at a distance of 100m from the starting point. This dam separates 
the headwater, with a depth of 10m, from the tail water with the depth being denoted by H0. In this study H0 can 

be either 5, 0.1 0r   103m. Wall situations are mentioned at the outer boundaries of normal with respect to the 

corresponding dam when first order differentials of all unknowns are fixed to zero at the outer boundaries 

parallel to the dam. A breach located at 95m-170m along Y direction occurs suddenly in the dam. The water 

surface 7.2s subsequent to the breach is examined in the following validation, using a time respond of 0.2s and a 

grid size of 2m.  

The water surface elevations worked out by the current MacCormack scheme are provided Fig.2. below, which 

agree well with those calculated and estimated by other researchers. 

 
           0m                                                               100m                                                            200m 

Fig. 2. Definition sketch of the model for validation 

 

 
Fig.3. Water surface profile at different time steps 

 

 
Fig.4. Water depth contours at different time interval 

 
 

IV.  Analysis Of Outputs And Conclusion 
 From the above Fig.3. and Fig.4. the  outputs  observed that at both ends of the breach, the water depths 

are minutely least than that at the center of the breach. Flow separates from the truncated dam walls just 

downstream of the breach and forms contour rotating eddies. Water depth profiles for wet bed and dry bed 
conditions are same till mid position of the upstream location and subsequently water depth profile of wet bed 

increases gradually towards d/s. flood wave travels faster with a decrease in the downstream water depth. The 

wave front is observed to be steeper when the d/s water depth is larger. Contour plots show that the wave 
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propagation on a wet bed is faster than on a dry bed. On the other hand, the wave front is observed to be steeper 

when the downstream water depth is larger. In addition, the friction coefficient becomes unimportant in a wet 

bed case. This is due to the fact that the depressions that are normally filled by the flood wave as it passes by are 

now already full of  water when the computation begins. In real applications, the friction coefficient is much 

more important, especially for the propagation times. Due to this breach a surge is formed and propagates over 

the flood plain. Simultaneously, a strong depression wave occurs in the reservoir and causes the water surface 

near the breach to descend drastically.  Here the results got through application of Maccormack method shows 
good agreement with the previous documented results. This method can be used to further development of the 

numerical models of the phenomena those use shallow water equations. 
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