On Contra D-Continuous Functions and Strongly D-Colsed Spaces

K. Dass, J.Antony Rex Rodrigo

Abstract: In[8], Dontchev introduced and investigated a new notion of continuity called contra-continuity. Recently, Jafari and Noiri ([12], [13], [14]) introduced new generalization of contra-continuity called contrasuper-continuity, contra- α -continuity and contra-pre-continuity. It is the objective of this paper to introduce and study a new class of contra-continuous functions via

I. Introduction

Jafari and Noiri introduced and investigated the notions of contra-pre-continuity [14], contra- α continuity [13] and contra-super-continuity [12] as a continuation of research done by Dontchev [8], and Dontchev and Noiri [10] on the interesting notions of contra- continuity and contra-semi-continuity, respectively. Caldas and jafari [7] introduced the notion of contra- β -continuous functions in topologiced spaces. The aim of this paper is to introduce and investigate a new class of functions called contra-D-continuous functions.

II. Preliminaries

Throughout this paper $(X,\tau),(Y,\sigma)$ and (Z,η) will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X,τ) , cl(A) and int(A) denote the closure and the interior of A, respectively. We recall some known definitions needed in this paper.

Definition 2.1. Let (X,τ) be a topological space. A subset A of the space X is said to be

1. Preopen [17] if $A \subseteq int(cl(A))$ and preclosed if $cl(int(A)) \subseteq A$.

2. Semi open [15] if $A \subseteq cl(int(A))$ and semi closed if $int(cl(A)) \subseteq A$.

3. Regular open [26] if A = int(cl(A)) and regular closed if A = cl(int(A)).

Definition 2.2.Let (X,τ) be a topological space . A subset $A \subseteq X$ is said to be

1. g-closed [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

2. ω -closed[28] if cl(A) \subseteq U whenever A \subseteq U and U is semi open in X.

3. D-closed[1] if $pcl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is ω -open in X.

The complements of above mentioned sets are called their respective open sets.

Definition 2.3. A function $f: (X,\tau) \to (Y,\sigma)$ is called

1. g-continuous [5] if f⁻¹(V) is g-closed in (X,τ) for every closed set V in (Y,σ) .

2. ω -continuous [23] if f⁻¹(V) is ω -closed in (X, τ) for every closed set V in (Y, σ).

3. Perfectly continuous [4] if $f^{-1}(V)$ is clopen in (X,τ) for every open set V in (Y,σ) .

4. D-continuous [3] if $f^{-1}(V)$ is D-closed in (X,τ) for every closed set V in (Y,σ) .

5. D-irresolute [2] if f⁻¹(V) is D-closed in (X,τ) for every D-closed set V in (Y,σ) .

6. Strongly D-continuous [3] if $f^{-1}(V)$ is closed in (X,τ) for every D-closed set V in (Y,σ) .

7. Pre-D-continuous [3] if $f^{-1}(V)$ is D- closed in (X,τ) for every pre-closed set V in (Y,σ) .

8. Perfectly D-continuous[2] if f⁻¹(V) is clopen in (X,τ) for every D-closed set V in (Y,σ) .

9. Super continuous [21] if $f^{-1}(V)$ is regular open in (X,τ) for every open set V in (Y,σ) .

10. Contra-continuous [8] if f⁻¹(V) is closed in (X,τ) for every open set V in (Y,σ) .

11. Contra pre-continuous [14] if $f^{-1}(V)$ is preclosed in (X,τ) for every open set V in (Y,σ) .

12. Contra g-continuous [6] if $f^{-1}(V)$ is g-closed in (X,τ) for every open set V in (Y,σ) .

13. Contra semi-continuous [10] if $f^{-1}(V)$ is semiclosed in (X,τ) for every open set V in (Y,σ) .

14. RC-continuous [10] if $f^{-1}(V)$ is regular closed in (X,τ) for every open set V in (Y,σ) .

15. D-open if f(V) is D-open in (Y,σ) for every D-open set V in $(X,\tau).$

Definition 2.4. A space (X,τ) is called

1. A $T_{1/2}$ space [21] if every g-closed set is closed.

- 2. A T_{ω} space [23] if every ω -closed set is closed.
- 3. A $D-T_s$ space [3] if every D-closed set is closed.
- 4. A $D-T_{1/2}$ space [3] if every D-closed set is preclosed.

Theorem 2.5 [1] Let (X,τ) be a topological space.

- 1. A subset A of (X,τ) is regular open if and only if A is open and D-closed.
- 2. A subset A of (X,τ) is open and regular closed then A is D-closed.

Theorem 2.6 [2] Every closed set in a topological space (X,τ) is D-closed.

III. Contra-D-Continuous Functions

Definition 3.1

A function $f : (X,\tau) \to (Y,\sigma)$ is called contra-D-continuous if $f^{-1}(V)$ is D-open (resp.D-closed) in (X,τ) for every closed (resp. open) set V in (Y,σ) .

Example 3.2

Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$. Then the identity function $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-D-continuous function, since for the closed (resp. open) set $V = \{a\}$ in (Y, σ) , $f^{-1}(V) = \{a\}$ is D-open (resp. D-closed) in (X, τ) .

Definition 3.3

Let A be a subset of a topological space (X, τ). The set $\cap \{U \in \tau / A \subset U\}$ is called the kernel of A [19] and is denoted by Ker(A).

Lemma 3.4 [12]

The following properties hold for subsets A, B of a space X :

- 1. $x \in \text{Ker}(A)$ if and only if $A \cap F \neq \phi$ for any $F \in C(X, x)$.
- 2. $A \subset Ker(A)$ and A = Ker(A) if A is open in X.
- 3. If $A \subset B$ then $Ker(A) \subset Ker(B)$

Theorem 3.5

Every contra-continuous function is a contra-D-continuous function.

Proof

Let $f: (X,\tau) \to (Y,\sigma)$ be a function. Let V be an open set in (Y,σ) . Since f is contra- continuous, $f^{-1}(V)$ is closed in (X, τ) . Hence by theorem 2.6, $f^{-1}(V)$ is D-closed in (X, τ) . Thus f is a contra-D-continuous function.

Remark 3.6

Converse of this theorem need not be true as seen from the following example.

Example 3.7

Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$.

Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b; f(b) = c and f(c) = a. Then f is contra-D-continuous but not contracontinuous, since for the open (resp.closed) set $U = \{b,c\}$, $f^{-1}(U) = \{a, b\}$ is D-closed (resp. D-open) but it is not closed.

Remark 3.8

Contra-D-continuous and contra-g-continuous (resp. contra-continuous, contra-D-continuous, contra pre-continuous) are independent concepts.

Example 3.9

As in remarks 3.23, 3.15, 3.13 and 3.18 [1], the result follows.

Remark 3.10

The composition of two contra D-continuous functions need not be contra D-continuous and this is shown by the following example.

Example 3.11

Let $X = \{a, b, c\} = Y = Z$, $\tau = \{\phi, \{a\}, X\}$, $\sigma = \{\phi, \{b, c\}, Y\}$ and $\eta = \{\phi, \{a, c\}, Z\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a; f(b) = b and f(c) = b. Then f is contra-D-continuous, since for the closed set $V = \{a\}$, $f^{-1}(V) = \{a\}$ is D-open in (X, τ) . Define $g : (Y, \sigma) \rightarrow (Z, \eta)$ by g(x) = x. Then g is contra-D-continuous, since for the

closed set V = {b} in (Z, η), $g^{-1}(V) = \{b\}$ is D-open in (Y, σ). But their composition is not a contra-Dcontinuous, since for the closed set V={b}in (Z, η), $f^{-1}(g^{-1}(V)) = f^{-1}(\{b\}) = \{b, c\}$ is not a D-open in (X, τ). **Theorem 3.12**

The following are equivalent for a function $f : (X, \tau) \rightarrow (Y, \sigma)$: Assume that DO(X) (resp. DC(X)) is closed under any union (resp. intersection)

1. f is contra-D-continuous

2. The inverse image of a closed set V of Y is D-open

3. For each $x \in X$ and each $V \in C(Y, f(x))$, there exists $U \in DO(X, x)$ such that $f(U) \subseteq V$.

4. $f(D-cl(A)) \subseteq Ker(f(A))$ for every subset A of X.

5. D-cl(f⁻¹(B)) \subseteq f⁻¹ (Ker (B)) for every subset B of Y.

Proof

The implications $(1) \Rightarrow (2), (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (2)$

Let V be any closed set of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$ and there exists

 $U_x \in DO(X, x)$ such that $f(U_x) \subset V$. Hence we obtain $f^{-1}(V) = \bigcup \{U_x / x \in f^{-1}(V)\}$ and by assumption $f^{-1}(V)$ is D-open.

 $(2) \Rightarrow (4)$

Let A be any subset of X. Suppose that $y \notin \text{Ker}(f(A))$. Then by Lemma 3.4, there exists $V \in C(X, x)$ such that $f(A) \cap V = \phi$. Thus we have $A \cap f^{-1}(V) = \phi$ and $D\text{-cl}(A) \cap f^{-1}(V) = \phi$. Hence we obtain $f(D\text{-cl}(A)) \cap V = \phi$ and $y \notin f(D - cl(A))$. Thus $f(D\text{-cl}(A)) \subseteq \text{Ker}(f(A))$.

 $(4) \Rightarrow (5)$

Let B be any subset of Y.By (4) and Lemma 3.4, we have

 $f(D\text{-}cl(f^{-1}(B))) \subset Ker(f(f^{-1}(B))) \subset ker(B) \text{ and} D\text{-}cl(f^{-1}(B)) \subset f^{-1}(Ker(B)).$

 $(5) \Rightarrow (1)$

Let U be any open set of Y.Then by lemma 3.4, we have

 $D-cl(f^{-1}(U)) \subset f^{-1}(Ker(U)) = f^{-1}(U)$ and $D-cl(f^{-1}(U)) = f^{-1}(U)$. By assumption, $f^{-1}(U)$ is

D-closed in X.Hence f is contra-D-continuous.

Theorem 3.13

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is D-irresolute (resp. contra-D-continuous) and

 $g:(Y, \sigma) \rightarrow (Z, \eta)$ in contra-D-continuous (resp. continuous) then their composition

gof : $(X,\tau) \rightarrow (Z, \eta)$ is contra-D-continuous.

Proof

Let U be any open set in (Z, η). Since g is contra-D-continuous (resp. continuous) then $g^{-1}(V)$ is D-closed (resp. open) in (Y, σ) and since f is D-irresolute (resp. contra D-continuous) then $f^{-1}(g^{-1}(V))$ is D-closed in (X, τ). Hence gof is contra-D-continuous.

Theorem 3.14

If $f: (X,\tau) \to (Y,\sigma)$ is contra-continuous and $g: (Y,\sigma) \to (Z, \eta)$ is continuous then their composition gof : $(X, \tau) \to (Z, \eta)$ is contra-D-continuous.

Proof

Let U be any open set in (Z, η) . Since g is continuous, $g^{-1}(U)$ is open in (Y, σ) .

Since f is contra-continuous, $f^{-1}(g^{-1}(U))$ is closed in (X, τ) . Hence by theorem 2.6, $(gof)^{-1}(U)$ is D-closed in (X, τ) . Hence gof is contra-D-continuous.

Theorem 3.15

If $f : (X, \tau) \to (Y, \sigma)$ is contra-continuous and super-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is contracontinuous then their composition gof : $(X, \tau) \to (Z, \eta)$ is contra-D-continuous.

Proof

Let U be any open set in (Z, η) .Since g is contra-continuous, $g^{-1}(U)$ is closed in (Y, σ) and since f is contra-continuous and super-continuous then f $^{-1}(g^{-1}(U))$ is both open and regular closed in (X, τ) . Hence by theorem 2.5(2), $(gof)^{-1}(U)$ is D-closed in (X, τ) . Hence gof is contra-D-continuous.

Theorem 3.16

Let (X,τ) , (Y,σ) be any topological spaces and (Y,σ) be $T_{1/2}$ space (resp. T_{ω} -space). Then the composition gof : $(X, \tau) \rightarrow (Z, \eta)$ of contra-D-continuous function f : $(X, \tau) \rightarrow (Y, \sigma)$ and the g-continuous (resp. ω -continuous) function g : $(Y, \sigma) \rightarrow (Z, \eta)$ is contra-D-continuous.

Proof

Let V be any closed set in (Z, η). Since g is g-continuous (resp. ω -continuous), $g^{-1}(V)$ is g-closed (resp. ω -closed) in (Y, σ) and (Y, σ) is $T_{1/2}$ space (resp. T ω -space), hence $g^{-1}(V)$ is closed in (Y, σ). Since f is contra-D-continuous, $f^{-1}(g^{-1}(V))$ is D-open in (X, τ). Hence gof is contra-D-continuous. **Theorem 3.17**

If $f : (X, \tau) \to (Y, \sigma)$ is a surjective D-open function and $g : (Y, \sigma) \to (Z, \eta)$ is a function such that gof $: (X, \tau) \to (Z, \eta)$ is contra-D-continuous then g is contra-D-continuous.

Proof

Let V be any closed subset of (Z, η) . Since gof is contra-D-continuous then $(gof)^{-1}(V) = f^{-1}(g^{-1}(V))$ is D-open in (X, τ) and since f is surjective and D-open, then $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is D-open in (Y, σ) . Hence g is contra-D-continuous. **Theorem 3.18**

Let $\{X_i \mid i \in I\}$ be any family of topological spaces. If $f : X \to \Pi X_i$ is a contra-D- Continuous function. Then $\pi_I \circ f : X \to X_i$ is contra-D-continuous for each $i \in I$, where π_i is the projection of ΠX_i onto X_i . **Proof**

It follows from theorem 3.13 and the fact that the projection is continuous.

Theorem 3.19

If $f : (X, \tau) \to (Y, \sigma)$ is strongly D-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is contra-D-continuous then gof $: (X, \tau) \to (Z, \eta)$ is contra-continuous.

Proof

Let U be any open set in (Z, η) . Since g is contra-D-continuous, then $g^{-1}(U)$ is D-closed in (Y, σ) . Since f is strongly D-continuous, then $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is closed in (X, τ) . Hence gof is contra-continuous.

Theorem 3.20

If $f : (X, \tau) \to (Y, \sigma)$ is pre-D-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is contra-pre-continuous then gof : $(X, \tau) \to (Z, \eta)$ is contra-D-continuous.

Proof

Let U be any open set in (Z, η) . Since g is contra-pre-continuous, then $g^{-1}(U)$ is pre-closed in (Y, σ) and since f is pre-D-continuous, then $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is D-closed in (X, τ) . Hence gof is contra-D-continuous.

Theorem 3.21

If $f : (X, \tau) \rightarrow (Y, \sigma)$ is strongly-D-continuous and $g : (Y, \sigma) \rightarrow (Z, \eta)$ is contra-D-continuous then gof $: (X, \tau) \rightarrow (Z, \eta)$ is contra-D-continuous.

Proof

Let U be any open set in (Z, η) . Since g is contra-D-continuous, then $g^{-1}(U)$ is D-closed in (Y, σ) and since f is strongly-D-continuous, then $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is closed in (X, τ) . By theorem 2.6, $(gof)^{-1}(U)$ is D-closed in (X, τ) . Hence gof is contra-D-continuous.

Theorem 3.22

Let $f : (X, \tau) \to (Y, \sigma)$ be surjective D-irresolute and D-open and $g : (Y, \sigma) \to (Z, \eta)$ be any function. Then gof : $(X, \tau) \to (Z, \eta)$ is contra-D-continuous if and only if g is contra-D-continuous. **Proof**

The 'if' part is easy to prove. To prove the 'only if' part, let V be any closed set in (Z, η) . Since gof is contra-D-continuous, then $(gof)^{-1}(V)$ is D-open in (X, τ) and since f is D-open surjection, then $f((gof)^{-1}(V)) = g^{-1}(V)$ is D-open in (Y, σ) . Hence g is contra-D-continuous.

Theorem 3.23

Let $f: (X,\tau) \to (Y,\sigma)$ be a contra-D-continuous function and H an open D-closed subset of (X,τ) . Assume that $DC(X,\tau)$ (the class of all D-closed sets of (X,τ)) is D-closed under finite intersections. Then the restriction $f_H: (H,\tau_H) \to (Y,\sigma)$ is contra-D-continuous.

Proof

Let U be any open set in (Y,σ) . By hypothesis and assumption, $f^{-1}(U) \cap H = H_1(say)$ is D-closed in (X,τ) . Since $(f_H)^{-1}(U) = H_1$, it is sufficient to show that H_1 is D-closed in H.

By hypothesis 4.22 [3], H_1 is D-closed in H.Thus f_H is contra-D-continuous.

Theorem 3.24

Let $f: (X,\tau) \rightarrow (Y,\sigma)$ be a function and $g: X \rightarrow X \times Y$ the graph function given by

g(x) = (x, f(x)) for every $x \in X$. Then f is contra-D-continuous if g is contra-D-continuous.

Proof

Let V be a closed subset of Y.Then $X \times V$ is a closed subset of $X \times Y$.Since g is contra-D-continuous ,then $g^{-1}(X \times V)$ is a D-open subset of X. Also $g^{-1}(X \times V) = f^{-1}(V)$.Hence f is contra-D-continuous.

Theorem 3.25

If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra-D-continuous and Y is regular, then f is D-continuous.

Proof

Let x be an arbitrary point of X and N be an open set of Y containing f(x). Since Y is regular, there exists an open set U in Y containing f(x) such that $cl(U) \subseteq N$. Since f is contra-D-continuous, by theorem 3.12, there exists $W \in DO(X, x)$ such that $f(W) \subseteq cl(U)$. Then $f(W) \subseteq N$. Hence by theorem 4.13 [3], f is D-continuous.

Theorem 3.26

Every continuous and RC-continuous function is contra-D-continuous.

Proof

Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Let U be an open set in (Y, σ) . Since f is continuous and RC-continuous, $f^{-1}(U)$ is open and regular closed in (X, τ) . Hence by theorem 2.5(1), f is contra-D-continuous.

Theorem 3.27

Every continuous and contra-D-continuous (resp. contra-continuous and D-continuous) function is a super-continuous (resp. RC–continuous) function.

Proof

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Let U be an open (resp. closed) set in (Y, σ) .

Since f is continuous and contra-D-continuous(resp.contra-continuous and D-continuous), $f^{-1}(U)$ is open and D-closed in (X, τ). Hence by theorem 2.5(1), $f^{-1}(U)$ is regular open in (X, τ). This shows that f is a super-continuous (resp. RC-continuous) function.

Theorem 3.28

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function and X a D-T_s space. Then the following are equivalent.

- 1. f is contra-D-continuous.
- 2. f is contra-continuous

Proof

(1) \Rightarrow (2).

Let U be an open set in (Y, σ) . Since f is contra-D-continuous, $f^{-1}(U)$ is

D-closed in (X, τ) and since X is D-Ts space, f⁻¹(U) is closed in (X, τ) . Hence f is contracontinuous.

 $(2) \Longrightarrow (1).$

Let U be an open set in (Y, σ) . Since f is contra-continuous, $f^{-1}(U)$ is closed in (X, τ) . Hence by theorem 2.6, $f^{-1}(U)$ is D-closed in (X, τ) . Hence f is contra-D-continuous.

IV. Contra-D-closed and strongly D-closed

Definition 4.1

The graph G(f) of a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be contra-D-closed in $X \times Y$ if for each $(x, y) \in (X \times Y) - G(f)$ there exist $U \in DO(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f) = \phi$.

Lemma 4.2

The graph G(f) of a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-D-closed if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in DO(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \phi$.

Theorem 4.3

If $f: (X, \tau) \to (Y, \sigma)$ is contra-D-continuous and Y is Urysohn then G(f) is contra-D-closed in $X \times Y$. **Proof**

Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$ and there exist open sets V,W such that $f(x) \in V$, $y \in W$ and $cl(V) \cap cl(W) = \phi$. Since f is contra-D-continuous and by theorem 3.12 there exists $U \in DO(X, x)$ such that $f(U) \subseteq V$. Hence $f(U) \cap cl(W) = \phi$. Thus by lemma 4.2, G(f) is contra D-closed in $X \times Y$.

Definition 4.4. A topological space (X,τ) is said to be

- 1. Strongly S-closed [8] if every closed cover of X has a finite subcover.
- 2. S-closed [29] if every regular closed cover of X has a finite subcover.
- 3. Strongly compact [18] if every preopen cover of X has a finite subcover.
- 4. Locally indiscrete [19] if every open set of X is closed in X.
- 5. Midly Hausdorff [9] if the δ -closed sets form a network for its topology τ , where a δ -closed set is the intersection of regular closed sets.
- 6. Ultra normal [23] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets

- 7. Nearly compact [24] if every regular open cover of X has a finite subcover.
- 8. D-compact [3] if every D-open cover of X has a finite subcover.
- 9. D-connected [3] if X cannot be written as the disjoint union of two non-empty D-open
- Sets. **Definition 4.5** A topological space (X,τ) is said to be strongly D-closed if every D-closed cover of X has a

finite subcover.

Example 4.6

A D-T_s strongly S-closed space is strongly D-closed.

Theorem 4.7

Let (X, τ) be D-Ts space. If $f : (X, \tau) \to (Y, \sigma)$ has a contra-D-closed graph, then the inverse image of a strongly S-closed set K of Y is closed in (X, τ) .

Proof

Let K be a strongly S-closed set of Y and $x \in f^{-1}(K)$. For each $k \in K$, $(x, k) \notin G(f)$. By Lemma 4.2, there exist $U_k \in DO(X, x)$ and $V_k \in C(Y, k)$ such that $f(U_k) \cap V_k = \phi$.

Since $\{K \cap V_k \mid k \in K\}$ is a closed cover of the subspace K, there exists a finite subset $K_0 \subset K$ such that $K \subset \cup \{V_k \mid k \in K_0\}$. Set $U = \cap \{U_k \mid k \in K_0\}$. Then U is open, since X is a D-Ts space. Therefore $f(U) \cap K = \phi$ and $U \cap f^{-1}(K) = \phi$. This shows that $f^{-1}(K)$ is closed in (X, τ) .

Theorem 4.8

If a space (X,τ) is strongly D-closed then the space is strongly S-closed.

Proof

This proof follows from the definitions of 4.4 and 4.5 and by theorem 2.6.

Theorem 4.9

Let (X,τ) be D-connected and (Y, σ) be a T_1 -space. If $f : (X,\tau) \to (Y,\sigma)$ is contra-D-continuous then f is constant.

Proof

Since (Y, σ) is a T_1 space, $\wedge = \{f^{-1}(y) \mid y \in Y\}$ is a disjoint D-open partition of X.

If $|\wedge| \ge 2$, then X is the union of two non-empty D-open sets. Since (X,τ) is D-connected, $|\wedge| = 1$. Hence f is constant.

Theorem 4.10

Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a contra-D-continuous and pre-closed surjection. If (X, τ) is a D-Ts, then (X, τ) is a locally indiscrete space.

Proof

Let U be any open set in (Y, σ) . Since f is contra-D-continuous and (X, τ) is a D-Ts space, f $^{-1}(U)$ is closed in (X, τ) . Since f is a pre-closed surjection, then U is pre-closed in (Y, σ) . Therefore cl(U) = cl $(Int(U)) \subset U$. Hence U is closed in (Y, σ) . Thus (Y, σ) is a locally indiscrete space.

Theorem 4.11

If every closed subset of a space X is D-open then the following are equivalent.

- 1. X is S-closed
- 2. X is strongly S-closed

Proof

(1) \Rightarrow (2)

Let $\{V_{\alpha} / \alpha \in I\}$ be a closed cover of X. Then by hypothesis and by theorem 2.5(1), $\{V_{\alpha} / \alpha \in I\}$ is a regular closed cover of X. Since X is S-closed, then we have a finite sub cover of X. Hence X is strongly S-closed.

(2) \Rightarrow (1)

Let $\{V_{\alpha} \mid \alpha \in I\}$ be a regular closed cover of X. Since every regular closed is closed and X is strongly S-closed, then we have a finite subcover of X. Hence X is S-closed.

Definition 4.12

A topological space (X, τ) is said to be

1. D-Hausdorff if for each pair of distinct points x and y in X there exist disjoint D-open sets U and V of x and y respectively.

2. D-Ultra Hausdorff if for each pair of distinct points x and y in X there exist disjoint D-clopen sets U and V of x and y respectively. Theorem 4.13

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra-D-continuous injection, where Y is Urysohn then the topological space (X, τ) is a D-Hausdorff.

Proof:

Let x_1 and x_2 be two distinct points of (X, τ) . Suppose $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is injective and $x_1 \neq x_2$ then $y_1 \neq y_2$. Since the space Y is Urysohn, there exist open sets V and W such that $y_1 \in V, y_2 \in W$ and $cl(V) \cap cl(W) = \phi$. Since f is contra-D-continuous and by theorem 3.12, there exist D-open sets $Ux_1 \in DO(X, x_1)$ and $Ux_2 \in DO(X, x_2)$ such that $f(Ux_1) \subset cl(V)$ and $f(Ux_2) \subset cl(W)$. Thus we have $Ux_1 \cap Ux_2 = \phi$, since $cl(V) \cap cl(W) = \phi$. Hence X is a D-Hausdorff.

Theorem 4.14

injection. $(X.\tau)$ contra-D-continuous If f $(Y.\sigma)$ is а where Y is • \rightarrow D-ultra Hausdorff then the topological space (X, τ) is D-Hausdorff.

Proof

Let x_1 and x_2 be two distinct points of (X, τ) . Since f is injective and Y is D-ultra Hausdorff, then $f(x_1) \neq f(x_2)$ and also there exist clopen sets U and W in Y such that

 $f(x_1) \in U$ and $f(x_2) \in W$, where $U \cap W = \phi$. Since f is contra-D-continuous, x_1 and x_2 belong to D-open sets f⁻¹(U) and $f^{-1}(W)$ respectively, where $f^{-1}(U) \cap f^{-1}(W) = \phi$. Hence X is D-Hausdorff.

Lemma 4.15 [9]

Every mildly Hausdorff strongly S-closed space is locally indiscrete.

Theorem 4.16

If a function $f: (X, \tau) \to (Y, \sigma)$ is continuous and (X, τ) is a locally indiscrete space, then f is contra-Dcontinuous.

Proof

Let U be any open set in (Y, σ) . Since f is continuous, f⁻¹(U) is open in (X, τ) and since (X, τ) is locally indiscrete, $f^{-1}(U)$ is closed in (X, τ). Hence by theorem 2.6, $f^{-1}(U)$ is

D-closed in (X, τ) . Thus f is contra-D-continuous.

Corollary 4.17

If a function $f: (X, \tau) \to (Y, \sigma)$ is continuous and (X, τ) is mildly Hausdorff strongly S-closed space then f is contra-D-continuous.

Proof

It follows from Lemma 4.15 and theorem 4.16.

Theorem 4.18

A contra-D-continuous image of a D-connected space is connected.

Proof

Let $f: (X, \tau) \to (Y, \sigma)$ be a contra-D-continuous function of D-connected space onto a topological space Y. If possible, assume that Y is not connected. Then $Y = A \cup B$, $A \neq \phi$, $B \neq \phi$ and $A \cap B = \phi$, where A and B are clopen sets in Υ. Since f is contra-D-continuous, $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty D-open sets in X. Also f $^{-1}(A) \cap f^{-1}(B) = \phi$. Hence X is not D-connected, which is a contradiction. Therefore Y is connected.

Definition 4.19

A topological space (X, τ) is said to be D-normal if each pair of non-empty disjoint closed sets can be separated by disjoint D-open sets.

Theorem 4.20

If $f: (X, \tau) \to (Y, \sigma)$ is a closed contra-D-continuous injection and Y is ultra-normal, then X is Dnormal.

Proof

Let V_1 and V_2 be non-empty disjoint closed subsets of X. Since f is closed and injective, then $f(V_1)$ and $f(V_2)$ are non-empty disjoint closed subsets of Y. Since Y is ultra-normal, then $f(V_1)$ and $f(V_2)$ can be separated by disjoint clopen sets W₁ and W₂ respectively.

Hence $V_1 \subset f^{-1}(W_1)$ and $V_2 \subset f^{-1}(W_1)$. Since f is contra-D-continuous, then $f^{-1}(W_1)$ and $f^{-1}(W_2)$ are D-open subsets of X and $f^{-1}(W_1) \cap f^{-1}(W_2) = \phi$. Hence X is D-normal.

Theorem 4.21

The image of a strongly D-closed space under a contra-D-continuous surjective function is compact.

Proof

Suppose that f : $(X, \tau) \rightarrow (Y, \sigma)$ is a contra-D-continuous surjection. Let $\{V_{\alpha} \mid \alpha \in I\}$ be any open cover of Y. Since f is contra-D-continuous, then $\{f^{-1}(V_{\alpha}) \mid \alpha \in I\}$ is a D-closed cover of X. Since X is strongly D-closed, then there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) \mid \alpha \in I_0\}$. Thus we have $Y = \bigcup \{V\alpha \mid \alpha \in I_0\}$. Hence Y is compact.

Theorem 4.22

Every strongly D-closed space (X, τ) is a compact S-closed space.

Proof

Let $\{V_{\alpha} / \alpha \in I\}$ be a cover of X such that for every $\alpha \in I$, V_{α} is open and regular closed due to assumption. Then by theorem 2.5(2), each V_{α} is D-closed in X. Since X is strongly D-closed, there exists a finite subset I_0 of I such that $X = \bigcup \{V_{\alpha} / \alpha \in I_0\}$. Hence (X, τ) is a compact S-closed space.

Theorem 4.23

The image of a D-compact space under a contra-D-continuous surjective function is strongly S-closed. **Proof**

Suppose that $f: (X, \tau) \to (Y, \sigma)$ is a contra-D-continuous surjection.Let $\{V_{\alpha} / \alpha \in I\}$ be any closed cover of Y. Since f is contra-D-continuous, then $\{f^{-1}(V_{\alpha}) / \alpha \in I\}$ is a D-open cover of X. Since X is D-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) / \alpha \in I_0\}$. Thus we have $Y = \bigcup \{V_{\alpha} / \alpha \in I_0\}$.Hence Y is strongly S-closed.

Theorem 4.24

The image of a D-compact space in any D-Ts space under a contra-D-continuous surjective function is strongly D-closed.

Proof

Suppose that $f: (X, \tau) \to (Y, \sigma)$ is a contra-D-continuous surjection. Let $\{V_{\alpha} / \alpha \in I\}$ be any D-closed cover of Y. Since Y is D-Ts space, then $\{V_{\alpha} / \alpha \in I\}$ is a closed cover of Y. Since f is contra-D-continuous, then $\{f^{-1}(V_{\alpha}) / \alpha \in I\}$ is a D-open cover of X. Since X is D-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) / \alpha \in I\}$ is a trongly D-closed. Thus we have $Y = \bigcup \{V_{\alpha} / \alpha \in I_0\}$. Hence Y is strongly D-closed.

Theorem 4.25

The image of strongly D-closed space under a D-irresolute surjective function is strongly D-closed.

Proof

Suppose that f : (X, τ) \rightarrow (Y, σ) is an D-irresolute surjection. Let {V_a / $\alpha \in I$ } be any D-closed cover of Y. Since f is D-irresolute then $\{f^{-1}(V_{\alpha}) \mid \alpha \in I\}$ is a D-closed cover of X. Since X is strongly D-closed, then there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) \mid \alpha \in I_0\}$. Thus, we have $Y = \bigcup \{V_{\alpha} \mid \alpha \in I_0\}$. Hence Y is strongly D-closed. Lemma 4.26

The product of two D-open sets is D-open.

Theorem 4.27

Let $f : (X_1, \tau) \to (Y, \sigma)$ and $g : (X_2, \tau) \to (Y, \sigma)$ be two functions where Y is a Urysohn space and f and g are contra-D-continuous function. Then $\{(x_1, x_2) / f(x_1) = g(x_2)\}$ is D-closed in the product space $X_1 \times X_2$. **Proof**

Let V denote the set $\{(x_1,x_2) / f(x_1) = g(x_2)\}$. In order to show that V is D-closed, we show that $(X_1 \times X_2) - V$ is D-open. Let $(x_1,x_2) \notin V$. Then $f(x_1) \neq g(x_2)$.Since Y is Urysohn,there exist open sets U_1 and U_2 of $f(x_1)$ and $g(x_2)$ such that $cl(U_1) \cap cl(U_2) = \phi$. Since f and g are contra-D-continuous, $f^{-1}(cl(U_1))$ and $g^{-1}(cl(U_2))$ are D-open sets containing x_1 and x_2 in X_1 and X_2 . Hence by Lemma 4.26, $f^{-1}(cl(U_1)) \times g^{-1}(cl(U_2))$ is D-open. Further $(x_1,x_2) \in f^{-1}(cl(U_1)) \times g^{-1}(cl(U_2)) \subset ((X_1 \times X_2) - V)$. If follows that $(X_1 \times X_2) - V$ is D-open. Thus V is D-closed in the product space $X_1 \times X_2$.

Corollary 4.28

If $f : (X, \tau) \to (Y, \sigma)$ is contra-D-continuous and Y is a Urysohn space, then $V = \{(x_1, x_2) / f(x_1) = f(x_2)\}$ is D-closed in the product space $X_1 \times X_2$. **Theorem 4.29**

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a continuous function. Then f is RC-continuous if and only if it is contra-D-

continuous.

Proof

Suppose that f is RC-continuous.

Since every RC-continuous function is contra-continuous, Therefore by Theorem 3.5, f is contra D-continuous. Conversely,

Let V be any open set in (Y, σ) . Since f is continuous and contra-D-continuous, $f^{-1}(V)$ is open and D-closed in (X, τ) . By theorem 2.5(1), $f^{-1}(V)$ is regular open in (X, τ) . That is, $Int(cl(f^{-1}(V))) = f^{-1}(V)$. Since f $^{-1}(V)$ is open, $Int(cl(f^{-1}(V))) = Int(f^{-1}(V))$ and so

 $cl(Int(f^{-1}(V))) = f^{-1}(V)$. Therefore V is regular closed in (X, τ) . Hence f is RC-continuous.

Theorem 4.30

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be perfectly D-continuous function, X be locally indiscrete space and connected. Then Y has an indiscrete topology.

Proof

Suppose that there exists a proper open set U of Y. Since Y is locally indiscrete, U is a closed set of Y. Therefore by theorem 2.6, U is a D-closed set of Y. Since f is perfectly D-continuous, $f^{-1}(U)$ is a proper clopen set of X. This shows that X is not connected. Which is a contradiction. Therefore Y has an indiscrete topology. **Theorem 4.31**

If $f: (X, \tau) \rightarrow (Y, \sigma)$ is a function and (X, τ) a D-Ts space, then the following statements are equivalent

- 1. f is perfectly continuous.
- 2. f is continuous and contra-continuous
- 3. f is continuous and contra-D-continuous.
- 4. f is super-continuous.

Proof

•

 $(1) \Rightarrow (2)$ is obvious.

(2) \Rightarrow (3) by theorem 2.6 , it is clear.

 $(3) \Rightarrow (4)$ by theorem 3.27, it is clear

(4) \Rightarrow (1) Let U be any open set in (Y, σ). By assumption, f⁻¹(U) is regular open in

 (X, τ) . By theorem 2.5(1), f⁻¹(U) is open and D-closed in (X, τ) . Since (X, τ) is a D-Ts space, f⁻¹(U) is clopen in (X, τ) . Hence f is perfectly continuous.

Theorem 4.32

Let $f : (X, \tau) \to (Y, \sigma)$ be a contra-D-continuous function. Let A be an open D-closed subset of X and let B be an open subset of Y. Assume that DC(X, τ) (the class of all D-closed sets of (X, τ)) be D-closed under finite intersections. Then, the restriction $f \mid A : (A, \tau_A) \to (B, \sigma_B)$ is a contra-D-continuous function.

Proof

Let V be an open set in (B, σ_B) . Then $V = B \cap K$ for some open set K in (Y, σ) . Since B is an open set of Y, V is an open set in (Y, σ) . By hypothesis and assumption, $f^{-1}(V) \cap A = H_1$ (say) is a D-closed set in (X, τ) . Since $(f \mid A)^{-1}(V) = H_1$, it is sufficient to show that H_1 is a D-closed set in (A, τ_A) . Let G_1 be ω -open in (A, τ_A) such that

 $H_1 \subseteq G_1$. Then by hypothesis and by Lemma 4.21[3], G_1 is ω -open in (X, τ) . Since H_1 is a D-closed set in (X, τ) , we have $pcl_X(H_1) \subseteq Int(G_1)$. Since A is open and Lemma 2.10[11], $pcl_A(H_1) = pcl_X(H_1) \cap A \subseteq Int(G_1) \cap Int(A) = Int(G_1 \cap A) \subseteq Int(G_1)$ and so $H_1 = (f | A)^{-1}(V)$ is a D-closed set in (A, τ_A) . Hence f | A is contra-D-continuous function.

Theorem 4.33

A topological space (X, τ) is nearly compact if and only if it is compact and strongly

D-closed .

Proof

Obvious by theorem 2.5(1).

Theorem 4.34

If a topological space $(X,\,\tau)$ is locally indiscrete space then compactness and strongly D-closedness are the same.

Proof

Let (X, τ) be a compact space. Since (X, τ) is a locally indiscrete space, then every open set is closed and by theorem 2.6, compactness and strongly D-compactness are the same in a locally indiscrete topological space.

Theorem 4.35

A topological space $(X,\ \tau)$ is S-closed if and only if it is strongly S-closed and D-compact.

Proof

It follows from theorem 2.5(1).

References

- [1]. J. Antony Rex Rodrigo and K.Dass, A new type of generalized closed sets, Internat.J.Math. Archive -3(4),2012,1517 1523
- [2]. J. Antony Rex Rodrigo and K.Dass, Weak and strong form of D-irresolute functions (Accepted).
- [3]. J. Antony Rex Rodrigo and K.Dass, D-continuous functions (communicated).
- [4]. S.P.Arya and R.Gupta, On strongly continuous mappings, Kyungpook Math. J., 131-143.1974
- [5]. K. Balachandran, P. Sundaram, H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A.Math 12 (1991),5-13.
- [6]. M. Caldas, S. Jafari, T. Noiri, M. Simeos, A new generalization of contra-continuity Via Levines g-closed sets, Chaos Solitons Fractals 42 (2007),1595-1603.
- [7]. M. Caldas, S. Jafari, Some properties of contra-β-continuous functions.Mem. Fac. Sci. Kochi Univ. Ser. A Math, 22 (2001), 19-28.
- [8]. J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat. J.Math. Math. Sci. 19 (1996), 303-310.
- J. Dontchev, S. Popvassilev, D. Stovrova, On the η-expansion topology for the co- semi. Regularization and midlyHausdorff spaces, Acta Math.Hungar. 80(1998),9-19.
- [10]. J. Dontchev, T.Noiri, Contra-semicontinuous functions, Math. Pannon.10(1999),159-168
- [11]. Y.Gnanambal, K. Balachandran, On gpr-continuous functions in topological spaces, Indian J. Pure Appl. Math. 30(6) (1999), 581-593.
- [12]. S. Jafari, T.Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest 42(1999), 27-34.
- [13]. S. Jafari, T.Noiri, Contra-α-continuous functions between topological spaces, Iran Int. J. Sci. 2 (2001), 153-167
- [14]. S. Jafari, T.Noiri, On contra-precontinuous functions, Bull. Malays.Math.Sci.Soc. 25(2) (2002), 115-128.
- [15]. N. Levine, Semi-open sets, Semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [16]. N. Levine, Generalized closed sets in topology, Rend. Circ, Math. Palermo 19(2)(1970), 89-96.
- [17]. A.S. Mashour, M.E. Abd El-Monsef, S.N. El-Deep, On pre continuous and weak Precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [18]. A.S. Mashour, M.E. Abd El-Monsef, I.A.Hasanein, T. Noiri, Strongly compact spaces, Delta J.Sci. 8 (1984), 30-46.
- $\label{eq:constraint} [19]. \quad M. \ Mrsevic, \ On \ pairwise \ R_o and \ R_1 \ bitopological \ spaces \ , Bull. \ Math. \ Soc. \ Sci.Math. \ R.S. \ Roumanie \ 30 \ (78) \ (1986), \ 141-148.$
- [20]. T. Nieminen, On ultrapseudocompact and related spaces , Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), 185-205.
- [21]. T.Noiri, Super-continuity and some strong forms of continuity, Indian J.Pure Appl. Math. 15 (1984), 241-250.
- [22]. T.M. Nour, contributions to the theory of bitopological spaces, Ph.D. Thesis, Univ. Of Delhi, 1989.
- [23]. M. Sheik John, A Study on generalizations of closed sets and continuous maps in topological and bitopological spaces ,Ph.D. Thesis, Bharathiar university, Coimbatore (2002).
- [24]. M.K. Singal, Mathur, On nearly compact spaces, Boll. Un. Mat. Ital., Serie IV (4-6) (1969), 702-710.
- [25]. R. Staum, The algebra of bounded continuous functions into a non-archimedean field, Pacific J.Math. 50 (1974), 169-185.
- [26]. M.H. Stone, Application of the theory Boolean rings to general topology, Trans. Amer.Math. Soc., 41, 375 381. 1937.
- [27]. P. Sundaram, M.Sheik John, Weakly closed sets and weak continuous functions in topological spaces, Proc. 82nd Indian Sci. Cong. Calcutta, (1995), 49.
- [28]. P. Sundaram, M.Sheik John, On ω-closed sets in topology, ActaCienc. IndicaMath. 4 (2000), 389-392.
- [29]. T.Thompson, S-closed spaces Proc. Amer. Math. Soc. 60 (1976), 335-338.