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Derivation and Application of Six-Point Linear Multistep Numerical
Method for Solution of Second Order Initial Value Problems
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Abstract: A six-step Continuous Block method of order (5, 5, 5, 5, 5, 5) T is proposed for direct solution of the
second (2"") order initial value problems. The main method and additional ones are obtained from the same
continuous interpolant derived through interpolation and collocation procedures. The methods are derived by
interpolating the continuous interpolant at x = x,,,; ,j = 6 and collocating the first and second derivative of the
continuous interpolant at x,,; ,j =0 and j = 2,3,...5 respectively. The stability properties of the methods are
discussed and the stability region shown. The methods are then applied in block form as simultaneous numerical
integrators. Two numerical experiments are given to illustrate the efficiency of the new methods.
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. Introduction

In this paper, efforts are directed towards constructing a uniform order 5 block methods for solution of
general second order ordinary differential equation of the form.

y =fy y), y(©) =x; y(0)=p )

In the past, efforts have been made by eminent scholars to solve higher order initial value problems
especially the second order ordinary differential equation. In practice, this class of problem (1) is usually reduced to
system of first order differential equation and numerical methods for first order Odes then employ to solve them,
Fatunla (1988) and Lambert (1973). Awoyemi (1999) showed that reduction of higher order equations to its first
order has a serious implication in the results; hence it is necessary to modify existing algorithms to handle directly
this class of problem (1). Yahaya and Badmus (2009) demonstrated a successful application of LMM methods to
solve directly a general second order odes of the form (1) though with non-uniform order member block method,
this idea is used and now extended to our own uniform order block schemes to solve the type (1) directly.

We approximate the exact solution y(x) by seeking the continuous method y(x) of the form
YOO = Ei2h o () Yy + W2 EIZA B (s 0
Where xe[a, b] and the following notations are introduced. The positive integer k > 2 denotes the step number of
the method (2), which is applied directly to provide the solution to (1).

I1.  Derivation Of The New Block Methods
We propose an approximate solution to (1) in the form:

yie() =Xy ®)
Y (0 = Zit Y 0D )
Y @) =X G - DVl = f(x,y,) ©)

Now, interpolating (3) at x,; , j = 6 and collocating (5) at x,,; , j = 2,3,...,5 leads to a system of equations
written in the form.
Vo +Vix, + Vox2 + Vox3 + Vixp + Vexp + Vext =y,
Vo + Vixnyq +Voxioq + Vaxi g + Vaxiog + Vexn g + VeXsr = Ynga
Vo +Vixnio + Voxpin + VaXa o + Vaknyo + VsXnio + VeXiio = Vo
Vo +Vixnys + Voxpis + Vaxo s + Vaxpys + VsXnys + VeXiis = Yaus
Vo +Vixnys + Vodpia + Vaxa s + Vaxpps + VaXnia + VeXp s = Yosa
Vo + Vidpys + Voxiys + Vaxa s + Vaxmys + Vsxn s + VeXp s = Yuus
2V, + 6Vsx,ie + 12V4xhe + 20Vsxi,s + 30VeXiie = fute (6)
Where V., are the parameters to be determined.
When re-arranging (6) in a matrix form AX = B, we obtained
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Where V-, are obtained as continuous coefficients of o¢; (x) and p; (x)
Specifically, from (2) the proposed solution takes the form
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y(x) = <o () Y + K1 (X) Yryq + K () Yygp + X3 (X) Yy + oc4(x) Vnta + K5 (X) Vs +
h2[56 (x) fn+6] (8)

A mathematical software (maple) is used to obtained the inverse of the matrix in equation (7) were values for
Vs were established. After some manipulation to the inverse, we obtained the continuous interpolant of the
form:

9)
Evaluating (9) at x,,;, j =6 and its second derivative evaluated at x,.;, j = 2,..5while its 1%
derivative is evaluated at x,.;, j = 0 yields the following set of discrete equations.

29 783 1053 254 1485 243 137 h?
25 Ynte ~ g Ynes T ors Ve T gz Ynuz toag Va2 T3y Ve Y g e = 7[fn+6]
5162 61891 17960 21277 3478 1955 5
T3 Vnis Ty Ynnet T3 Vs T g Y T Ve T M = h*[812f, 45 — 137f, 16]
18173 1693 227 5
2407y 15 = =3 Vn+a + 1606Yn43 +——Ynsy =373V +—— = h [39f0+6 +2436f, 4]
87 2319 1185 111 15 5
73’n+5 _TJ’nH +1077y,43 — TJ’n+2 + Tyn+1 - IYn = h*[fr1+6 — 406f; 3]
29 55 1438 5783 1559 361 5
- ?zg;ms - 1_252’:;4 - T373yn+3 + 6 Vn+2 —589§7 yn+140‘|6‘ E}’n = h*[fr1+6 — 406f, ]
Se Ynts = 7 Ynta T 5 Ynaz = 5 Ynaz T 157Vns1 — Ve —TohZ, = WP e (10)
Where Z,, =y,

Equation (10) is the proposed six-step block method. The application of the block integrators (10) with
n =0, give the values of yi, ¥», V3, V4, ¥s and ys directly without the use of starting values.\

I11.  Analysis of the Method
Order and error constant
Following Fatunla [5, 6 and 7] and Lambert [9 and 10] we define the local truncation error associated
with the conventional form of (2) to be the linear difference operator.
Lly(x); k] =X, o y(x + jh) —h? By "(x + jh) (11)
Where the constant coefficients C, ,q = 0,1 ... are given as follows:
Co =2/

G = ijzo]' X;
Cq =i j? o —aa = DI, 77 (12)
According to Henrici [ 10 ], we say that the method (2) has order P if

CO=C1=C2=”.=CP=CP+1=O' Cp+2¢0
Our calculations reveal that the Block methods (10) have uniform order P=5 and error constant given by the vector
1 13077 1631 7 469 137)T

¢ =(-=
7 100 90 ’ 30 7 100 10’ 30

IV. Convergence
The block methods shown in (10) can be represented by a matrix finite difference equation in the form:
1Y, 41 =AY,y + W2 [BiF, 41 + BoFy_1] (13)
Where
YW+1 = (yn+1’ "'JYn+6);' YW—1 = (yn—S' ""yn);’
. Fw+1_ = (Fuyrs o Fage)'s Fyor = (Fyegy o )7
Andw=0, 1,2,...and n isthe grid index
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and B, =0
It is worth noting that zero-stability is concerned with the stability of the difference system in the limit as h
tends to zero. Thus, as h — 0, the method (13) tends to the difference system.

lyw+1 _Ayw—l =0
Whose first characteristic polynomial p(Q) is given by

p(Q) = det(QI — A)
=Q°(@ -1 (14)
Following Fatunla [7], the block method (13) is zero-stable, since from (14), p(Q) = 0 satisfy |Q]-| <1 j=
1, ...,k and for those roots with |Qj| = 1, the multiplicity does not exceed 2. The block method (13) is
consistent as it has order P > 1. Accordingly following Henrici [8], we assert the convergence of the block
method (13).

V. Stability Region Of The Block Method
To compute and plot absolute stability region of the block methods, the block method is reformulated

as General Linear Methods expressed as:

(yrﬂ) - (g g) (h;g))

Where
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Substituting the values of A, B, U, V into stability matrix and stability function,then using maple
package yield the stability polynomial of the block method.Using a matlab program, we plot the absolute
stability region of our proposed block method( see Fig. 1).
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Fig. 1:Region of Absolute Stability
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VI. IMPLEMENTATION STRATEGIES

In this section, we have tested the performance of our six-step block method on two (2) numerical problems by
considering two IVPs (Initial Value Problems).For each example; we find the absolute errors of the approximate solution.
Example 1.1: We consider the IVP for the step-size h = 0.01

y =100y =0,y(0) = 1,y (0) = —10

Absolute Errors |y(x) — y|, for example 1.1, where y(x) = e~10*

Table of results and absolute errors for problem 1.1

x y(x) y Errors

0 1.0000000000 1.0000000000 0.00e+0

0.01 | 0.9048374180 0.9048372827 1.353e-7
0.02 | 0.8187307531 0.8187303873 3.658e-7
0.03 | 0.7408182207 0.7408176156 6.051e-7
0.04 | 0.6703200460 0.6703191958 8.502e-7
0.05 | 0.6065306597 0.6065295559 1.104e-6
0.06 | 0.5488116364 0.5488102673 1.369e-6
0.07 | 0.4965853038 0.4965838539 1.450e-6
0.08 | 0.4493289641 0.4493273672 1.597e-6
0.09 | 0.4065696597 0.4065678968 1.763e-6
0.10 | 0.3678794412 0.3678774948 1.946e-6
0.11 | 0.3328710837 0.3328689844 2.099-6
0.12 | 0.3011942119 0.3011918381 2.374e-6

Example 1.2: We consider the IVVP for the step-size h = 0.1

y +y=0y0)=1y(0)=1

Table of results and absolute errors for problem 1.2

X y(x) y Errors
0 1.0000000000 1.0000000000 0.00e-0
0.1 1.0948375819 1.0948374662 1.157e-7
0.2 1.1787359086 1.1787355987 3.099e-7
0.3 1.2508566958 1.2508561903 5.055e-7
0.4 1.3104793363 1.3104786406 6.957e-7
0.5 1.3570081005 1.3570072216 8.789%e-7
0.6 1.3899780883 1.3899770347 1.054e-6
0.7 1.4090598745 1.4090588666 1.008e-6
0.8 1.4140628003 1.4140618777 9.226e-7
0.9 1.4049368779 1.4049360518 8.261e-7
1.0 1.3417732907 1.3417725691 7.216e-7
1.1 1.3448034815 1.3448028716 6.099e-7
1.2 1.2943968404 1.2943963485 4.919%-7

Absolute Errors [y(x) — y|, for example 1.2, where y(x) = Cosx + Sinx

VII.  Conclusions

We have proposed a six-step block LMM with continuous coefficients from which multiple finite difference
methods were obtained and applied as simultaneous numerical integrators ,without first adapting the ODE to an
equivalent first order system. The method is derived through interpolation and collocation procedures by the matrix
inverse approach. We conclude that our new six-step block method of uniform order 5 is suitable for direct solution of
general second order differential equations. The new block methods are self- starting and all the discrete schemes used
were obtained from the single continuous Formulation and its derivative which are of uniform order of accuracy. The
results were obtained in block form which speeds up the computational process and the result obtained from the two
numerical examples converges with the theoretical solutions.
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