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The Schro Dinger Equation

Yacine Benhadid

Abstract

This study presents a high-order and stable time-integration frame- work for the numerical solution of the time-
dependent Schro’dinger equa- tion, founded on the Spectral Deferred Correction (SDC) method. By combining
SDC with a Fourier spectral discretization in space, we develop an efficient semi-implicit solver that preserves
essential quantum mechan- ical invariants, including norm conservation and phase accuracy. The proposed
method is applied to the simulation of a free particle’s evolution and compared against conventional schemes
such as the Crank—Nicolson method. Numerical experiments demonstrate that the SDC-based ap- proach attains
higher accuracy and improved long-term stability, partic- ularly for large time-step sizes. These results underline
the promise of high-order iterative correction techniques as a robust tool for the simula- tion of quantum
dynamical systems.
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1 Introduction

The time-dependent Schriodinger equation (TDSE) plays a foundational role in
quantum theory, describing how a quantum system evolves in time. In one-
dimensional form, it is expressed as:

PN gy ), (1)

ot

where ¢(x, t) represents the wavefunction, and H is the Hamiltonian operator
that includes kinetic and potential energy components. For a single particle in
a potential V (x), the Hamiltonian is given by:

h2 92

f-}: —Z:E +V{X]. (2]
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Solving the TDSE provides insights into the probabilistic behavior of guan-
tum systems, with ng, t_z denoting the likelihood of finding a particle at

position x at time t. In special cases where the system is in a stationary state,
the wavefunction can be separated as:

Ylx, t) = d(x)e VR,
leading to the time-independent Schrodinger equation (TISE):
2 02¢(x)
S+ V) = Egl), 3)

which is a central eigenvalue problem in quantum mechanics.

While analytical solutions to the TDSE are known for only a few idealized
systems, numerical methods have become indispensable tools for simulating re-
alistic quantum systems. Various numerical schemes have been introduced and
refined to meet the challenges of accuracy, stahility, and efficiency in solving
the TDSE. Among the most widely used is the Crank—Nicolson method, which
is known for its norm-preserving and unconditionally stable properties [10, 19].
Spectral methods, particularly those utilizing Fourier transforms, offer high spa-
tial accuracy and are often coupled with time-splitting strategies such as the
split-step Fourier method [4,8,9,11,12].

More recent advancements in numerical integration have focused on achiev-
ing higher-order time accuracy. Spectral Deferred Correction (SDC) methods
are one such innovation. Initially introduced by Dutt et al. [1] and expanded
by Minion and others [2, 3, 5], 5DC techniques iteratively correct low-order
time integration results, enabling arbitrarily high-order solutions. These meth-
ods are especially well-suited for quantum simulations, where maintaining the
phase fidelity and norm of the wavefunction over long simulation times is gssen-
tial [18, 27, 29].

5DC methods are also compatible with a variety of advanced time integra-
tion strategies, such as exponential integrators [24], Magnus expansions [20],
and geometric schemes like symplectic integrators [14, 21]. Alternative ap-
proaches, including Lie group solvers [15], Lanczos exponential methods [17],
and commutator-free techniques, have also shown promise in quantum applica-
tions.

In this study, we explore the application of high-order semi-implicit SDC
methods to the TDSE. We simulate the evolution of a free particle using a
Fourier spectral method in space, which naturally diagonalizes the kinetic op-
erator, and apply SDC to enhance the time-stepping accuracy. OQur findings
demonstrate that SDC provides notable improvements in solution fidelity and
long-term stability compared to traditional approaches such as Crank—Nicolson
or basic split-step methods.

2 Numerical Approaches

Solving the time-dependent Schrodinger equation numerically requires discretiza-
tion in both space and time. A variety of numerical strategies have been de-

DOI: 10.9790/5728-2106014150 www.iosrjournals.org 42 | Page



High-Order Spectral Deferred Correction Methods For Accurate Simulation Of Quantum... ...

veloped for this purpose, each balancing trade-offs between accuracy, stability,
and computational effort. Below, we outline the main categories of technigues
relevant to this study.

2.1 Finite Difference Approach

Finite difference methods (FDM) approximate derivatives by evaluating func-
tion values at discrete grid points. For example, the second spatial derivative

in the Schrodinger equation can be discretized as:
O2hlx, 1) dilx + Ax, t) — 24p0x, 1) + hlx — Ax, 1)
dx® N {ﬂx}?_ ’

Time integration can then proceed via explicit or implicit schemes. The
explicit Forward Euler method is simple but suffers from strict stability con-
straings:

Lix, t+ At) = Wix, t) — iDtHb(x, t).

To address this, implicit methods such as Crank—Nicolson treat part or all
of the operator implicitly, offering unconditional stability for linear problems.
The CN method achieves second-order accuracy in both space and time and
preserves norm over long simulations.

2.2 Spectral Spatial Discretization Approach

Spectral methods provide an alternative to grid-based approaches, particularly
well-suited for problems with periodic domains or smooth solutions. Here, the
wavefunction is expanded in a basis of global functions:

>
ﬂ)‘} r:l = Ck{t}.ﬁ_k{x}r
k
where ¢(x) are typically Fourier modes or orthogonal polynomials. Deriva-
tives are computed as algebraic operations in the spectral domain. For instance,
the Laplacian operator becomes:

dz@(f t} 2"
o~ Tkl

after Fourier transformation. This efficiency makes spectral methods ideal
for implementing operator splitting and exponential integrators.

2.3 Time-Stepping Algorithms Approach

Temporal discretization determines how the solution is advanced in time. Time
integrators vary in complexity, stability, and accuracy. They include:

Explicit methods calculate future states from known past data. Common
choices include Euler's method and the Runge—Kutta family. Although easy
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to implement, they may require small time steps to maintain stability when
applied to stiff systems.

Implicit methods, such as Crank—Nicolson, involve solving a system of equa-
tions at each time step, but gain improved stability. Semi-implicit schemes split
the Hamiltonian into components—typically treating the kinetic term implicitly
and the potential term explicitly—to balance cost and robustness.

2.4 Spectral Deferred Correction (SDC) Approach

Spectral Deferred Correction (SDC) methods iteratively refine time integration
by correcting a low-order approximation using error-based updates over quadra-
ture nodes. Each correction step improves the temporal accuracy, potentially
achieving arbitrarily high order.

In semi-implicit SDC, the stiff components (e.g., the Laplacian) are treated
implicitly during the correction phase, while the remaining terms are handled
explicitly. This improves stability and allows for larger time steps without loss
of accuracy.

In this work, we implement an SDC scheme where the initial guess is com-
puted via a simple integrator, and corrections are applied using deferred eyalu-
ation of the residual. The use of Fourier spectral methods in space makes this
approach both accurate and efficient.

3 Formulation

At the heart of quantum mechanics lies the time-dependent Schrodinger equa-
tion, which governs the evolution of a system’s quantum state over time. For a
single particle in one spatial dimension, the equation is expressed as:

dy(x, t

no¥ )
ot

where ((x, t) represents the complex-valued wavefunction encoding the sys-

=Hulx, t), (4)

tem’s state at time t, and H is the Hamiltonian operator that encapsulates the
total energy of the system.

The Hamiltonian typically comprises kinetic and potential energy compo-
nents. In the one-dimensional case, it is written as:

hi2 a2

H=T+V =——"5+V S
SV, (5)

where:
= fi is the reduced Planck constant,

= m is the mass of the particle,

= V(x) denotes the potential energy landscape,

A 3 z
- T =" 9" s the kinetic energy operator.
2mdx®
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This formulation forms the foundation for both analytical derivations and
numerical approximations.

The central goal in simulating the Schriodinger equation is to compute the
time evolution of Yi(x, t), given initial conditions and a specified potential V (x).
Physically, the modulus squared |gx, t_2 corresponds to the probability density
for locating the particle at position x and time t. As such, numerical methods
must ensure that this quantity remains physically meaningful and conserved
over time.

For free-particle dynamics where V (x) = 0, the equation simplifies, allowing
analytical insights and efficient benchmarking of numerical methods. These
simpler cases are ideal for validating the accuracy and stability of schemes like
Crank—Nicolson and Spectral Deferred Correction.

To solve the TDSE numerically, initial conditions such as an initial wave
packet i(x, 0) are required. Boundary conditions, typically periodic or absorb-
ing, are also essential for defining the computational domain. For spectral meth-
gds, periodic boundary conditions are natural and facilitate the use of Fourier
transforms.

In the sections that follow, we describe semi-implicit strategies for time in-
tegration, followed by the introduction of SDC methods tailored to quantum
dynamics.

Solving the time-dependent Schrodinger equation (TDSE) accurately and
efficiently often requires balancing numerical stability with computational cost.
Semi-implicit methods offer a practical compromise by treating different com-

ponents of the Hamiltonian with varying degrees of numerical stiffness in mind.
In the TDSE, the kinetic energy operator involves a second-order spatial
derivative, which can introduce stiffness into the system. When handled with
explicit methods, this stiffness forces the use of very small time steps to maintain
stability. Semi-implicit approaches mitigate this by discretizing the stiff kinetic
term implicitly, while treating the potential energy term explicitly.

This splitting is particularly beneficial for linear problems or systems with
mild nonlinearity, as it avoids the need for solving fully nonlinear systems at
each time step while still enabling larger time steps.

A prominent semi-implicit scheme used in quantum simulations is the Crank—Nicolson
(CN) method. It applies a trapezoidal rule to the time integration of the TDSE
and is known for being unconditionally stable and norm-preserving. The dis-

cretized update equation reads:

sy -~ -~
Yl =gt — T H G v H G, (6)
pi
where Af is the time step and y" denotes the wavefunction at time t,. In
operator form, this leads to a linear system to be solved at each time step:

IAE - At -
I+ H "= 1—"""H 4" 7
i i )

This method is second-order accurate in both space and time and is gspe-
cially useful in cases where the Hamiltonian does not vary in time. When com-
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bined with spectral spatial discretization, the CN method can be implemented
efficiently using matrix-free techniques.

The semi-implicit CN scheme offers a robust foundation for guantum sim-
ulations, particularly when conservation of probability density and long-time
integration are required. However, it is limited in temporal accuracy to sec-
ond order. For problems requiring higher-order precision, more advanced tech-
nigues—such as Spectral Deferred Correction—can be employed atop the CN
framework.

In the following section, we explore how deferred correction methods can
systematically increase the temporal order of accuracy while maintaining the
favorable stability properties of semi-implicit schemes.

4 Spectral Deferred Correction (SDC) Methods

Spectral Deferred Correction (SDC) methods provide a systematic framework
for achieving high-order time integration by iteratively refining an initial low-
order solution. Originally developed for ordinary differential equations, 5DC
techniques have since been extended to handle partial differential equations,
including the time-dependent Schrodinger equation (TDSE).

The SDC method operates by representing the solution over a time interval
using collocation at selected quadrature points. An initial approximation is
generated using a basic integrator, such as Forward Euler or a semi-implicit
method. Correction sweeps are then applied iteratively to reduce the local
truncation error by solving a residual equation derived from the defect of the
provisional solution.

The 5DC algorithm transforms a single low-order step into a sequence of cor-
rections, where each iteration improves the solution’s accuracy. Given sufficient
smoothness and convergence of the iterations, arbitrarily high-order temporal
accuracy can be achieved.

Let the interval [t, t,+1] be divided into M subintervals using a set of
quadrature nodes {t,}" ,=p. The integral form of the TDSE is written as:

J- trrsea

Yltn+1) = Plty) + flr, i) dr, (8)

tm

where f (t, ) = _L’_F« H { (t). Each correction iteration attempts to better
approximate the integral using residuals from the previous iteration.
At each stage, the method solves:

YUty 41) = PUEI(tn) + Atyf te PEFU(t,) + 6W(ty+1),  (9)

where 61 is the defect computed from the previous iteration k. This ap-

proach can be embedded within a semi-implicit or explicit integration scheme,
depending on the system’s stiffness.
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When applied to guantum dynamics, SDC methods offer several distinct
advantages:

= High-order accuracy: The iterative nature allows for systematic refine-
ment without redefining the entire integrator.

= Compatibility with splitting: SDC can be coupled with operator-
splitting strategies, allowing differential treatment of kinetic and potential
terms.

= Stability with stiffness: Semi-implicit variants of 5DC can be tailored
to handle stiff Hamiltonians or rapidly oscillating solutions.

= Preservation of unitarity: When embedded within norm-preserving
schemes such as Crank—Nicolson, SDC maintains the critical conservation
properties of the guantum system.

The implementation of SDC requires choosing:
= A suitable base integrator (e.g., implicit midpoint or Runge-Kutta),

= The number and distribution of quadrature nodes (commonly Gauss—Lobatto
or Gauss—Legendre points),

= The number of correction sweeps to balance accuracy with computational
cost.

When paired with Fourier spectral methods for spatial discretization, SDC
enables efficient and highly accurate simulation of quantum wave packet evo-
lution. The results obtained in later sections will illustrate the convergence
behavior and physical fidelity of this approach compared to standard integra-
tors.

5 Simulation and Results

To assess the performance of the Spectral Deferred Correction (SDC) method
in solving the time-dependent Schrodinger equation (TDSE), we simulate the
evolution of a free particle initially localized in space. This section outlines the
simulation setup, compares numerical results for different integration schemes,
and highlights the benefits of SDC over standard methods.

We consider the TDSE in one spatial dimension with zero potential:

duli(x, t) 2 02(x, 1)

J at 2m  Ox? (10)
The wavefunction is initialized as a Gaussian wave packet:
(x — x0)2
Y(x, 0) =exp T - explikox), (11)
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where xo = —5 is the initial position, ¢ = 1.0 is the width, and ko = 5.0 is the
central wave number.

The spatial domain is discretized using a Fourier spectral method overx £
[—10, 10] with 512 grid points. The time domain spans T = 2.0 units with a
step size At = 0.01.

We compare the performance of the SDC integrator with a standard second-
order Crank—Nicolson {CN) scheme. Both methods are applied to evolve the
wavefunction over time, and key metrics such as norm preservation and phase
accuracy are analyzed.

Figure 1 shows the evolution of |g(x, t)|? for both schemes. As time pro-
gresses, the wave packet spreads due to dispersion, but the SDC method main-
tains sharper profiles and better symmetry.

Surface Plot of |p(x,t)|* via SDC Surface Plot of |w(x,t)|? via SDC
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Figure 1: Evolution of ng, t_2 using (left) Crank—Nicolson and (right) SDC
over the interval t € [0, 2].

To evaluate the conservation properties of each method, we monitor the L2
norm of the wavefunction and compute the entropy function

I
S(t)y=— |dix, t)? log |L(x, )| %dx

. Both quantities should remain stable for ideal unitary evolution.
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Figure 2 illustrates that while CN maintains overall stability, SDC offers
superior norm preservation and less entropy drift over long times.

Wavefunction Evolution at Selected Times
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Figure 2: Comparison of entropy evolution 5(t) using Crank—Nicolson and SDC.

By increasing the number of SDC correction sweeps and quadrature nodes,
we observe systematic improvements in time integration accuracy. For the same
time step, higher-order SDC variants significantly outperform CN in terms of
phase alignment and amplitude preservation.

This confirms the theoretical advantage of SDC: its accuracy can be en-
hanced without decreasing the time step, which is particularly advantageous in
long-time or high-frequency simulations.

VI. Conclusion

In this study, we have implemented and evaluated a high-order Spectral De- ferred Correction (SDC)
method for numerically solving the time-dependent Schr'odinger equation (TDSE) in one spatial dimension.
Using a Fourier spec- tral method for spatial discretization and iterative SDC-based time integra- tion, we
demonstrated that this approach provides enhanced accuracy, stabil- ity, and conservation properties when
compared to traditional schemes such as Crank—Nicolson.

The numerical results show that SDC achieves superior norm preservation and phase accuracy, especially
over long simulation times, which are critical for modeling quantum wave packet dynamics. The flexibility of the
SDC frame- work—allowing for easy adaptation to higher-order schemes—makes it an at- tractive candidate for
time evolution problems in quantum mechanics.

Moreover, the modular structure of SDC enables its integration with semi- implicit strategies and
operator-splitting methods, offering a pathway toward efficient simulations of more complex or higher-
dimensional systems. These advantages are especially important in contexts where precision and computational
efficiency must be balanced, such as quantum control, molecular dynamics, and quantum information processing.

In future work, the methodology presented here could be extended to systems with nonlinear or time-
dependent potentials, and generalized to multidimen- sional problems. Parallel-in-time SDC variants also offer
promising directions for accelerating quantum simulations on modern computing architectures.
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