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Abstract 
This study presents a high-order and stable time-integration frame- work for the numerical solution of the time-

dependent Schro¨dinger equa- tion, founded on the Spectral Deferred Correction (SDC) method. By combining 

SDC with a Fourier spectral discretization in space, we develop an efficient semi-implicit solver that preserves 

essential quantum mechan- ical invariants, including norm conservation and phase accuracy. The proposed 

method is applied to the simulation of a free particle’s evolution and compared against conventional schemes 

such as the Crank–Nicolson method. Numerical experiments demonstrate that the SDC-based ap- proach attains 

higher accuracy and improved long-term stability, partic- ularly for large time-step sizes. These results underline 

the promise of high-order iterative correction techniques as a robust tool for the simula- tion of quantum 

dynamical systems. 
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VI. Conclusion 
In this study, we have implemented and evaluated a high-order Spectral De- ferred Correction (SDC) 

method for numerically solving the time-dependent Schr¨odinger equation (TDSE) in one spatial dimension. 

Using a Fourier spec- tral method for spatial discretization and iterative SDC-based time integra- tion, we 

demonstrated that this approach provides enhanced accuracy, stabil- ity, and conservation properties when 

compared to traditional schemes such as Crank–Nicolson. 

The numerical results show that SDC achieves superior norm preservation and phase accuracy, especially 

over long simulation times, which are critical for modeling quantum wave packet dynamics. The flexibility of the 

SDC frame- work—allowing for easy adaptation to higher-order schemes—makes it an at- tractive candidate for 

time evolution problems in quantum mechanics. 

Moreover, the modular structure of SDC enables its integration with semi- implicit strategies and 

operator-splitting methods, offering a pathway toward efficient simulations of more complex or higher-

dimensional systems. These advantages are especially important in contexts where precision and computational 

efficiency must be balanced, such as quantum control, molecular dynamics, and quantum information processing. 

In future work, the methodology presented here could be extended to systems with nonlinear or time-

dependent potentials, and generalized to multidimen- sional problems. Parallel-in-time SDC variants also offer 

promising directions for accelerating quantum simulations on modern computing architectures. 
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