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Abstract:  
This research focuses on an essential aspect of complex analysis, specifically complex integration. The focus is on 

the Cauchy-Goursat theorem, which states that the line integral of a holomorphic function along a closed contour 

equals zero when the function is holomorphic within and on that contour, in a domain with a single connection. 

Various applications derived from this study are analyzed and discussed, aimed at solving integrals of functions that 

may present singularities. In this regard, more advanced research would enable the contribution of tools in the 

theory of control and potential flow. 
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I. Introduction  
 In the study of definite integrals, there are some very complicated integrals that cannot be solved by known 

methods. The Cauchy- Goursat theorem is an answer to a question in complex analysis: When is it true that the 

integral of an analytic function 𝑓 on a closed curve is zero? The references show that this occurs if 𝑓 has a defined 

antiderivative along the entire curve, and sometimes it does not occur. 

 Cauchy's Theorem can also be applied to closed curves that are not simple, but can be split into simple 

closed curves. The orientation of a curve 𝒞 induces an orientation on each of the split curves, and it can be seen from 

the definition of the complex integral that the integral of 𝒞 is the sum of the integrals of the pieces. Thus, if the 

function 𝑓 is analytical inside each of the simple curves into which the curve is split 𝒞, then the integral of 𝑓 o the 

curve 𝒞 must be equal to 0, [1]. 

 Not every complex function 𝑓(𝑧) that is continuous in a region ℛ is the complex derivative of a function. 

𝐹(𝑧) in ℛ, by the fundamental theorem, for this to happen it is necessary that the integral of 𝑓(𝑧) be 0 on every 

closed curve in ℛ. Cauchy’s Theorem tells us that this happens if 𝑓(𝑧) is differentiable as a complex function and its 

derivative is continuous. Requiring that 𝑓 it has a complex derivative and that it be continuous seems a very strong 

hypothesis compared to the hypothesis in the real case (that 𝑓 it is continuous). Goursat was able to prove Cauchy’s 

Theorem without requiring that the derivative of 𝑓 be continuous, and this small change has very important 

consequences as it translates into the following result: “If 𝑓 is an analytic function in a simply connected region ℛ 

then for every closed curve 𝒞 in  ℛ, ∫ 𝑓(𝑧)𝑑𝑧
𝒞

= 0. 

 
II. Material and Methods 

 
 It is an applied approach, as it will solve certain real-world integrals using the remainder theorem. The 

design is descriptive and comparative, using the Cauchy integral as a tool to achieve the proposed objectives. 

 The documented data collection technique is appropriate for each of the variables considered in the 

research, allowing us to obtain information to enrich the theoretical framework and analyze the properties of the 

Cauchy integral and some of its consequences. All the information will help develop the methodological strategies 

to obtain the results of this research. 
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III. Result 

3.1 Fundamental theorems of calculus 

Theorem 1. Let 𝒇: Ω ⊂ ℂ ⟶ ℂ, ℜ = 𝑅𝑎𝑛(𝑓), be such that 𝑓 is injective in 𝛺 and such that its inverse function 𝑧 =
𝑓−1(𝒘): Ω ⊂ ℂ ⟶ ℂ is continuous. Then, if 𝑓(𝑧) is differentiable at 𝑧0 ∈ 𝛺 and if 𝑓′(𝑧0) ≠ 0, then 𝑓−1(𝑤) is 

differentiable at 𝑤0 = 𝑓(𝑧0) and (𝑓−1)′(𝑤0) =
1

𝑓′(𝑧0)
. 

Definition 1. An arc Γ ⊂ ℂ is the range of a 𝑓: ⌈𝑎, 𝑏⌉ ⟶ ℂ continuous function. We consider every arc to have an 

orientation that must correspond to the direction of growth of t, [2],  [3],  [4]. 

If 𝑓(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡), 𝑡 ∈ [𝑎, 𝑏], 𝑓 we will call the parameterization of 𝛤 and t the parameter. I f 

𝛼: [𝑐, 𝑑] → [𝑎, 𝑏] is an increasing bijective function, then 𝛤 is also the range of 𝑔 = 𝑓 ∘ 𝛼: [𝑐, 𝑑] → ℂ. Every Jordan 

curve 𝛤 separates the plane into two domains, one bounded (called the interior of 𝛤) and one unbounded (the 

exterior of 𝛤); furthermore, if any other curve joins the interior with the exterior, it must intersect 𝛤. 

Definition 2. A curve Γ ⊂ ℂ that has a differentiable parameterization 𝑓: [𝑎, 𝑏] ⟶ ℂ at ⟨𝑎, 𝑏⟩ and whose derivative 

𝑓′(𝑡) ≠ 0, ∀𝑡 ∈ [𝑎, 𝑏]. Every regular curve is rectifiable and its length is given by ℓ = ∫ √((𝑢′(𝑡))2 + ((𝑣′(𝑡))2𝑑𝑡
𝑏

𝑎
. 

Theorem 2 (Second Fundamental Theorem). Let be 𝑓: Ω ⟶ ℂ a continuous and integrable function on Ω ⊂ ℂ a 

domain and let be 𝐹(𝑧) = ∫ 𝑓(𝑧)𝑑𝑧, ∀𝑧 ∈ 𝛺. If  Γ ⊂ ℂ is a rectifiable curve joining two points 𝑧1 𝑦 𝑧2 in 𝛺, then 

∫ 𝑓(𝑧)𝑑𝑧 = 𝐹(𝑧2) − 𝐹(𝑧1). 

Corollary. If 𝑓 is integrable over a domain 𝛺 and 𝛤 ⊂ 𝛺 is a closed rectified curve, then ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= 0. 

Theorem 3 (First Fundamental Theorem). Let be 𝑓: ℂ ⟶ ℂcontinuous in Ω ⊂ ℂ domain, such that the integral of 

𝑓 is independent of the path in 𝛺. Let be 𝑧0 ∈ 𝛺 fixed, we define 𝐹(𝑧) = ∫ 𝑓(𝑧)𝑑𝑧
𝑧

𝑧0
, ∀𝑧 ∈ 𝛺, and then 𝐹′(𝑧)exists, 

∀𝑧 ∈ 𝛺 and 𝑓(𝑧) = 𝐹′(𝑧), ∀𝑧 ∈ 𝛺, that is, 𝑓 it is integrable in 𝛺, [5], [6]. 

Theorem 4. Let be 𝑓: ℂ ⟶ ℂ continuous on Ω ⊂ ℂ a domain. Then the following three statements are equivalent: a) 

𝑓 is integrable in Ω ⊂ ℂ; b) The integral of 𝑓 is path-independent in Ω ⊂ ℂ; c) The integral of 𝑓 around every closed 

piecewise regular curve 𝛤 ⊂ 𝛺 is zero. 

3.2 On Cauchy´s theorem and Goursat 's lemma 

Cauchy's theorem in ℂ, is closely related to Green's theorem in the plane. To see this relationship, we prove the 

slightly weaker version of Cauchy's theorem, [4], [5], [6]. 

Theorem 5. Let 𝑓: ℂ ⟶ ℂ, 𝑓 ∈ 𝐶1(𝛺), Ω ⊂ ℂ a simply connected domain, then, for every 𝛤 ⊂ 𝛺 piecewise regular 

Jordan curve 

 ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= 0                                                            (1) 

Proof: Let ℜ = 𝐼𝑛𝑡(𝛤). Clearly ℜ is simply connected. If  𝑓 = 𝑢 + 𝑖𝑣, then by Green's Theorem (𝑢and 𝑣are 

𝐶1(ℝ)) 

 ∫ 𝑢𝑑𝑥 − 𝑣𝑑𝑦
𝛤

= ∬ [
𝜕(−𝑣)

𝜕𝑥
−
𝜕(𝑢)

𝜕𝑦
] 𝑑𝑥𝑑𝑦

ℜ
                   (2) 

 ∫ 𝑣𝑑𝑥 + 𝑢𝑑𝑦
𝛤

= ∬ [
𝜕(𝑢)

𝜕𝑥
−
𝜕(𝑣)

𝜕𝑦
] 𝑑𝑥𝑑𝑦

ℜ
,  

but since 𝑓 it is analytic, it satisfies the Cauchy-Riemann conditions 
𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
. Therefore, (1) and (2) 

cancel out; and ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= ∫ (𝑢𝑑𝑥 − 𝑣𝑑𝑦)
𝛤

+ 𝑖 ∫ (𝑣𝑑𝑥 + 𝑢𝑑𝑦)
𝛤

= 0. 

 The objective is to prove Cauchy's theorem, for this the following Lemma will be useful. 
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Goursat 's Lemma. Let, be continuous on a 𝑓: ℂ ⟶ ℂ simply connected 𝛤 ⊂ 𝛺 domain, and let , be 𝛺 a piecewise 

regular Jordan curve, then ∀𝜀 > 0, there exists a polygon 𝑃𝜀 ⊂ 𝛺 such that ‖∫ 𝑓(𝑧)𝑑𝑧
𝛤

− ∫ 𝑓(𝑧)𝑑𝑧
𝛲𝜀

‖ < 𝜀. Closed 

polygon: ∃𝑧0, . . . , 𝑧𝑛, 𝑧0 = 𝑧𝑛 in 𝛺 such that 𝛲𝜀 = 𝑧0𝑧1 ∪ 𝑧1𝑧2 ∪. . .∪ 𝑧𝑛−1𝑧𝑛. 

Proof: Since 𝛺 is open and 𝛤 ⊂ 𝛺 is compact (closed and bounded), then there exist 𝜌 > 0 and 𝛦 ⊂ 𝛺 compact 

such that 𝛤 ⊂ 𝐸 and 𝐸 contains all neighborhoods 𝐵(𝑧, 𝜌), with 𝑧 ∈ 𝛤. Let 𝜀 > 0, as 𝛦 is compact and 𝑓, is 

continuous on 𝛺, then 𝑓 is uniformly continuous on 𝛦, that is, ∃𝜂 > 0 such that for all 𝑧1, 𝑧2 ∈ 𝐸with |𝑧1 − 𝑧2| <

𝜂 ⇒ |𝑓(𝑧1) − 𝑓(𝑧2)| <
𝜀

2𝐿
, where 𝐿 = 𝐿𝑜𝑛𝑔(𝛤). For 𝜀 > 0, by line integral ∃𝛿 > 0 such that for all 𝑃𝜀 = 𝑧0𝑧1 ∪

𝑧1𝑧2 ∪. . .∪ 𝑧𝑛−1𝑧𝑛, 𝑧𝑛 = 𝑧0, closed polygon with vertex in 𝛤 with ‖𝑧𝑘 − 𝑧𝑘−1‖ < 𝛿; 𝑘 = 1,2, . . . , 𝑛, we have 

‖∫ 𝑓(𝑧)𝑑𝑧
𝛤

−∑ 𝑓(𝜉𝑘)(𝑧𝑘 − 𝑧𝑘−1)
𝑛
𝑘=1 ‖ <

𝜀

2
, where 𝜀𝑘 ∈ 𝑧𝑘𝑧𝑘−1 is any. In particular we will take 

  ‖𝑧𝑘 − 𝑧𝑘−1‖ < 𝑚𝑖𝑛{𝛿, 𝜌, 𝜂};𝑘 = 1,2, . . . , 𝑛                                       (3) 

 ‖∫ 𝑓(𝑧)𝑑𝑧
𝛤

−∑ 𝑓(𝜉𝑘)(𝑧𝑘 − 𝑧𝑘−1)
𝑛
𝑘=1 ‖ <

𝜀

2
.                                                                (4) 

yes ∫ 𝑓(𝑧)𝑑𝑧
𝑃𝜀

= ∑ ∫ [𝑓(𝑧) − 𝑓(𝑧𝑘)]𝑑𝑧𝑧𝑘−1𝑧𝑘
+∑ 𝑓(𝑧𝑘)(𝑧𝑘 − 𝑧𝑘−1)

𝑛
𝑘=1

𝑛
𝑘=1 , then 

 ‖∫ 𝑓(𝑧)𝑑𝑧
𝑃𝜀

−∑ 𝑓(𝜉𝑘)(𝑧𝑘 − 𝑧𝑘−1)
𝑛
𝑘=1 ‖ ≤ ∑ ‖𝑧𝑘 − 𝑧𝑘−1‖ 𝑚á𝑥

𝑧∈𝑧𝑘−1𝑧𝑘

𝑛
𝑘=1 ‖𝑓(𝑧𝑘) − 𝑓(𝑧𝑘−1)‖        (5)                       

Now, for all 𝑘 = 1,2, . . . , 𝑛and for all 𝑧 ∈ 𝑧𝑘−1𝑧𝑘 , ‖𝑧 − 𝑧𝑘‖ = ‖𝑧𝑘−1 − 𝑧𝑘‖ < 𝜂 by (3), and since 𝑧𝑘 ∈ 𝐸 and from 

(3) ‖𝑧 − 𝑧𝑘‖ < 𝜌, then from (1) and 𝑧 ∈ 𝐸, then we have 𝑧, 𝑧𝑘 ∈ 𝐸 and ‖𝑧 − 𝑧𝑘‖ < 𝜂. Therefore, from (2), ‖𝑓(𝑧) −

𝑓(𝑧𝑘)‖ <
𝜀

2𝐿
, ∀𝑧 ∈ 𝑧𝑘−1𝑧𝑘, ∀𝑘 = 1,2, . . . , 𝑛, in (5), ‖∫ 𝑓(𝑧)𝑑𝑧

𝑃𝜀
− ∑ 𝑓(𝜉𝑘)(𝑧𝑘 − 𝑧𝑘−1)

𝑛
𝑘=1 ‖ <

𝜀

2𝐿
∑ ‖𝑧𝑘 − 𝑧𝑘−1‖
𝑛
𝑘=1 . 

The sum ∑ ‖𝑧𝑘 − 𝑧𝑘−1‖
𝑛
𝑘=1  gives an approximate value for the length of 𝛤, as L is the supremum of all such sums 

∑ ‖𝑧𝑘 − 𝑧𝑘−1‖
𝑛
𝑘=1 ≤ 𝐿. Therefore, 

   ‖∫ 𝑓(𝑧)𝑑𝑧
𝑃𝜀

− ∑ 𝑓(𝜉𝑘)(𝑧𝑘 − 𝑧𝑘−1)
𝑛
𝑘=1 ‖ <

𝜀

2
.                                       (6) 

By the triangular inequality, from (4) and (6), ‖∫ 𝑓(𝑧)𝑑𝑧
𝛤

− ∫ 𝑓(𝑧)𝑑𝑧
𝑃𝜀

‖ < 𝜀. 

 Now Cauchy's theorem is proved, first for 𝛤 a triangle, then for convex polygons, we continue for 

polygonal Jordan curves and finally for closed polygonal curves [7], [8]. 

Theorem 6. Let 𝑓: ℂ ⟶ ℂ, be analytic in Ω ⊂ ℂ a simply connected domain, then for every 𝛤 piecewise regular 

Jordan curve, 𝛤 ⊂ 𝛺, ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= 0. 

Proof. Case 1: For triangles, let be a 𝛤 counterclockwise 𝐷, 𝐸 𝑦 𝐹 triangle and be 𝐴𝐵𝐶 the midpoints of the sides 

𝐴𝐵, 𝐴𝐶𝑦 𝐵𝐶 respectively. Joining these points gives four triangles 𝛥1, 𝛥2, 𝛥3 𝑦 𝛥4, 

  ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= ∫ 𝑓(𝑧)𝑑𝑧
𝛥2

+ ∫ 𝑓(𝑧)𝑑𝑧
𝛥2

+ ∫ 𝑓(𝑧)𝑑𝑧
𝛥3

+ ∫ 𝑓(𝑧)𝑑𝑧
𝛥4

. 

 

 

 

 

 

      Figure 1. Counterclockwise triangle. 
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Because the integral over 𝐸𝐷, 𝐸𝐹 𝑦 𝐷𝐹vanishes in pairs (having opposite directions). Let 𝑀 = ‖∫ 𝑓(𝑧)𝑑𝑧
𝛤

‖ ≥ 0 ⇒

𝑀 ≤ ∑ ‖∫ 𝑓(𝑧)𝑑𝑧
𝛥𝑘

‖4
𝑘=1 , in at least one of the triangles 𝛥𝑘, say 𝛥1: ‖∫ 𝑓(𝑧)𝑑𝑧

𝛥1
‖ ≥

𝑀

4
. Starting now from 

𝛥1 (instead of  𝛤) and proceeding in exactly the same way, we obtain a triangle 𝛥2, 𝛥2 ⊂ 𝛥1such that 

‖∫ 𝑓(𝑧)𝑑𝑧
𝛥2

‖ ≥
𝑀

42
and so on, resulting in a sequence of triangles 𝛤 ⊃ 𝛥1 ⊃ 𝛥2 ⊃. . . ⊃ 𝛥𝑛 ⊃. ..whose area tends to 

zero as (𝑛 → ∞) and 

 ‖∫ 𝑓(𝑧)𝑑𝑧
𝛥𝑛

‖ ≥
𝑀

4𝑛
, there exists such 𝑧0 ∈ 𝛤 ∪ 𝐼𝑛𝑡(𝛤)that 𝑧0 ∈ 𝛥𝑛 , ∀𝑛 = 1,2, . .., be 𝜂(𝑧) =

𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
− 𝑓′(𝑧0), 𝑧 ≠

𝑧0, 𝑧 ∈ 𝛺, and 𝑙𝑖𝑚
𝑧→𝑧0

𝜂(𝑧) = 0, 𝑧 ≠ 𝑧0, 𝑧 ∈ 𝛺 then, given 𝜀 > 0 any ∃𝛿 > 0 such that 

  ‖𝜂(𝑧)‖ < 𝜀, ∀0 < ‖𝑧 − 𝑧0‖ < 𝛿.                                                                               (7) 

Now ‖∫ 𝑓(𝑧)𝑑𝑧
𝛥𝑛

‖ = ‖∫ [𝑓(𝑧0) + 𝑓′(𝑧0)(𝑧 − 𝑧0)𝜂(𝑧)]𝑑𝑧𝛥𝑛
‖, 

 = ‖∫ (𝑧 − 𝑧0)𝜂(𝑧)𝑑𝑧𝛥𝑛
‖ ≤ [𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑟𝑜]𝑚á𝑥

𝑧∈𝛥
‖𝜂(𝑧)(𝑧 − 𝑧0)‖.                                      (8) 

 Let 𝑙 = Perímetro 𝑑𝑒 (Γ). Then, perímetro de (Δ𝑛) =
𝑙

2𝑛
. If n is large enough 

𝑙

2𝑛
< 𝛿, for all 𝑧0 ∈

𝛥𝑛, ‖𝑧 − 𝑧0‖ <
𝑙

2𝑛
< 𝛿, from (7): ‖𝜂(𝑧)‖ < 𝜀, ∀𝑧 ∈ 𝛥𝑛, perímetro de (Δ𝑛) =

𝑙

2𝑛
and ‖(𝑧 − 𝑧0)𝜂(𝑧)‖ < 𝜀 (

𝑙

2𝑛
); and 

∀𝑧 ∈ 𝛥𝑛 n is large enough. Therefore, in (8) ‖∫ 𝑓(𝑧)𝑑𝑧
𝛥𝑛

‖ < (
𝑙

2𝑛
) (

𝜀𝑙

2𝑛
) =

𝜀𝑙2

4𝑛
, n is large, replacing 

𝑀

4𝑛
≤
𝜀𝑙2

4𝑛
, n is 

large, 𝑀 ≤ 𝜀𝑙2, ∀𝜀 > 0. Therefore, 𝑀 = ‖∫ 𝑓(𝑧)𝑑𝑧
𝛤

‖ = 0. From here: ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= 0. 

Case 2. For convex polygons. Let 𝛤 = 𝐴0𝐴1. . . 𝐴𝑛−1𝐴𝑛(𝐴0 = 𝐴𝑛), 𝑛 ≥ 4 is a convex polygon , then we take a 

vertex of  𝛤, which can be 𝐴0 and join it with the other vertices, thus obtaining (𝑛 − 2) triangles, all of which are 

parameterized in the counterclockwise direction ( 𝛥1, . . . , 𝛥𝑛−2), from the first step: ∫ 𝑓(𝑧)𝑑𝑧
𝛥𝑘

= 0, ∀𝑘 =

1,2, . . . , 𝑛 − 2. Therefore,∫ 𝑓(𝑧)𝑑𝑧
𝛤

= ∑ ∫ 𝑓(𝑧)𝑑𝑧
𝛥𝑘

𝑛
𝑘=1 = 0 

 

 

 

 

 

 

 

 

Figure 2: case 2                                       Figure 3. Case 3 

Case 3: For polygonal Jordan curves. As shown in the figure, all sides of the polygon extend in one direction or the 

other (or perhaps both). This breaks down the integral over convex polygons, all of which vanish in step 2. 

Therefore ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= 0, [9], [10]. 

Case 4: For polygonal curves. The integral over is subdivided 𝛤 into integrals over polygonal (simple) Jordan 

curves. Some may overlap, then, from the previous step ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= 0. 
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Case 5: (piecewise regular Jordan curves). Let be 𝛤 a piecewise regular Jordan curve 𝛤 ⊂ 𝛺 and 𝜀 > 0, from the 

lemma, there exists 𝑃𝜀 a closed polygonal curve 𝑃𝜀 ⊂ 𝛺 such that ‖∫ 𝑓(𝑧)𝑑𝑧 −
𝛤

∫ 𝑓(𝑧)𝑑𝑧
𝑃𝜀

‖ < 𝜀. From the fourth 

step: ‖∫ 𝑓(𝑧)𝑑𝑧
𝛤

‖ < 𝜀, as 𝜀 > 0 is any, then: ‖∫ 𝑓(𝑧)𝑑𝑧
𝛤

‖ = 0. From here ∫ 𝑓(𝑧)𝑑𝑧
𝛤

= 0. 

Theorem 7. Cauchy's integral formula. Let be 𝑓: ℂ ⟶ ℂ analytic in a domain  Ω ⊂ ℂ. Let be ℓ a counterclockwise 

rectifiable Jordan curve such that ℓ ∪ 𝐼𝑛𝑡(ℓ) ⊂ 𝛺, then 𝑓(𝑧) =
1

2𝜋𝑖
∫
𝑓(𝑤)

𝑤−𝑧
𝑑𝑤

ℓ
, ∀𝑧 ∈ 𝐼𝑛𝑡(ℓ). 

3.3 Consequences of Cauchy's integral formula 

In Cauchy's formula we obtained 𝑓(𝑧0) =
1

2𝜋𝑖
∫
𝑓(𝑧)

𝑧−𝑧0
𝑑𝑧

ℓ
, where 𝑓 is analytic in ℓ ∪ 𝐼𝑛𝑡(ℓ) and 𝑧0 ∈ 𝐼𝑛𝑡(ℓ). An 

integral of this type is called a Cauchy-type integral, the function 𝑓(𝑧) is called the derivative and 
1

𝑧−𝑧0
 is the kernel 

of the integral. This theorem is very important because it proves that if 𝑓 is known only over some Jordan curve ℓ, 

then the values of 𝑓 can be found throughout the interior of ℓ; one would only need to evaluate the kernel of the 

integral. Furthermore, it will be seen that all the derivatives of 𝑓 can also be found from this formula. 

Theorem 8. Let 𝑓: ℂ ⟶ ℂ analytic in a domain  Ω ⊂ ℂ, then 𝑓 is infinitely differentiable in 𝛺. Furthermore, ∀𝑧0 ∈
𝛺 if ℓ ⊂ 𝛺 is any counterclockwise Jordan curve such that 𝐼𝑛𝑡(ℓ) ⊂ 𝛺 and 𝑧0 ∈ 𝐼𝑛𝑡(ℓ) then 𝑓(𝑛)(𝑧0) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−𝑧0)
𝑛+1ℓ

; ∀𝑛 = 0,1,2, . .. 

Proof: It is clear that it is enough to verify the above formula. We will prove it by mathematical induction. For 𝑛 =
0, we obtain the already proven Cauchy formula. Assuming that it holds for, 𝑛 > 0 it is proved that it also holds for 

𝑛 + 1. Let 𝜀 > 0, ∃ 𝛿 > 0 such that 𝐵(𝑧0, 𝜌) ⊂ 𝐼𝑛𝑡(ℓ) and 𝛿0 = 𝑑𝑖𝑠𝑡(ℓ, 𝛤𝜌) > 0( 𝛤𝛿: ‖𝑧 − 𝑧0‖ = 𝜌). We have 

𝛿 = 𝑚𝑖𝑛 {𝜌,
(4𝜋𝛿0

2𝑛+3)𝜀

(𝑛+2)!𝑀(2𝑅)𝑛𝑙
} > 0, where 𝑀 = 𝑚á𝑥

𝑧∈ℓ
|𝑓(𝑧)|, 𝑙 = 𝑙𝑜𝑛𝑔(ℓ)and 𝑅 > 0 is such that ℓ ⊂ 𝐵(0, 𝑅). It is 

enough to prove that if 

 0 < |ℎ| < 𝛿, then ‖
𝑓(𝑛)(𝑧0+ℎ)−𝑓

(𝑛)(𝑧0)

ℎ
−
(𝑛+1)!

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−𝑧0)
𝑛+1ℓ
‖ < 𝜀    ( 9) 

Let 0 < |ℎ| < 𝛿, then 𝑧0 + ℎ ∈ 𝐵(𝑧0, 𝜌) ⊂ 𝐼𝑛𝑡(ℓ), then 𝑧0 𝑦 𝑧0 + ℎ ∈ 𝐼𝑛𝑡(ℓ). 

Then by hypothesis 

  𝑓(𝑛)(𝑧0) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−𝑧0)
𝑛+1ℓ

 and  𝑓(𝑛)(𝑧0 + ℎ) =
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−(𝑧0+ℎ))
𝑛+1ℓ

.  
𝑓(𝑛)(𝑧0+ℎ)−𝑓

(𝑛)(𝑧0)

ℎ
=

𝑛!

2𝜋𝑖
∫
𝑓(𝑧)[(𝑧−𝑧0)

𝑛+1−(𝑧−(𝑧0+ℎ))
𝑛+1]

(𝑧−𝑧0)
𝑛+1[𝑧−(𝑧0+ℎ)]

𝑛+1ℎ
𝑑𝑧

ℓ
. 

If 𝑧 − 𝑧0 = 𝑡, then 𝑧 − (𝑧0 + ℎ) = 𝑡 − ℎand by the identity 

 𝑎𝑛+1 − 𝑏𝑛+1 = (𝑎 − 𝑏)∑ 𝑎𝑘𝑏𝑛−𝑘𝑛
𝑘=0                                                                     (10) 

 
𝑓(𝑛)(𝑧0+ℎ)−𝑓

(𝑛)(𝑧0)

ℎ
=

𝑛!

2𝜋𝑖
∫
𝑓(𝑧)[∑ 𝑡𝑘(𝑡−ℎ)𝑛−𝑘𝑛

𝑘=0 ]

𝑡𝑛+1(𝑡−ℎ)𝑛+1
𝑑𝑧

ℓ
 

 = ‖
𝑛!

2𝜋𝑖
∫
𝑓(𝑧)[𝑡 ∑ 𝑡𝑘(𝑡−ℎ)𝑛−𝑘𝑛

𝑘=0 −(𝑛+1)(𝑡−ℎ)𝑛+1]

𝑡𝑛+2(𝑡−ℎ)𝑛+1
𝑑𝑧

ℓ
‖                                   (11) 

and 𝑡[∑ 𝑡𝑘(𝑡 − ℎ)𝑛−𝑘𝑛
𝑘=0 ] − ∑ (𝑡 − ℎ)𝑛+1𝑛

𝑘=0 = ℎ∑ (𝑡 − ℎ)𝑛−𝑘[∑ 𝑡𝑙(𝑡 − ℎ)𝑘−𝑙𝑘
𝑘=0 ]𝑛

𝑘=0  by (10), as 𝛿0 < |𝑡| < 2𝑅, 

𝛿0 < |𝑡 − ℎ| < 2𝑅, taking modulus 

 ‖𝑡[∑ 𝑡𝑘(𝑡 − ℎ)𝑛−𝑘𝑛
𝑘=0 ] − ∑ (𝑡 − ℎ)𝑛+1𝑛

𝑘=0 ‖ ≤ |ℎ| ∑ (2𝑅)𝑛
(𝑛+1)(𝑛+2)

2

𝑛
𝑘=0 .                    (12) 
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in (11) and (12) ‖
𝑓(𝑛)(𝑧0+ℎ)−𝑓

(𝑛)(𝑧0)

ℎ
−
(𝑛+1)!

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−𝑧0)
𝑛+1ℓ
‖ <

(𝑛+2)!

2𝜋

𝑀𝐿(2𝑅)𝑛

𝛿0
2𝑛+3 𝛿 < 𝜀, then ∀ 0 < |ℎ| < 𝛿 is fulfilled ( 9). 

Theorem 9 (Morera). Let f be 𝑓: ℂ ⟶ ℂ continuous in a domain Ω ⊂ ℂ and such that ∫ 𝑓(𝑧)𝑑𝑧
ℓ

= 0 for every 

rectifiable Jordan curve, then f is analytic in 𝛺, [11]. 

Demonstration: By the (equivalence) theorem of the hypothesis 𝑓 is integrable in 𝛺. That is, there exists 𝐹: ℂ ⟶ ℂ, 

𝐹 ∈ 𝐶(𝛺) such that 𝐹′(𝑧) = 𝑓(𝑧); as 𝐹 ∈ 𝐶′(𝛺), then F is analytic in 𝛺 and from the previous theorem (Cauchy's 

F), 𝐹′ it is analytic in 𝛺, so 𝑓 it is analytic in 𝛺. 

Theorem 10. (Cauchy Estimation). Let be 𝑓: ℂ ⟶ ℂanalytic in a domain  𝑓: ℂ ⟶ ℂ. Let 𝑧0 ∈ 𝛺 and 𝑟 > 0 such that 

𝛤𝑟 ⊂ 𝛺( 𝛤𝑟: ‖𝑧 − 𝑧0‖ = 𝑟); then ‖𝑓(𝑛)(𝑧0)‖ ≤
𝑛!𝑀(𝑟)

𝑟𝑛
, 𝑛 = 0,1,2, . .., where 𝑀(𝑟) = 𝑚á𝑥

𝑧∈𝛤𝑟
, [12]. 

Demonstration: From Cauchy's formula 

  ‖𝑓(𝑛)(𝑧0)‖ = ‖
𝑛!

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−𝑧0)
𝑛+1𝛤𝑟
‖ ≤⏞
𝑀𝐿

𝑛"

2𝜋

𝑀(𝑟)

𝑟𝑛+1
(2𝜋𝑟). 

Theorem 11 (Liouville's). Every bounded integer function is a constant function. 

Proof. Let 𝑧0 ∈ 𝐶. Since Ω = ℂ, then ∀𝑟 > 0, 𝛤𝑟 ⊂ 𝛺, then the Cauchy estimate ‖𝑓′(𝑧0)‖ ≤
𝑀

𝑟
, ∀𝑟 > 0 (where 𝑀 >

0 such that ‖𝑓(𝑧)‖ < 𝑀, ∀𝑧 ∈ 𝐶, when 𝑟 → ∞, then 𝑓′(𝑧0) = 0, ∀𝑧 ∈ 𝐶, then 𝑓(𝑧) = 𝐶𝑡𝑒 in C. 

3.4 Power series and absolute convergence 

Theorem 12. (Cauchy- Hadamard). Let be ∑ 𝑎𝑘(𝑧 − 𝑧0)
𝑘∞

𝑘=0  a power series and   𝑅 =
1

𝑙𝑖𝑚
𝑛→∞

√𝑎𝑛
𝑛 ,  then a) If 𝑅 = 0, 

the power series converges only for 𝑧 = 𝑧0, b) If 0 < 𝑅 < ∞, the power series converges absolutely ∀‖𝑧 − 𝑧0‖ < 𝑅, 

and diverges ∀‖𝑧 − 𝑧0‖ > 𝑅, c) If 𝑅 = ∞, the power series converges absolutely everywhere ℂ. 

Obviously, the theorem says nothing about the behavior of the series on the circle of convergence: ‖𝑧 − 𝑧0‖ = 𝑅[7], 

[8]. 

Theorem 13. Let be ∑ 𝑎𝑘(𝑧 − 𝑧0)
𝑘∞

𝑘=0  a power series with radius of convergence 𝑅 > 0. Let 𝛺: ‖𝑧 − 𝑧0‖ < 𝑅 and 

be 𝑓(𝑧) = ∑ 𝑎𝑘(𝑧 − 𝑧0)
𝑘∞

𝑘=0 , 𝑧 ∈ 𝛺; then a) 𝑓 is analytic in 𝛺, b) 𝑎𝑘 =
𝑓(𝑘)(𝑧0)

𝑘!
 and hence 𝑓 is equal to the Taylor 

series in 𝛺, c) ∀𝑘 = 0,1,2, . .., ∀𝑧 ∈ 𝛺: 𝑓(𝑘)(𝑧) = ∑
𝑛!𝑎𝑛

(𝑛−𝑘)!
(𝑧 − 𝑧0)

𝑛−𝑘∞
𝑛=𝑘 . 

Theorem 14 (Taylor). Let be 𝑓(𝑧) an analytic function in 𝛺 and 𝑧0 ∈ 𝛺; then 𝑓(𝑧) = ∑
𝑓(𝑘)(𝑧0)

𝑘!
(𝑧 − 𝑧0)

𝑘∞
𝑘=0 , for all 

z in the largest disk around 𝑧0 y contained in 𝛺. 

Definition 3. Let be 𝑓 analytic in a domain 𝛺. A point 𝑧0 ∈ 𝛺 is called a zero of order m of 𝑓(𝑧) if: 𝑓(𝑘)(𝑧0) =
0, ∀𝑘 = 0,1,2, . . . , 𝑚 − 1 and 𝑓(𝑚)(𝑧0) ≠ 0. 

Motto. 𝑧0 is a zero of order n of the analytic 𝑓(𝑧) function if and only if in a neighborhood of 𝑧0: 𝑓(𝑧) = (𝑧 −
𝑧0)

𝑛𝑞(𝑧), where 𝑞(𝑧0) ≠ 0 and 𝑞(𝑧) is analytic in 𝑧0, [13]. 

Proof: ( ⇒) In a neighborhood of 𝑧0: 𝑓(𝑧) = ∑
𝑓(𝑘)(𝑧0)

𝑘!
(𝑧 − 𝑧0)

𝑘∞
𝑘=0 = ∑

𝑓(𝑘)(𝑧0)

𝑘!
(𝑧 − 𝑧0)

𝑘∞
𝑘=𝑛 ⇒ 𝑓(𝑧) = (𝑧 −

𝑧0)
𝑛𝑞(𝑧), where 𝑞(𝑧) = ∑

𝑓(𝑘+𝑛)(𝑧0)

(𝑘+𝑛)!
(𝑧 − 𝑧0)

𝑘∞
𝑘=0  is analytic in a neighborhood of 𝑧0 (because it is a power series) 

and 𝑞(𝑧0) =
𝑓(𝑛)(𝑧0)

𝑛!
≠ 0. 

( ⇐) From the previous Theorem: 𝑞(𝑧) = ∑ 𝑏𝑘(𝑧 − 𝑧0)
𝑘∞

𝑘=0 ⇒ 𝑏0 = 𝑞(𝑧0) ≠ 0, where 
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 𝑎𝑘 = {
0 𝑘 = 0,1,2, . . . , 𝑛 − 1
𝑏𝑘−𝑛 𝑘 = 𝑛, 𝑛 + 1, . . .

⇒ 𝑎𝑛 = 𝑏0 ≠ 0. 

Therefore, 𝑓(𝑘)(𝑧0) = 𝑘! 𝑎𝑘 = 0, ∀𝑘 = 0,1,2, . . . , 𝑛 − 1 and 𝑓(𝑛)(𝑧0) = 𝑛! 𝑎𝑛 ≠ 0, where 𝑧0 is a zero of order n of  

𝑓(𝑧). 

Theorem 15. Let be 𝑓(𝑧) analytic in 𝛺 and 𝑧0 ∈ 𝛺 such that 𝑓(𝑧0) = 0, then ∃ 𝑟 > 0such that 𝑓(𝑧) = 0, ∀‖𝑧 −
𝑧0‖ < 𝑟or 𝑓(𝑧) ≠ 0, ∀ 0 < ‖𝑧 − 𝑧0‖ < 𝑟. In fact 𝑟 = 𝐷𝑖𝑠𝑡(𝑧0, 𝜕𝛺),  (That is, the zeros of 𝑓 occur in balls or else 

they are isolated zeros). 

Theorem 16. Let f be analytic in 𝛺 and be {𝑧𝑛} ⊂ 𝛺 a sequence of zeros of 𝑓  (all distinct) that converge to 𝑧0 ∈ 𝛺. 

Then 𝑓 ≡ 0 in 𝛺. 

Theorem 17 (Parseval 's Identity). Let 𝑓 analytic in 𝛺 and 𝑧0 ∈ 𝛺. Let 𝑅 > 0 such that 𝑓(𝑧) = ∑ 𝑎𝑘(𝑧 − 𝑧0)
𝑘∞

𝑘=0 , 

∀ ‖𝑧 − 𝑧0‖ < 𝑅; then ∀ 0 < 𝑟 < 𝑅, 
1

2𝜋
∫ ‖𝑓(𝑧0 + 𝑟𝑒

𝑖𝜃)‖
2
𝑑𝜃

2𝜋

0
= ∑ ‖𝑎𝑘‖

2𝑟2𝑘∞
𝑘=0 . 

3.5 Regarding singularities and Laurent series 

Definition 4. Let be 𝑓defined in Ω ⊂ ℂ a domain. If 𝑓 is analytic in 𝛺, except at one point 𝑧0 ∈ 𝛺, then 𝑓 it has a 

singularity at 𝑧0, [6], [7], [8]. 

It only focuses on singularities that are isolated. That is ∃𝑟 > 0/∀0 < ‖𝑧 − 𝑧0‖ < 𝑟, 𝑓(𝑧)it is analytic in 𝛺. Let's 

say 𝑓(𝑧) = (𝑠𝑒𝑛
1

𝑧
)
−1

 has singularities in: 0,
1

𝑛𝜋
; 𝑛 = ±1,±2, . .., it is easy to see that in 𝑧0 = 0 𝑓 has a non-isolated 

singularity. Depending on whether it exists or not, 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) there are three types of singularities: removable 

singularity if: 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧) ∈ ℂ, polar singularity if: 𝑙𝑖𝑚
𝑧→𝑧0

‖𝑓(𝑧)‖ = ∞ and essential 𝑙𝑖𝑚
𝑧→𝑧0

‖𝑓(𝑧)‖ singularity if: neither 

exists n or is ∞. 

Lemma. Let be 𝑧0 a singularity of 𝑓, a) If 𝑧0 is a removable singularity, then redefining 𝑓 is 

analytic in 𝑧0. b) 𝑧0 is a pole of 𝑓if and only if 𝑧0 is a zero of  
1

𝑓
, [14]. 

Demonstration: a) Obviously, since 𝑓(𝑧0) = 𝑙𝑖𝑚
𝑧→𝑧0

𝑓(𝑧), b) )( 𝑙𝑖𝑚
𝑧→𝑧0

‖
1

𝑓(𝑧)
‖ =

1

𝑙𝑖𝑚
𝑧→𝑧0

‖𝑓(𝑧)‖
=

1

+∞
= 0, ⇒

1

𝑓(𝑧0)
= 0 ⇒

1

𝑓
  has a zero in 𝑧0, )( 𝑙𝑖𝑚

𝑧→𝑧0
‖𝑓(𝑧)‖ =

1

𝑙𝑖𝑚
𝑧→𝑧0

‖
1

𝑓(𝑧)
‖
=

1

0+
= +∞. 

Theorem 18. (Laurent). If 𝑓 is analytic in the ring 𝑅1 < ‖𝑧 − 𝑧0‖ < 𝑅2, then 𝑓(𝑧) it can be represented in the 

Laurent series 𝑓(𝑧) = ∑ 𝑐𝑛(𝑧 − 𝑧0)
𝑛∞

𝑛=−∞ , which converges to 𝑓(𝑧) in the ring. Moreover 𝑐𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑠)𝑑𝑠

(𝑠−𝑧0)
𝑛+1ℓ

, 𝑛 ∈

ℤ, where ℓ is any circle centered at 𝑧0 and contained in the ring, [15]. 

Proof: Let 𝑧1/𝑅1 < ‖𝑧1 − 𝑧0‖ < 𝑅2, from Cauchy 's formula for doubly connected domains,  𝑓(𝑧1) =
1

2𝜋𝑖
∫

𝑓(𝑠)

𝑠−𝑧1
𝑑𝑠

ℓ2
−

1

2𝜋𝑖
∫

𝑓(𝑠)

𝑠−𝑧1
𝑑𝑠

ℓ1
= 𝐼2 + 𝐼1, where ℓ𝑖: ‖𝑠 − 𝑧0‖ = 𝑟𝑖,, 𝑖 = 1,2. ( 𝑅1 < 𝑟1 < ‖𝑧 − 𝑧0‖ < 𝑟2 < 𝑅2). For 𝐼2: 

1

𝑠−𝑧1
=

1

(𝑠−𝑧0)[1−
𝑧1−𝑧0
𝑠−𝑧0

]
= ∑

(𝑧1−𝑧0)
𝑛

(𝑠−𝑧0)
𝑛+1

∞
𝑛=0 , uniform convergence, since ‖𝑧1 − 𝑧0‖ < ‖𝑠 − 𝑧0‖ = 𝑟2, 𝐼2 =

∑ [
1

2𝜋𝑖
∫

𝑓(𝑠)𝑑𝑠

(𝑠−𝑧0)
𝑛+1ℓ2
] (𝑧1 − 𝑧0)

𝑛∞
𝑛=0 , since both closed curves are in the ring  𝐼2 = ∑ 𝑐𝑛(𝑧1 − 𝑧0)

𝑛∞
𝑛=0 .                                         

For 𝐼1: −
1

𝑠−𝑧1
=

1

𝑧1−𝑠
=

1

(𝑧1−𝑧0)[1−
𝑠−𝑧0
𝑧1−𝑧0

]
= ∑

(𝑠−𝑧0)
𝑛

(𝑧1−𝑧0)
𝑛+1

∞
𝑛=0 , uniform convergence, since ‖𝑠 − 𝑧0‖ = 𝑟1 < ‖𝑧1 − 𝑧0‖, 

 𝐼1 = ∑ 𝑐𝑛(𝑧1 − 𝑧0)
𝑛−∞

𝑛=−1 . 

)(lim)(
0

0 zfzf
zz→

=
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Therefore: 𝑓(𝑧1) = ∑ 𝑐𝑛(𝑧1 − 𝑧0)
𝑛−∞

𝑛=−∞ , ∀𝑧1, where 𝑐𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑠)𝑑𝑠

(𝑠−𝑧0)
𝑛+1ℓ

. 

If 𝑓 is analytic in 𝑅1 < ‖𝑧‖ < 𝑅2and in ‖𝑧‖ < 𝑅1, then its Lawrence series becomes its Taylor series, since 𝑐𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑠)𝑑𝑠

(𝑠−𝑧0)
𝑛+1ℓ
= 0, for 𝑛 = −1,−2, . .., the integrand being analytic in and on ℓ. 

Corollary. Let be 𝑓 analytic in 𝛺 − {𝑧0}. Then F is analytic in 𝑧0 ⇔ ‖𝑓(𝑧)‖ this bounded in a neighborhood of 𝑧0. 

Proof: (⇒) Direct, since ‖𝑓(𝑧)‖ it is continuous. (⇐)Let 𝛤𝜌: ‖𝑧 − 𝑧0‖ = 𝜌, 0 < 𝜌 < 𝑅, 𝑅 = 𝐷𝑖𝑠𝑡(𝑧0, 𝛺), ⇒

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)
𝑛∞

𝑛=−∞ ; 𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−𝑧0)
𝑛+1𝛤𝜌

;𝑛 ∈ ℕ 

Let 𝑀 > 0/‖𝑓(𝑧)‖ ≤ 𝑀, ∀𝑧 ∈ 𝐵(𝑧0, 𝑅), ‖𝑎𝑛‖ <
𝑀

2𝜋

1

𝜌𝑛+1
(2𝜋𝜌) =

𝑀

𝜌𝑛
. If 𝑛 < 0, making 𝜌 → 0 ⇒ ‖𝑎𝑛‖ = 0 ⇒

𝑎𝑛 = 0, ∀ 𝑛 = −1,−2, . . ., Therefore, 𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)
𝑛∞

𝑛=−∞ , its Taylor series. Then 𝑓 is analytic in 𝑧0. 

3.6 Calculation of residues 

Definition 5. Let be 𝑓 analytic in a domain 𝛺 except 𝑧0 ∈ 𝛺. Let be the 𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧0)
𝑛∞

𝑛=−∞  Lawrence 

series around 𝑓. 𝑧0 The residue of 𝑓  in z is the coefficient 𝑎−1. Notation: 𝑎−1 = 𝑅𝑒 𝑠 (𝑓(𝑧), 𝑧0), [8], [9], [10]. How 

to calculate the residue: 

1)  Directly: Finding the Laurent series of 𝑓 around 𝑧0, then 𝑅𝑒 𝑠 (𝑓(𝑧), 𝑧0) will be the coefficient of the term (𝑧 −
𝑧0)

−1. 

2)  𝑅𝑒𝑠(𝑓, 𝑧0) =
1

2𝜋𝑖
∫ 𝑓(𝑧)𝑑𝑧
ℓ

; where is a ℓ closed and simple curve around. 𝑧0 

 Indeed ( 𝑛 = −1):𝑎−1 =
1

2𝜋𝑖
∫

𝑓(𝑧)𝑑𝑧

(𝑧−𝑧0)
𝑛+1ℓ
=

1

2𝜋𝑖
∫ 𝑓(𝑧)𝑑𝑧
ℓ

. 

3)  𝑅𝑒𝑠(𝑓, 𝑧0) =
1

(𝑘−1)!
𝑙𝑖𝑚
𝑧→𝑧0

𝑑𝑘−1

𝑑𝑧𝑘−1
[(𝑧 − 𝑧0)

𝑘𝑓(𝑧)], when 𝑧0 is a pole of order k of 𝑓(𝑧). If 𝑘 = 1, 𝑅𝑒𝑠(𝑓, 𝑧0) =

𝑙𝑖𝑚
𝑧→𝑧0

(𝑧 − 𝑧0)𝑓(𝑧). Indeed, if 𝑧0 is a pole of order k of 𝑓(𝑧), 𝑓(𝑧) =
𝑎−𝑘

(𝑧−𝑧0)
𝑘+. . . +

𝑎−1

𝑧−𝑧0
+ 𝑎0 + 𝑎1(𝑧 −

𝑧0)+. .. 

 (𝑧 − 𝑧0)
𝑘𝑓(𝑧) = 𝑎−𝑘+. . . +𝑎−1(𝑧 − 𝑧0)

𝑘−1 + 𝑎0(𝑧 − 𝑧0)
𝑘 + 𝑎1(𝑧 − 𝑧0)

𝑘+1+. .. 

Differentiating (k-1) times 
𝑑𝑘−1

𝑑𝑧𝑘−1
[(𝑧 − 𝑧0)

𝑘𝑓(𝑧)] = (𝑘 − 1)! 𝑎−1 +
𝑘!

1!
𝑎0(𝑧 − 𝑧0) +

(𝑘+1)!

2!
𝑎1(𝑧 − 𝑧0)

2+. .., then(𝑘 −

1)! 𝑎−1 = 𝑙𝑖𝑚
𝑧→𝑧0

𝑑𝑘−1

𝑑𝑧𝑘−1
[(𝑧 − 𝑧0)

𝑘𝑓(𝑧)] 

4) If: 𝑓(𝑧) =
𝑝(𝑧)

𝑞(𝑧)
, 𝑝, 𝑞 analytical in 𝑧0, 𝑞(𝑧0) = 0, 𝑞′(𝑧0) ≠ 0 and 𝑝(𝑧0) ≠ 0, 𝑅𝑒𝑠(𝑓(𝑧0)) =

𝑝(𝑧0)

𝑞′(𝑧0)
, such that has a 

simple zero in 𝑧0, then in 𝑘 = 1, 𝑅𝑒𝑠(𝑓, 𝑧0) = 𝑙𝑖𝑚
𝑧→𝑧0

(𝑧 − 𝑧0)
𝑝(𝑧)

𝑞(𝑧)
= 𝑙𝑖𝑚
𝑧→𝑧0

𝑝(𝑧)
𝑞(𝑧)−𝑞(𝑧0)

𝑧−𝑧0

=
𝑝(𝑧0)

𝑞′(𝑧0)
. 

Theorem 19 (Remainder). Let be 𝑓 analytic 𝛺 except for singularities, 𝑧1, 𝑧2, . . . , 𝑧𝑚 of  𝛺, let, be ℓ a Jordan curve 

in 𝛺 which encloses 𝑧1, 𝑧2, . . . , 𝑧𝑚. Then ∫ 𝑓(𝑧)𝑑𝑧
ℓ

= 2𝜋𝑖 ∑ 𝑅𝑒𝑠( 𝑓, 𝑧𝑘)
𝑚
𝑘=1 . 

Proof: Let be 𝛤1, 𝛤2, . . . , 𝛤𝑚 curves in the interior of ℓ that enclose and 𝑧1, 𝑧2, . . . , 𝑧𝑚 respectively. Then, by Cauchy's 

theorem for simply connected domains 

 ∫ 𝑓(𝑧)𝑑𝑧
ℓ

= ∑ ∫ 𝑓(𝑧)𝑑𝑧
𝛤𝑘

𝑚
𝑘=1 =⏞

𝑑𝑒(2)

∑ 2𝜋𝑖 𝑅𝑒𝑠( 𝑓, 𝑧𝑘)
𝑚
𝑘=1 , 

∫ 𝑓(𝑧)𝑑𝑧
ℓ

= 2𝜋𝑖 ∑ 𝑅𝑒𝑠( 𝑓, 𝑧𝑘)
𝑚
𝑘=1 . 
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Theorem 20 (From the argument) . Let be ℓ a Jordan curve and 𝑓(𝑧) analytic on ℓ and in ℓ except for a finite 

number of poles in ℓ, then 
1

2𝜋𝑖
∫
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧

ℓ
= 𝑛 − 𝑝, where 𝑝 is the number of poles (counted with their multiplicity) 

within ℓ and 𝑛 is the number of zeros (counted with their multiplicity) within ℓ). 

Proof: Let 𝑔(𝑧) =
𝑓′(𝑧)

𝑓(𝑧)
, then the singularities of g are the zeros and poles 𝑓 inside ℓ. Therefore, by the residue 

theorem 
1

2𝜋𝑖
∫
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧

ℓ
 is equal to the sum of all residues of g. We first calculate the residue of g at 𝑧0 a zero of 𝑓. If 

the zero is of order k, then 𝑓(𝑧) = (𝑧 − 𝑧0)
𝑘𝜙(𝑧), where 𝜙 is analytic and 𝜙(𝑧0) ≠ 0, then: 𝑔(𝑧) =

𝑓′(𝑧)

𝑓(𝑧)
=

𝑘

𝑧−𝑧0
+

𝜙′(𝑧)

𝜙(𝑧)
, and 𝑅𝑒𝑠( 𝑔; 𝑧0) =

1

2𝜋𝑖
∫ 𝑔(𝑧)𝑑𝑧
ℓ

= 𝑘 [
1

2𝜋𝑖
∫

𝑑𝑧

𝑧−𝑧0ℓ
] + ∫

𝜙′(𝑧)

𝜙(𝑧)
𝑑𝑧

ℓ
= 𝑘. 

Therefore, by adding the residues obtained at each zero within 𝑓, the ℓtotal number of zeros (counted with 

their multiplicity) 𝑓 within ℓ, that is, 𝑛 clearly results. 

On the other hand, if 𝑓 has a pole of order k in 𝑧0 ∈ 𝐼𝑛𝑡(ℓ), then 
𝑓′(𝑧)

𝑓(𝑧)
=

−𝑘

𝑧−𝑧0
+
𝜙′(𝑧)

𝜙(𝑧)
. and 𝑅𝑒𝑠( 𝑔; 𝑧0) =

−𝑘, summing the residues of g at the poles of 𝑓 gives −𝑝, Therefore: 
1

2𝜋𝑖
∫
𝑓′(𝑧)

𝑓(𝑧)
𝑑𝑧

ℓ
= 𝑛 − 𝑝, [4]. 

Theorem 21 (Rouche). Let 𝑓(𝑧)and be 𝑔(𝑧) analytic functions on and inside a Jordan curve ℓ. If  ‖𝑔(𝑧)‖ <
‖𝑓(𝑧)‖, ∀𝑧 ∈ ℓ, then 𝑓(𝑧) + 𝑔(𝑧) and 𝑓(𝑧) have the same number of zeros inside ℓ. 

Proof: Let: 𝐹(𝑧) =
𝑔(𝑧)

𝑓(𝑧)
 and be 𝑛1 and 𝑛2 the number of zeros of  (𝑓 + 𝑔) and 𝑓 respectively within ℓ, both 

functions do not have poles within ℓ (since 𝑓 + 𝑔 and 𝑔 are analytic), then 

𝑛1 =
1

2𝜋𝑖
∫
𝑓′+𝑔′

𝑓+𝑔
𝑑𝑧

ℓ
 and 𝑛2 =

1

2𝜋𝑖
∫
𝑓′

𝑓
𝑑𝑧

ℓ
, 𝑛1 − 𝑛2 =

1

2𝜋𝑖
∫

𝐹′

1+𝐹
𝑑𝑧

ℓ
, 

as: ‖𝐹(𝑧)‖ < 1on ℓ, then 
1

1+𝐹
= 1 − 𝐹 + 𝐹2 − 𝐹3+. ..(and the convergence is uniform), therefore, 𝑛1 − 𝑛2 =

1

2𝜋𝑖
∑ (0)𝑑𝑧∞
𝑛=0 = 0, that is, 𝑛1 = 𝑛2. 

IV. Discussion 

               The discussion is focused on the application and evaluation of Integrals classified into several groups: 

Group 1: ∫
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

∞

−∞
, where 𝑝 and 𝑞 are relatively prime polynomials and the degree of 𝑞 is at least 2 greater than 

the degree of 𝑝 and 𝑞 has no real zeros ( 𝑝/𝑞 must be even). In this case: 𝑙𝑖𝑚
𝑅→∞

∫
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

𝑅

−𝑅
= 2𝜋𝑖 ∑ 𝑅𝑒𝑠( 𝑓, 𝑧)𝐼𝑚(𝑧)>0 , 

where 𝑓(𝑧) =
𝑝(𝑧)

𝑞(𝑧)
. 

Proof: Let ℓ = ℓ𝑅 ∪ [−𝑅, 𝑅], where ℓ𝑅: ‖𝑧‖ = 𝑅, 𝐼𝑚( 𝑧) > 0, be the residue theorem ∫
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

𝑅

−𝑅
+ ∫ 𝑓(𝑧)𝑑𝑧

ℓ𝑅
=

2𝜋𝑖 ∑ 𝑅𝑒𝑠( 𝑓, 𝑧)𝐼𝑚(𝑧)>0 , where 𝑅 > 0 is large enough to ℓ contain all singularities of 𝑓 with 𝐼𝑚( 𝑧) > 0. In this 

case, it suffices to prove that ∫ 𝑓(𝑧)𝑑𝑧
ℓ𝑅

 𝑅→∞ 
→      0, ‖∫ 𝑓(𝑧)𝑑𝑧

ℓ𝑅
‖ ≤ 2𝜋𝑅𝑚á𝑥

𝑧∈ℓ𝑅
{‖𝑓(𝑧)‖} ≤ 2𝜋 (

𝑀

𝑅2
)

 𝑅→∞ 
→      0, 𝑀 > 0 

is a constant. 

Application 1. Analyze the problem ∫
𝑑𝑥

𝑥2+1
=

∞

−∞
𝑙𝑖𝑚
𝑅→∞

∫
𝑑𝑥

𝑥2+1

𝑅

−𝑅
= 2𝜋𝑖 [𝑅𝑒𝑠 (

1

𝑧2+1
, 𝑖)] and ∫

𝑑𝑥

𝑥2+1
=

∞

−∞
2𝜋𝑖 [𝑙𝑖𝑚

𝑧→𝑖
(𝑧 −

𝑖) (
1

𝑧2+1
)] = 𝜋. 

Application 2. Evaluate the integral 𝐼 = ∫
𝑑𝑥

𝑥6+1

∞

0
=
1

2
∫

𝑑𝑥

𝑥6+1

∞

−∞
, since 𝑥6 + 1 it is an even function then, ∫

𝑑𝑥

𝑥6+1

∞

0
=

1

2
∮

𝑑𝑧

𝑧6+1𝐶
, 𝑧6 + 1 = 0, 𝑧 = √−1

6
= 1(𝑐𝑜𝑠 (

𝜋+2𝑘𝜋

6
) + 𝑖𝑠𝑒𝑛 (

𝜋+2𝑘𝜋

6
)); 𝑘 = 0,1,2,3,4,5. Only the roots for 𝑘 = 0,1,2 
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which are in the upper half-plane, these are: 𝑧0 = 𝑒
𝑖𝜋/6, 𝑧1 = 𝑒

3𝑖𝜋/6and 𝑧2 = 𝑒
5𝑖𝜋/6, for 𝑧0 = 𝑒

𝑖𝜋/6, 𝑅𝑒𝑠(𝑓(𝑧))|
𝑧0
=

𝑙𝑖𝑚
𝑧→𝑒

𝑖𝜋
6

(𝑧 − 𝑒
𝑖𝜋

6 )
1

𝑧6+1
=
0

0
. We can apply L' Hospital's rule, and we have 𝑙𝑖𝑚

𝑧→𝑒
𝑖𝜋
6

1

6𝑧5
=
1

6
𝑒−

5𝜋𝑖

6 = −
√3

12
−

𝑖

12
. For: 𝑧1 =

𝑒3𝑖𝜋/6 𝑅𝑒𝑠(𝑓(𝑧))|
𝑧1
= 𝑙𝑖𝑚
𝑧→𝑒

3𝜋𝑖
6

(𝑧 − 𝑒
3𝜋𝑖

6 )
1

𝑧6+1
=
0

0
, when applying L' Hospital's rule, 𝑅𝑒𝑠(𝑓(𝑧))|

𝑧1
=
1

6
[𝑖(−1)] =

−
𝑖

6
. 

For: 𝑧2 = 𝑒
5𝑖𝜋/6, 𝑅𝑒𝑠(𝑓(𝑧))|

𝑧2
= 𝑙𝑖𝑚
𝑧→𝑒

5𝜋𝑖
6

(𝑧 − 𝑒
5𝜋𝑖

6 )
1

𝑧6+1
=
0

0
. By applying L' Hospital's rule, we have 

𝑅𝑒𝑠(𝑓(𝑧))|
𝑧2
=
√3

12
−

𝑖

12
with,  

             ∫
𝑑𝑥

𝑥6+1

∞

−∞
= 2𝜋𝑖[𝑅𝑒𝑠(𝑓(𝑧))𝑧0 + 𝑅𝑒𝑠(𝑓(𝑧))𝑧1 + 𝑅𝑒 𝑠 (𝑓(𝑧))𝑧2], ∫

𝑑𝑥

𝑥6+1

∞

−∞
= 2𝜋𝑖 (−

𝑖

3
) =

2𝜋

3
.  

Then 𝐼 =
1

2
∫

𝑑𝑥

𝑥6+1

∞

−∞
=
1

2
(
2𝜋

3
) =

𝜋

3
. 

Application 3. Analyze the problem ∫
𝑑𝑥

1+𝑥10

∞

−∞
. Using real analysis, it is required to have an antiderivative of this 

function, which is very complicated. The most efficient way is to solve this integral via complex analysis, using the 

function 𝑓(𝑧) =
1

1+𝑧10
, first determining the singularities of this function. In this case, they are the complex numbers 

𝑧0, 𝑧1, . . . , 𝑧9of the form 𝑧𝑘 = 𝑒
𝑖𝜋(

2𝑘+1

10
)
, 𝑘 = 0,1,2, . . . ,9, and these are poles of order 1 (simple poles). Only the roots 

𝑘 = 0,1,2,3,4 are in the upper half-plane [7]. These are 𝑧0 = 𝑒
𝑖𝜋

10, 𝑧1 = 𝑒
3𝑖𝜋

10 ; 𝑧2 = 𝑒
5𝑖𝜋

10 ; 𝑧3 = 𝑒
7𝑖𝜋

10 ; 𝑧4 = 𝑒
9𝑖𝜋

10 , using 

the Cauchy residue theorem ∫
𝑑𝑥

1+𝑥10

∞

−∞
= 2𝜋𝑖 ∑ 𝑅𝑒𝑠( 𝑓, 𝑧𝑖)𝑧𝑖∈𝐼𝑛𝑡(𝛤)

, as 

           𝑅𝑒𝑠( 𝑓, 𝑧𝑖) =
1

(1+𝑧10)1
|
𝑧=𝑧𝑖

=
1

10𝑧𝑖
9 

 ∫
𝑑𝑥

1+𝑥10

∞

−∞
= 2𝜋𝑖 ∑ 𝑅𝑒𝑠( 𝑓, 𝑧𝑖)

5
𝑖=1 = 2𝜋𝑖 ∑

1

10(𝑒
𝑖𝜋(

2𝑛+1
10 )

)

9
4
𝑛=0  

 ∫
𝑑𝑥

1+𝑥10

∞

−∞
=
𝜋𝑖

5
∑

1

𝑒
𝑖𝜋(

18𝑛+9
10 )

4
𝑛=0 =

𝜋𝑖

5
(

1

𝑟0+𝑟1+𝑟2+𝑟3+𝑟4
) 

 𝑟0 = −𝑐𝑜𝑠( 18
0) + 𝑖𝑠𝑒𝑛(180) = −

√10+2√5

4
+ 𝑖

√5−1

4
 

 𝑟1 = 𝑐𝑜𝑠 (
7𝜋

10
) + 𝑖𝑠𝑒𝑛 (

7𝜋

10
) = −

√10−2√5

4
+ 𝑖

√5+1

4
 

 𝑟2 = 𝑒
𝑖𝜋(

45

10
)
= 𝑐𝑜𝑠 (

45𝜋

10
) + 𝑖𝑠𝑒𝑛 (

45𝜋

10
) = 𝑖 

 𝑟3 = 𝑒
𝑖𝜋(

63

10
)
= 𝑐𝑜𝑠 (

63𝜋

10
) + 𝑖𝑠𝑒𝑛 (

63𝜋

10
) =

√10−2√5

4
+ 𝑖

√5+1

4
 

 𝑟4 = 𝑒
𝑖𝜋(

81

10
)
= 𝑐𝑜𝑠 (

81𝜋

10
) + 𝑖𝑠𝑒𝑛 (

81𝜋

10
) =

√10+2√5

4
+ 𝑖

√5−1

4
  

Adding these expressions we have  𝑟0 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 =
𝜋(√5−1)

20
. 

Group 2: ∫ 𝑔(𝑥) 𝑐𝑜𝑠( 𝑘𝑥)𝑑𝑥
∞

−∞
, or ∫ 𝑔(𝑥)𝑠𝑒𝑛(𝑘𝑥)𝑑𝑥

∞

−∞
where 𝑔(𝑥) =

𝑝(𝑥)

𝑞(𝑥)
 is as in the first case. Either of the two 

integrals is calculated by considering the integral ∫ 𝑔(𝑥)𝑒𝑖𝑘𝑥𝑑𝑥
∞

−∞
, and equating the respective real and imaginary 
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parts. We have ∫ 𝑔(𝑥)𝑒𝑖𝑘𝑥𝑑𝑥
∞

−∞
= 2𝜋𝑖 ∑ 𝑅𝑒𝑠(𝑔(𝑧)𝑒𝑖𝑘𝑧 , 𝑧)𝐼𝑚(𝑧)>0 , as ‖𝑔(𝑧)𝑒𝑖𝑘‖ = ‖𝑔(𝑧)‖𝑒−𝑦𝑘 ≤ ‖𝑔(𝑧)‖, for 𝑦 >

0 ( 𝑘 > 0 without loss of generality). The proof is similar. 

Application 4. Analyze the problem ∫
𝑐𝑜𝑠(𝑘𝑥)𝑑𝑥

𝑥2+𝑎2

∞

−∞
, 𝑘 > 0 and 𝑎 > 0. 

 ∫
𝑒𝑖𝑙𝑥𝑑𝑥

𝑥2+𝑎2

∞

−∞
= 2𝜋𝑖 [𝑅𝑒𝑠 (

𝑒𝑖𝑘𝑧

𝑥2+𝑎2
, +𝑎𝑖)] = 2𝜋𝑖 𝑙𝑖𝑚

𝑧→𝑎𝑖
(𝑧 − 𝑎𝑖)

𝑒𝑖𝑘𝑧

(𝑧−𝑎𝑖)(𝑧+𝑎𝑖)
, 

 ∫
𝑐𝑜𝑠(𝑘𝑥)𝑑𝑥

𝑥2+𝑎2

∞

−∞
= 𝑅𝑒 (∫

𝑒𝑖𝑙𝑥𝑑𝑥

𝑥2+𝑎2

∞

−∞
) =

𝜋

2𝑎
𝑒−𝑘𝑎and ∫

𝑠𝑒𝑛(𝑘𝑥)𝑑𝑥

𝑥2+𝑎2

∞

−∞
= 𝐼𝑚 (∫

𝑒𝑖𝑙𝑥𝑑𝑥

𝑥2+𝑎2

∞

−∞
) = 0. 

Application 5. Analyze the problem ∫
𝑐𝑜𝑠(𝑥)𝑑𝑥

(𝑥2+𝑎2)(𝑥2+𝑏2)

∞

−∞
. 

 𝐼 = ∫
𝑐𝑜𝑠(𝑥)𝑑𝑥

(𝑥2+𝑎2)(𝑥2+𝑏2)

∞

−∞
=

𝜋

𝑎2−𝑏2
(
𝑒−𝑏

𝑏
−
𝑒−𝑎

𝑎
), 𝑎 > 0 

 𝐼 = 𝑅𝑒 [∫
𝑒𝑖𝑥𝑑𝑥

(𝑥2+𝑎2)(𝑥2+𝑏2)

∞

−∞
] = 2𝜋𝑖 [𝑅𝑒𝑠 (

𝑒𝑖𝑘𝑧

(𝑥2+𝑎2)(𝑥2+𝑏2)
, +𝑎𝑖)] 

 𝐼 = 2𝜋𝑖 [
𝑒−𝑎

(−𝑎2+𝑏2)(2𝑎𝑖)
+

𝑒−𝑏

(−𝑏2+𝑎2)(2𝑏𝑖)
] =

𝜋

𝑎2−𝑏2
(
𝑒−𝑏

𝑏
−
𝑒−𝑎

𝑎
). 

Group 3: Analyze the problem ∫ 𝑅(𝑠𝑒𝑛(𝜃), 𝑐𝑜𝑠( 𝜃))𝑑𝜃
2𝜋

0
. This integral is equal to the integral of a certain complex 

function 𝜙(𝑧) over the circle. 

 𝑒𝑖𝜃 = 𝑐𝑜𝑠( 𝜃) + 𝑖𝑠𝑒𝑛(𝜃) = 𝑧,𝑒−𝑖𝜃 = 𝑐𝑜𝑠( 𝜃) − 𝑖𝑠𝑒𝑛(𝜃) =
1

𝑧
 

 𝑐𝑜𝑠( 𝜃) =
1

2
(𝑧 +

1

𝑧
), 𝑠𝑒𝑛(𝜃) =

1

2𝑖
(𝑧 −

1

𝑧
), 

By replacing in R, we obtain ∫ 𝜙(𝑧)𝑑𝑧
‖𝑧‖=1

, this integral can be calculated by the residue theorem. 

Application 6. Analyze the problem ∫
𝑑𝜃

3+2𝑠𝑒𝑛(𝜃)

2𝜋

0
. 

 𝐼 = ∫
𝑑𝜃

3+2𝑠𝑒𝑛(𝜃)

2𝜋

0
=
2𝜋

√5
,  𝑧 = 𝑐𝑜𝑠( 𝜃) + 𝑖𝑠𝑒𝑛(𝜃) = 𝑒𝑖𝜃 ,𝑑𝑧 = 𝑖𝑧𝑑𝑧 

 𝑧2 + 3𝑖𝑧 − 1 = 0 𝑠𝑖 𝑠ó𝑙𝑜 𝑠𝑖 𝑧 = (
−3±√5

2
) 𝑖, 𝑧0 =

−3+√5

2
𝑖 ∈ 𝐼𝑛𝑡(ℓ) 

 𝐼 = 2𝜋𝑖 (
1

3𝑖+(−3+√5𝑖
) =

2𝜋

√5
. 

Application 7. Analyze the problem 𝐼 = ∫
𝑐𝑜𝑠(3𝜃)𝑑𝜃

5−4𝑠𝑒𝑛(𝜃)

2𝜋

0
. 

 𝑐𝑜𝑠( 𝜃) =
1

2
(𝑧 +

1

𝑧
), 𝑐𝑜𝑠( 3𝜃) =

1

2
(𝑧3 + 𝑧−3),𝑑𝑧 = 𝑖𝑧𝑑𝜃 

 𝐼 = ∫
1

2
(𝑧3+𝑧−3)

5−2(𝑧+𝑧−1)
(
𝑑𝑧

𝑖𝑧
)

‖𝑧‖=1
=

1

2𝑖
∫

(𝑧6+1)𝑑𝑧

𝑧3(5𝑧−1)(𝑧−2)‖𝑧‖=1
. 

 Inside 𝜃: 𝑧 = 0, pole of order 3, 𝑧 =
1

2
 pole of order 1 

 𝐼 = −𝜋 {𝑙𝑖𝑚
𝑧→0

1

2𝑖

𝑑2

𝑑𝑧2
(

𝑧6+1

𝑧3(2𝑧−1)(𝑧−2)
)} − 𝜋 {𝑙𝑖𝑚

𝑧→
1

2

(𝑧−
1

2
)(𝑧6+1

𝑧3(2𝑧−1)(𝑧−2)
} =

𝜋

12
. 
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Group 4: Integration around branch points. Evaluate ∫
𝑥−𝑘𝑑𝑥

1+𝑥
,

∞

0
𝑘 ∈ ⟨0,1⟩ (for convergence). In this case 𝑓(𝑧) =

𝑒𝑥𝑝(−𝑘𝐿𝑛(𝑧))

1+𝑧
, is a multivalued function; its principal value is taken. The function 𝑓(𝑧) is analytic in all ℂ but the 

simple pole 𝑧 = −1 and the branching line 𝑦 = 0, 𝑥 > 0 (i.e. 𝜃 = 0). When 𝜃 = 0, 𝑟 = 𝑥, 𝑧 = 𝑥, 𝑓(𝑧) =
𝑒𝑥𝑝(−𝑘𝐿𝑛(𝑥))

1+𝑥
=
𝑥−𝑘

1+𝑥
, i integrating 𝑓 around the closed contour ℓ, which consists of two circular arcs: ℓ0: ‖𝑧‖ = 𝑟, 

ℓ1: ‖𝑧‖ = 𝑅 ( 0 < 𝑟 < 1, 𝑅 = 1) and two segments 𝐿1 and  𝐿2 of the rays 𝜃 = 𝜀 and 𝜃 = −𝜀 ( 𝜀 > 0) respectively, 

ℓ = ℓ0 ∪ ℓ1 ∪ 𝐿1 ∪ 𝐿2, as ℓ contains within itself the singularity 𝑧 = −1, 

 ∫ 𝑓(𝑧)𝑑𝑧
𝐿1

+ ∫ 𝑓(𝑧)𝑑𝑧
ℓ1

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐿2

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐿0

= 2𝜋𝑖[𝑅𝑒𝑠(𝑓(𝑧), −1)] 

 = 2𝜋𝑖 𝑒𝑥𝑝[−𝑘(𝐿𝑛(1) + 𝜋𝑖)] = 2𝜋𝑖𝑒−𝑘𝜋𝑖 ,                                                             (13) 

about 𝐿1: 𝑧 = 𝑡𝑒𝑖𝜀 ⇒ 𝑧−𝑘 = 𝑡−𝑘𝑒−𝑘𝑖𝜀 , 𝑡 ∈ [𝑟, 𝑅], 

about 𝐿2: 𝑧 = 𝑡𝑒𝑖(2𝜋−𝜀) ⇒ 𝑧−𝑘 = 𝑡−𝑘𝑒−𝑘𝑖(2𝜋−𝜀), 𝑡 ∈ [𝑅, 𝑟], 

 ∫ 𝑓(𝑧)𝑑𝑧
𝐿1

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐿2

= ∫
𝑡−𝑘𝑒−𝑖𝑘𝜀𝑒𝑖𝜀𝑑𝑡

1+𝑡𝑒𝑖𝜀

𝑅

𝑟
+ ∫

𝑡−𝑘𝑒−𝑖𝑘(2𝜋−𝜀)𝑒𝑖(2𝜋−𝜀)𝑑𝑡

1+𝑡𝑒𝑖(2𝜋−𝜀)

𝑟

𝑅
 

 = 𝑒𝑖(1−𝑘) ∫
𝑡−𝑘𝑑𝑡

1+𝑡𝑒𝑖𝜀
− 𝑒𝑖(1−𝑘)(2𝜋−𝜀)

𝑅

𝑟
+ ∫

𝑡−𝑘𝑑𝑡

1+𝑡𝑒𝑖(2𝜋−𝜀)

𝑅

𝑟
 

 𝑙𝑖𝑚
𝜀→0

[∫ 𝑓(𝑧)𝑑𝑧
𝐿1

+ ∫ 𝑓(𝑧)𝑑𝑧
𝐿2

] = (1 − 𝑒2𝑘𝜋) ∫
𝑡−𝑘𝑑𝑡

1+𝑡

𝑅

𝑟
 .                                             (14) 

About ℓ0: 𝑧 = 𝑅𝑒
𝑖𝜃𝜃 ∈ [𝜀, 2𝜋 − 𝜀], 

about ℓ1:𝑧 = 𝑟𝑒𝑖𝜃𝜃 ∈ [2𝜋 − 𝜀, 𝜀] 

 ∫ 𝑓(𝑧)𝑑𝑧
ℓ0

+ ∫ 𝑓(𝑧)𝑑𝑧
ℓ1

= ∫
𝑅−𝑘𝑒−𝑖𝑘𝜃

1+𝑅𝑒𝑖𝜃
𝑅𝑖𝑒𝑖𝜃𝑑𝜃

2𝜋−𝜀

𝜀
− ∫

𝑟−𝑘𝑒−𝑖𝑘𝜃𝑟𝑖𝑒𝑖𝜃𝑑𝜃

1+𝑟𝑒𝑖𝜃

2𝜋−𝜀

𝜀
  

 𝐼 = 𝑙𝑖𝑚
𝜀→0

[∫ 𝑓(𝑧)𝑑𝑧
ℓ0

+ ∫ 𝑓(𝑧)𝑑𝑧
ℓ1

] = 𝑖𝑅((1−𝑘) ∫
𝑅−𝑘𝑒−𝑖𝜃(1−𝑘)

1+𝑅𝑒𝑖𝜃
𝑑𝜃

2𝜋

0
− 

 𝑖𝑟(1−𝑘) ∫
𝑟−𝑘𝑒−𝑖𝜃(1−𝑘)𝑑𝑡

1+𝑟𝑒𝑖𝜃

2𝜋

0
, ‖𝐼‖ ≤

𝑅1−𝑘

𝑅−1
(2𝜋) +

𝑟1−𝑘

𝑟−1
(2𝜋), as0 < 1 − 𝑘 < 1 

 𝑙𝑖𝑚
𝑟→0
𝑅→∞

‖𝐼‖ = 0 ⇒ 𝑙𝑖𝑚
𝑟→0
𝑅→∞

𝐼 = 0,                                                                      ( 15) 

from (13), (14) and (15) it follows that 𝑙𝑖𝑚
𝑟→0
𝑅→∞

(1 − 𝑒−2𝑘𝜋𝑖) ∫
𝑡−𝑘

1+𝑡
𝑑𝑡

𝑅

𝑟
+ 0 = 2𝜋𝑖𝑒−𝑘𝜋𝑖 , 

  ∫
𝑡−𝑘

1+𝑡
𝑑𝑡

∞

0
+ 0 =

2𝜋𝑖𝑒−𝑘𝜋𝑖

1−𝜋𝑖𝑒−2𝑘𝜋𝑖
=

2𝜋𝑖

𝑒𝑘𝜋𝑖−𝜋𝑖𝑒−𝑘𝜋𝑖
=

𝜋

𝑠𝑒𝑛(𝑘𝜋)
, 

Whenever there are branch points, circles around them should be avoided. 

 

 

V. Conclusion  

It was necessary to use the result of Goursat 's lemma, and that Cauchy's theorem is fulfilled for multiply 

connected regions, that is, 𝑓: ℂ ⟶ ℂ an analytic function in 𝛺 ⊂ 𝐶 a domain and is ℜ ⊂ 𝛺 a multiply connected set 

whose boundary 𝐹𝑟(ℜ) = ℓ ∪ ℓ1 ∪. . .∪ ℓ𝑛, where ℓ𝑘 ⊂ 𝐼𝑛𝑡(ℓ) and ℓ𝑘 , ℓ, 𝑘 = 1,2, . . . , 𝑛 are piecewise regular and 

disjoint Jordan curves oriented counterclockwise, ∫ 𝑓(𝑧)𝑑𝑧
ℓ

= ∑ ∫ 𝑓(𝑧)𝑑𝑧
ℓ𝑘

𝑛
𝑘=1 . 
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 It is evident that it satisfies the Cauchy integral formula, 𝑓: ℂ ⟶ ℂ analytical in a domain 𝛺 ⊂ 𝐶, with ℓ a 

counterclockwise rectifiable Jordan curve such that ℓ ∪ 𝐼𝑛𝑡(ℓ) ⊂ 𝛺, that is 𝑓(𝑧) =
1

2𝜋𝑖
∫
𝑓(𝑤)

𝑤−𝑧
𝑑𝑤

ℓ
, ∀𝑧 ∈ 𝐼𝑛𝑡(ℓ); 

furthermore, for the definition of residue, 𝑓 analytical 𝛺 except at singularities, 𝑧1, 𝑧2, . . . , 𝑧𝑚 of  𝛺 and ℓ a Jordan 

curve in 𝛺 which encloses 𝑧1, 𝑧2, . . . , 𝑧𝑚, therefore, ∫ 𝑓(𝑧)𝑑𝑧
ℓ

= 2𝜋𝑖 ∑ 𝑅𝑒𝑠( 𝑓, 𝑧𝑘)
𝑚
𝑘=1 . 

Finally, to evaluate the integral ∫
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

∞

−∞
, where 𝑝 and are 𝑞 mutually prime polynomials and the degree 

of 𝑞 is at least two more than the degree of 𝑝 and 𝑞 has no real zeros ( 𝑝/𝑞 must be even), we used that 

𝑙𝑖𝑚
𝑅→∞

∫
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

𝑅

−𝑅
= 2𝜋𝑖 ∑ 𝑅𝑒𝑠( 𝑓, 𝑧)𝐼𝑚(𝑧)>0 , where 𝑓(𝑧) =

𝑝(𝑧)

𝑞(𝑧)
. 
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