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Abstract:

This research focuses on an essential aspect of complex analysis, specifically complex integration. The focus is on
the Cauchy-Goursat theorem, which states that the line integral of a holomorphic function along a closed contour
equals zero when the function is holomorphic within and on that contour, in a domain with a single connection.
Various applications derived from this study are analyzed and discussed, aimed at solving integrals of functions that
may present singularities. In this regard, more advanced research would enable the contribution of tools in the
theory of control and potential flow.
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I. Introduction

In the study of definite integrals, there are some very complicated integrals that cannot be solved by known
methods. The Cauchy- Goursat theorem is an answer to a question in complex analysis: When is it true that the
integral of an analytic function f on a closed curve is zero? The references show that this occurs if f has a defined
antiderivative along the entire curve, and sometimes it does not occur.

Cauchy's Theorem can also be applied to closed curves that are not simple, but can be split into simple
closed curves. The orientation of a curve C induces an orientation on each of the split curves, and it can be seen from
the definition of the complex integral that the integral of C is the sum of the integrals of the pieces. Thus, if the
function f is analytical inside each of the simple curves into which the curve is split C, then the integral of f o the
curve C must be equal to 0, [1].

Not every complex function f(z) that is continuous in a region R is the complex derivative of a function.
F(z) in R, by the fundamental theorem, for this to happen it is necessary that the integral of f(z) be 0 on every
closed curve in R. Cauchy’s Theorem tells us that this happens if f(z) is differentiable as a complex function and its
derivative is continuous. Requiring that f it has a complex derivative and that it be continuous seems a very strong
hypothesis compared to the hypothesis in the real case (that f it is continuous). Goursat was able to prove Cauchy’s
Theorem without requiring that the derivative of f be continuous, and this small change has very important
consequences as it translates into the following result: “If f is an analytic function in a simply connected region R
then for every closed curve C in R, fc f(2)dz = 0.

II. Material and Methods

It is an applied approach, as it will solve certain real-world integrals using the remainder theorem. The
design is descriptive and comparative, using the Cauchy integral as a tool to achieve the proposed objectives.

The documented data collection technique is appropriate for each of the variables considered in the
research, allowing us to obtain information to enrich the theoretical framework and analyze the properties of the
Cauchy integral and some of its consequences. All the information will help develop the methodological strategies
to obtain the results of this research.
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II1. Result

3.1 Fundamental theorems of calculus
Theorem 1. Let f: O € C — C, R = Ran(f), be such that f is injective in {2 and such that its inverse function z =
f~1(w): Q c € — C is continuous. Then, if f(z) is differentiable at z, € 2 and if f'(z,) # 0, then f~1(w) is

differentiable at wy = f(z,) and (f 1) (w,) = ; (12 3
"(Zo
Definition 1. An arc T c C is the range of a f:[a, b] — C continuous function. We consider every arc to have an

orientation that must correspond to the direction of growth of t, [2], [3], [4].

If f(t) =u(t)+iv(t), t €[a,b], f we will call the parameterization of I' and t the parameter. I f
a:[c,d] = [a, b] is an increasing bijective function, then I' is also the range of g = f o a: [c,d] = C. Every Jordan
curve I' separates the plane into two domains, one bounded (called the interior of I') and one unbounded (the
exterior of I'); furthermore, if any other curve joins the interior with the exterior, it must intersect I".

Definition 2. A curve I' c C that has a differentiable parameterization f:[a, b] — C at (a, b) and whose derivative
f'(t) # 0, Vt € [a, b]. Every regular curve is rectifiable and its length is given by £ = fab V@ ®))? + (V' ().

Theorem 2 (Second Fundamental Theorem). Let be f: — C a continuous and integrable function on Q € C a
domain and let be F(z) = [ f(2)dz,Vz € 2. If T c C is a rectifiable curve joining two points z; y z, in £, then

| f(2)dz = F(z,) — F(zy).
Corollary. If f is integrable over a domain 2 and I' C 2 is a closed rectified curve, then [ - f(z)dz = 0.

Theorem 3 (First Fundamental Theorem). Let be f: C — Ccontinuous in (0 € C domain, such that the integral of
f is independent of the path in 2. Let be z, € 2 fixed, we define F(z) = fZZO f(2)dz,Vz € 2, and then F'(z)exists,

Vz €  and f(z) = F'(2), Vz € 0, that is, f it is integrable in £, [5], [6].

Theorem 4. Let be f: C — C continuous on 2 € C a domain. Then the following three statements are equivalent: a)
f is integrable in Q € C; b) The integral of f is path-independent in (0 € C; ¢) The integral of f around every closed
piecewise regular curve I' C {2 is zero.

3.2 On Cauchy’s theorem and Goursat 's lemma

Cauchy's theorem in C, is closely related to Green's theorem in the plane. To see this relationship, we prove the
slightly weaker version of Cauchy's theorem, [4], [5], [6].

Theorem 5. Let f:C — C, f € C1(2), Q c C a simply connected domain, then, for every I' € f2 piecewise regular
Jordan curve

J f(@dz =0 M

Proof: Let R = Int(I'). Clearly R is simply connected. If f = u + iv, then by Green's Theorem (uand vare
C'(R))

I=v) _ow)
Jpudx —vdy = [[, [a_xv - %] dxdy )
_ o [ aw)
Jpvdx +udy = [, [ o oy ] dxdy,
. .- . . . .. ou v ou dv
but since f it is analytic, it satisfies the Cauchy-Riemann conditions oy and = ox Therefore, (1) and (2)

cancel out; and [ f(2)dz = [.(udx — vdy) + i [ (vdx + udy) = 0.

The objective is to prove Cauchy's theorem, for this the following Lemma will be useful.
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Goursat 's Lemma. Let, be continuous on a f: C — C simply connected I' € 2 domain, and let , be £2 a piecewise
regular Jordan curve, then Ve > 0, there exists a polygon P, C {2 such that || fr f(z)dz — fP f (z)dz” < . Closed

polygon: 3z, ..., z,, zy = z, in 2 such that P, = zyz; UZ;z, U...UZ,_1Z,.

Proof: Since (2 is open and I € 2 is compact (closed and bounded), then there exist p > 0 and E < 2 compact
such that I' € E and E contains all neighborhoods B(z,p), with z € I'. Let € > 0, as E is compact and f, is
continuous on 2, then f is uniformly continuous on E, that is, 37 > 0 such that for all z1,z? € Ewith |z! — z?| <
n=f(zY) - f(z?)] < i, where L = Long(I'). For € > 0, by line integral 3§ > 0 such that for all P, = Zyz; U
Z12, U...U 2, _1Z,, Z, = Z,, closed polygon with vertex in I' with ||z —z,_{|| < &; k =1,2,...,n, we have
||frf(z)dz — e fE) (z — Zk_1)|| < g, where &, € Z;z;,_; is any. In particular we will take

Iz — Zg-1ll <min{6,p,n}k =1,2,...,n 3)
IS f(2)dz = Zies f G @ — 20| <= @
yes [, f(2)dz = T3y [ If (2) = f(@)]dz + Tj=y £ (2) (2 — 2i—1), then

1Sy, £ @z = Bt G i~ 210 || < Shealz = sl mix_NF (20 = Fla-ll - O)

Now, for all k = 1,2,...,nand for all z € z;,_;z, ||z — z|| = |zk—1 — zx|l < 1 by (3), and since z, € E and from
(3) |lz — z|l < p, then from (1) and z € E, then we have z,z, € E and ||z — z|| < n. Therefore, from (2), ||f(z) —

fEN < 2, V2 € Bz, Ve = 12,.,m, in (), ||f, f(2)dz = T F(60) i = ze-n) | < 52 Theallze = Zie-al.
The sum Y%-;11zx — zx_1 || gives an approximate value for the length of I', as L is the supremum of all such sums
Yr=1llzx — zx_1|l < L. Therefore,

|1, £z = S F GO G = )| < & ©
By the triangular inequality, from (4) and (6), ” frf(z)dz — fpgf(Z)dZ” <e

Now Cauchy's theorem is proved, first for I' a triangle, then for convex polygons, we continue for
polygonal Jordan curves and finally for closed polygonal curves [7], [8].

Theorem 6. Let f: C — C, be analytic in ) c C a simply connected domain, then for every I" piecewise regular
Jordan curve, I' € 02, [, f(z)dz = 0.

Proof. Case 1: For triangles, let be a I' counterclockwise D, E y F triangle and be ABC the midpoints of the sides
AB, ACy BC respectively. Joining these points gives four triangles 4,,4,, 45 y 4,,

I f@dz = |, f(2)dz+ [, f(2)dz+ [, f(2)dz+ ], f(z)dz.

Figure 1. Counterclockwise triangle.
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Because the integral over ED, EF y DFvanishes in pairs (having opposite directions). Let M = || fr f (Z)dZ” >0=
M<Yroq ||fAkf(z)dz||, in at least one of the triangles 4y, say 4;: ”fAlf(z)dZ” > %. Starting now from
A, (instead of [I') and proceeding in exactly the same way, we obtain a triangle 4,, 4, € A;such that
” I} 4 f (z)dz” = %and so on, resulting in a sequence of triangles I' D 4; D 4, D...D 4, D..whose area tends to

zero as (n = o) and

||f f(z)dz” —, there exists such z, € I' U Int(I"that zy € 4,,Vn = 1,2,..,ben(z) = %ZZO) f'(zy),z #
Zp,Z € (2, and Zlirz)n(z) =0,z # zy,z € {2 then, given € > 0 any 36 > 0 such that
In(2)ll <&, V0 <llz -zl <6. Q)
Now ||f, f@dz| = |1, [f(z) + f'(z0)(z - zo)n()]dz |,
= ||/, — 2m(@dz| < perimetrolmaxin(z)(z = 21l (®)

Let | = Perimetro de (I'). Then, perimetro de (4,) = zin If n is large enough zin< 6, for all z, €

Ay llz — 20| < L < 8, from (7): |[n(2)|| < &, Vz € 4, perimetro de (4,,) = Lnand Iz =zon2)ll < e (L) and
2 2

VzE A, nis large enough. Therefore, in (8) ”f f(Z)dZ” < ( )(El) =L nis large, replacing —n <= nis

2n 4 — 4

large, M < €l?,Ve > 0. Therefore, M = ||frf(z)dz|| = 0. From here: [, f(2)dz = 0.

Case 2. For convex polygons. Let I' = Ap4;... 4,_14,(4p = 4,,),n = 4 is a convex polygon , then we take a
vertex of I', which can be A, and join it with the other vertices, thus obtaining (n — 2) triangles, all of which are
parameterized in the counterclockwise direction ( 4,...,4,_,), from the first step: fAk f(2)dz=0,vVk =

1,2,...,n — 2. Therefore, . f(2)dz = ¥, fAkf(z)dz =0

Figure 2: case 2 Figure 3. Case 3

Case 3: For polygonal Jordan curves. As shown in the figure, all sides of the polygon extend in one direction or the
other (or perhaps both). This breaks down the integral over convex polygons, all of which vanish in step 2.
Therefore . f(2)dz = 0, [9], [10].

Case 4: For polygonal curves. The integral over is subdivided I' into integrals over polygonal (simple) Jordan
curves. Some may overlap, then, from the previous step fr f(z)dz = 0.
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Case 5: (piecewise regular Jordan curves). Let be I' a piecewise regular Jordan curve I' € 2 and € > 0, from the
lemma, there exists P, a closed polygonal curve P, C (2 such that || fr f(z)dz — fP f (z)dz” < &. From the fourth

step: || [. f(2)dz|| < e, as & > 0is any, then: || [. f (z)dz|| = 0. From here [_f(z)dz = 0.

Theorem 7. Cauchy's integral formula. Let be f:C — C analytic in a domain Q c C. Let be ¢ a counterclockwise
rectifiable Jordan curve such that £ U Int(€) c {2, then f(2) = — f fw) dw Vz € Int(¥).

2mi

3.3 Consequences of Cauchy's integral formula

f(2)

In Cauchy's formula we obtained f(zy) = pw fe dz where f is analytic in € U Int(£) and ZO € Int(¥). An

integral of this type is called a Cauchy-type 1ntegra1, the function f(z) is called the derivative and ; is the kernel
—40

of the integral. This theorem is very important because it proves that if f is known only over some Jordan curve ¢,
then the values of f can be found throughout the interior of £; one would only need to evaluate the kernel of the
integral. Furthermore, it will be seen that all the derivatives of f can also be found from this formula.

Theorem 8. Let f: C — C analytic in a domain < C, then f is infinitely differentiable in £2. Furthermore, Vz, €
.(2 if £ is any counterclockwise Jordan curve such that Int(£) € 2 and z, € Int(£) then f(z,) =

2mi ff [, vn=20,12,..

(z-z )n+1’

Proof: It is clear that it is enough to verify the above formula. We will prove it by mathematical induction. For n =
0, we obtain the already proven Cauchy formula. Assuming that it holds for, n > 0 it is proved that it also holds for
n+ 1. Lete > 0,36 > 0 such that B(z,, p) € Int(¥) and &, = dist(¥,I,) > 0( I5: ||z — z,|| = p). We have

(4m83™ 3
(n+2)IM(2R)™M
enough to prove that if

§ = min {p, }> 0. where M = méx|f(2)], | = long(&)and R >0 is such that £ B(0,R). It is

FM@o+h)—fM(ze)  (n+1)! [ f(2)dz

h 2mi Yt (z—zp)nH1

0<|h|<6,then|

<e¢ (9

Let 0 < |h| < 6, then zy + h € B(z,, p) < Int(£), then zy y z, + h € Int(f).

Then by hypothesis

D) f(z)dz ) f(z)dz FM(zo+)~fM(zo) _
f (ZO) 2mi ff (z—zg)+1 and f (Z + h) 2mi € (z—(zg+h))"*+1’ h

nl ¢ f@[(E-20)" - (z—(20+h)" ]

2mi vt (z—zp)" 1 [z—(z9+h)]* 1h

If z — z, = t, then z — (z, + h) = t — hand by the identity

1 _ pn+l — (a _ b) ZZ:O akbn—k (10)
(o) ~fM(zo) _ n! ff(z>[zk othe-m™ "]
h T omi tn+i(t—h)n+1
nl  f@EIRo o tht-n" -+ 1) (-]
- me = tn+2(t—p)n+1 dz (11)

and t[TR_o t"(t — )" K] = ZRoo(t — W)™ = h Zi-o(t — )" ¥ [Zk=o t'(t — h)*7'] by (10), as &, < [t| < 2R,
by < |t — h| < 2R, taking modulus

IELEE oo £ (t — )"] = Zh_o(t — h)™|| < Al Bpoo(2R)" 2 (12)
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(n+2)! ML(2R)"
53n+3

()] —r(m
in (1 1) and (12) ||f (20+h}3 f (zo) (n+1)|f f(z)dz

2mi Y (z—zp)" 1

6 < é&,thenV 0 < |h| < § is fulfilled ( 9).

21

Theorem 9 (Morera). Let f be f:C — C continuous in a domain Q  C and such that ff f(z)dz = 0 for every
rectifiable Jordan curve, then f'is analytic in £, [11].

Demonstration: By the (equivalence) theorem of the hypothesis f is integrable in £2. That is, there exists F: C — C,
F € C() such that F'(z) = f(2); as F € C'(2), then F is analytic in £ and from the previous theorem (Cauchy's
F), F' it is analytic in £2, so f it is analytic in .

Theorem 10. (Cauchy Estimation). Let be f: C — Canalytic in a domain f:C — C. Let z, € 2 and r > 0 such that
I € (L llz = zoll = r); then [|fM(z0)]| < ™52, 1 = 0,1,2,..., where M(r) = max, [12].
ZE€ly

Demonstration: From Cauchy's formula

ML
el = i el = 5

= o pntt

(2mr).

Theorem 11 (Liouville's). Every bounded integer function is a constant function.
Proof. Let z, € C. Since Q = C, then Vr > 0, I. < 2, then the Cauchy estimate ||f'(z)|| < %, Vvr > 0 (where M >
0 such that ||f(2)|| < M,Vz € C, when r — oo, then f'(z,) = 0,Vz € C, then f(z) = Cte in C.

3.4 Power series and absolute convergence

Theorem 12. (Cauchy- Hadamard). Let be Y5, a,(z — z,)* a power series and R = p ! then a) If R = 0,

lim “/a,’
n—o0 n

the power series converges only for z = z,, b) If 0 < R < oo, the power series converges absolutely V||z — z,|| < R,
and diverges V||z — z,|| > R, ¢) If R = oo, the power series converges absolutely everywhere C.

Obviously, the theorem says nothing about the behavior of the series on the circle of convergence: ||z — z,|| = R[7],

[8].

Theorem 13. Let be Y7_, a,(z — z,)* a power series with radius of convergence R > 0. Let 2: ||z — z,|| < R and

(@)
be f(2) = Yo ar(z — 29)¥, z € 0; then a) f is analytic in 2, b) a; = IZ0) and hence f is equal to the Taylor

k!
series in 2, ¢) Vk = 0,1,2,..,Vz € 0: f®(2) = ¥, (Z_“:) (z — z5)"k.

(k)
Theorem 14 (Taylor). Let be f(z) an analytic function in {2 and z, € £2; then f(z) = Zf=of k(z") (z — zy)¥, for all

z in the largest disk around z, y contained in £2.

Definition 3. Let be f analytic in a domain 2. A point z, € 2 is called a zero of order m of f(2) if: f*)(z,) =
0,vk =0,1,2,...,m — 1 and f™(z,) # 0.

Motto. z, is a zero of order n of the analytic f(z) function if and only if in a neighborhood of z,: f(2) = (z —
Z5)"q(2), where q(zy) # 0 and q(2) is analytic in z,, [13].

(k) (k)
Proof: ( =) In a neighborhood of zy: f(2) = X2l (z — o)k =32, LC 20k = f(2) = (z —

k! k!
o ()
7y)"q(2), where q(z) = Y=o (k+n)!o

FM(z0) >(zO)

— 7o)k is analytic in a neighborhood of z, (because it is a power series)
and q(zy) = # 0.

( &) From the previous Theorem: q(z) = Yo bk (z — 29)* = by = q(z,) # 0, where
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{ 0 k=012,....n—-1
ak=

br_n k=nn+1,... = ay = by # 0.

Therefore, f®(z,) = k'a, = 0, Vk = 0,1,2,...,n — 1 and f™(z,) = n!a, # 0, where z, is a zero of order n of
f(@).

Theorem 15. Let be f(z) analytic in 2 and z, € 2 such that f(z,) = 0, then 3 r > Osuch that f(z) =0, V||z —
Zoll <ror f(2) #0,V0 < ||z — z|| <r.Infactr = Dist(z,,002), (Thatis, the zeros of f occur in balls or else
they are isolated zeros).

Theorem 16. Let f be analytic in 22 and be {z,,} < 2 a sequence of zeros of f (all distinct) that converge to z, € 0.
Then f = 0in 0.

Theorem 17 (Parseval 's Identity). Let f analytic in £2 and z, € 2. Let R > 0 such that f(2) = Yoo, ax(z — z9)*,
V|lz—zll <R;thenV 0 <r <R, ifozn”f(zo + rei‘g)“zde =% ollall?r?k.

3.5 Regarding singularities and Laurent series

Definition 4. Let be fdefined in Q € C a domain. If f is analytic in {2, except at one point z, € (2, then f it has a
singularity at z,, [6], [7], [8].
It only focuses on singularities that are isolated That is 3r > 0/V0 < ||z — z,|| < 7, f(2)it is analytic in £2. Let's

-1
say f(z) = (Sen i) has singularities in: 0 ;n==1,42,.., it is easy to see that in z;, = 0 f has a non-isolated
singularity. Depending on whether it ex1sts or not, limf (Z) there are three types of singularities: removable
z-Zg

singularity if: lim f(z) € C, polar singularity if: lim||f(z)|| = o and essential lim||f(z)|| singularity if: neither
z-2Zg Z—-Zg Z—oZg

exists n or is .

Lemma. Let be z; a singularity of f, a) If z, is a removable singularity, then redefining f (ZO) = lim f (2) fis
z—>z

analytic in z,. b) z, is a pole of fif and only if z, is a zero of %, [14].

1 1 1
= =1 =0,5——=0=

Demonstration: a) Obviously, since f(z,) = llm f (2), b) (:>) lim Tl e o

Z-Zg

| f(2)

1

= has azero in 7o, (<) lim|If(2)Il = L = tow.
f Z-2Zg

Tl

Theorem 18. (Laurent). If f is analytic in the ring R, < ||z — z,|| < R, then f(2) it can be represented in the

. . . . d
Laurent series f(2) = Yme—o Cn(Z — 25)™, which converges to f(z) in the ring. Moreover ¢,, = py f , (Sf (Zs))ns+1, ne
0
Z, where ¢ is any circle centered at z, and contained in the ring, [15].
Proof Let z; / R1 < ||z — 24|| < R,, from Cauchy 's formula for doubly connected domains, flz) =
f(S) f(s) _ . _ F_ .
E P 21 - f{, p— ds =1, + I, where £;: |[s — zoll = 73,0 = 1,2. (R, <1y < ||z — 20|l <713 <Ry). For I:
1 _ (z1—2)™ . . _ _
; (s—zo)[1—21_20 =Yr0 (5_120)31+1, uniform  convergence, since ||z, — || <|s—z)ll =1, L=
s—zp
> Lf &] (z; — zo)™, since both closed curves are in the rin L =Y ocn(zy —z)"
n=0 |5 Jo, (spgyn+il V21 0) > g 2 n=0nlZ1 0) -
For I;: — =1 = ! =y (o2 uniform convergence, since ||s — zy|| =11 < ||z — 2l
1- 5—2, Z1-s (21_20)[1_251 ZZOO n=0 (z1-2 )n+1’ s 0 1 1 olls

I = Y321 cn(z — 2o)™.
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f{, f(s)ds

Therefore: f(z;) = YnZ o Cn(21 — 29)™, Vz;, where ¢, = Gz

2mi

If f is analytic in R; < ||z|| < R,and in ||z|| < R;, then its Lawrence series becomes its Taylor series, since ¢, =

1 f(s)ds _ 1 _ . . ..
2l 90 gy =0, forn = —1,—2,.., the integrand being analytic in and on £.

Corollary. Let be f analytic in 2 — {z,}. Then F is analytic in z, < [|f(2)]| this bounded in a neighborhood of z,.

Proof: (=) Direct, since [|f(2)] it is continuous. (<)Let I;: ||z — 2|l = p, 0 < p <R, R = Dist(zy,2), =

= —_ 1 M
f(Z) Zn——oo an(z ZO) an = Zm Ip (z-z )n+1’n EN

Let M > 0/|If (2|l <M, Vz € B(zy,R), ||an||< n+1(27rp) . If n<0, making p - 0= |la,]|=0>
a, =0,vn=-1,-2,.., Therefore, f(z) = Zn=_°o an (Z —z)", its Taylor series. Then f is analytic in z,.

3.6 Calculation of residues

Definition 5. Let be f analytic in a domain 2 except z, € 2. Let be the f(2) = YXpr_ an(z — zy)™ Lawrence
series around f. z, The residue of f in z is the coefficient a_,. Notation: a_; = Re s (f(2), z,), [8], [9], [10]. How
to calculate the residue:

1) Directly: Finding the Laurent series of f around z,, then Re s (f (2), z,) will be the coefficient of the term (z —

zy) L.

2) Res(f,zy) = i fef(z)dz; where is a £ closed and simple curve around. z,

Indeed (n = —-1):a_, =

2mi 2mi

fdz  _ 1
fg (z—29)"*+1 - f f(Z)dZ

3) Res(f,zy) = 7= 1), lim ddzk -[(z — z9)*f(2)], when z, is a pole of order k of f(z). If k = 1, Res(f,z,) =
Z—2Zg
lim(z — zy)f(2). Indeed, if z, is a pole of order k of f(z), fl2) =
z-2Zg
Zg)+. ..

(z— z)k+ + +a0+a1(z_
(z—2)f(2) = a_p+...+a_1(z = 29" + ao(z — 2)* + ay(z — 2)* "' +...

Differentiating (k-1) tlmes = [(Z - z)'f(D)] =k —-Dla_, +e ao(z Zy) + ——= (k“)

Dla, = lim £z @)

al( - Zo)z . thel’l(k -

18 £() =22, p, q analytical in 7, q(z0) = 0. '(z0) # 0 and p(zo) # 0, Res(f (7)) = 22X, such that has a
"(Zo

p(z)  _ p(20)
a4(2)—-q(zo) — q(zo)”
zZ—Zg

simple zero in zy, then in k = 1, Res(f, zy) = llm (Z - ZO) p( ) Lim
—Zo

Theorem 19 (Remainder). Let be f analytic 2 except for singularities, z;, z, ..., Z, of 2, let, be £ a Jordan curve
in £2 which encloses z,, z,, ..., Z;,. Then f{,f(z)dz = 2mi Y p=q Res(f, z).

Proof: Let be I3, 1, ..., [}, curves in the interior of £ that enclose and z;, z,, ..., zZ,, respectively. Then, by Cauchy's
theorem for simply connected domains

de(2)

Jof(@dz = XL, f,—k f(@)dz = YRl 2miRes(f,zy),
J,f(2)dz = 2mi T3, Res(f, z).
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Theorem 20 (From the argument) Let be £ a Jordan curve and f(z) analytic on € and in ¢ except for a finite

number of poles in £, then — f , ; ((ZZ))

within € and n is the number of zeros (counted with their multiplicity) within £).

dz = n — p, where p is the number of poles (counted with their multiplicity)

Proof: Let g(z) =

f()

theorem — f ];(( )) dz is equal to the sum of all residues of g. We first calculate the residue of g at z, a zero of f. If

the zero is of order k, then f(2z) = (z — zo)* ¢(z) where ¢ is analytic and ¢(zy) # 0, then: g(z) = % = %
—Z40

$1(2) o[ ¢1(2)

PO, and Res(g;20) = 7 [,9()dz = k| [, 22| + [ £ 8 dz = k.

Therefore, by adding the residues obtained at each zero within f, the ftotal number of zeros (counted with
their multiplicity) f within £, that is, n clearly results.

@ _ -k | 9@
@ z-z0 ¢

—k, summing the residues of g at the poles of f gives —p, Therefore: —f{, ’;((Z)) dz =n—p,[4].

On the other hand, if f has a pole of order k in z, € Int(£), then and Res(g;zy) =

Theorem 21 (Rouche). Let f(z)and be g(z) analytic functions on and inside a Jordan curve €. If | g(2)| <
[lf(2)|l, vz € 4, then f(z) + g(z) and f(z) have the same number of zeros inside £.

Proof: Let: F(z) = % and be n; and n, the number of zeros of (f + g) and f respectively within £, both

functions do not have poles within € (since f + g and g are analytic), then

1 1+gr 1 1 1 Fr
n,=—/"~ gdzandnz=—_ff—dz,n1—n2=—,f—dz,
2mi’t f+g 2mi vt f 2mi *? 14F

a5 IF@I<ton £, then ﬁ =1—F +F?—F>+..(and the convergence is uniform), therefore, n; —n, =
L3 (0)dz = 0, that is, n, = n,.

IV. Discussion

The discussion is focused on the application and evaluation of Integrals classified into several groups:

Group 1: © p() dx, where p and g are relatively prime polynomials and the degree of g is at least 2 greater than
p —20 () p q yp poly g q g

the degree of p and q has no real zeros ( p/q must be even). In this case: llm f PO gy = 2mi Yim(z)>o Res(f,2),

@) Rq(x)
V4
where f(z) = pross

Proof: Let £ = £ U [—R, R], where £5: ||z|| = R, Im(z) > 0, be the residue theorem [~ Rpix;d +f f(2)dz =

2700 Y jin(z)>0 Res(f, z), where R > 0 is large enough to ¢ contain all singularities of f with Im(z) > 0. In this
R-
case, it suffices to prove thatf f(z)dz—> 0, ”f f(z)dz” < 271Rmax{||f(z)||} < Zn( )—> 0,M >0

is a constant.

R dx

Application 1. Analyze the problem [° xfil = lim [, g = 2mi [Res( = )] and [ o T2y = 2mi [lim(z —
—00 z-1

) (z5)| =7

Application 2. Evaluate the integral | = fow xZL f_w o since x® + 1 it is an even function then, f

© dx
X641

16 L 41=0z=%"1=1 <cos ("*2"”) + isen (’”2"”)); k =0,1,2,3,4,5. Only the roots for k = 0,1,2

27C z6+41
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which are in the upper half-plane, these are: z, = e™/°, z; = e3/%and z, = e%"/° for z, = e¢™/®, Res (f@)l,, =

] in 0 ' . R S S o
lmil_ﬂ (z —e 6)26+1 =5 We can apply L' Hospital's rule, and we have lmil_n; =ce ¢ =————. For: z; =
zZ—e 6 ami z—e6

3im/6 — : _ = 1 — 9 : ' a1 — l i(— =
e Res(f(z))lz1 ll% <z es >26+1 5> When applying L' Hospital's rule, Res(}‘(z))lz1 6[l( 1]

z—e 6

. 5mi
For: z, = e%m/°, Res(f(z))lz2 = lim . <z—eT) L2 By applying L' Hospital's rule, we have

smi z5+1 0
Res(f(z))l =—- —w ith,
- x::l = 2mi[Res(f (2)),, + Res(f(2)),, + Re s (f(2)),,], 2= — = 2mi (— é) = 2?71
Then I'= _f x6+1 - %(%’T) - g

Application 3. Analyze the problem [

, it is required to have an antiderivative of this
function, which is Very complicated. The most efﬁ01ent way is to solve this integral via complex analysis, using the

function f(z) = first determining the singularities of this function. In this case, they are the complex numbers

10’

2k+1
29, Z1,- -+, Zgof the form z;, = em(l—o), k=0,1,2,...,9, and these are poles of order 1 (simple poles). Only the roots
in 3im 5im 7im 9im
k =0,1,2,3,4 are in the upper half plane [7]. These are zy = e10, z; = e10; z, = e10; z; = €10; z, = €10, USing

the Cauchy residue theorem f wﬁ =27 Y g emecry Res(f, ), as

1

1
Res(f,z) = ezt _

- 9
10z;

[ x =2mi Y}, Res(f,z) = 2mi Y

10 n=0 ot 2
o 10(em( 1o ))
foo dx Ty 1 _ TL'_l( 1 )
—014x10 ~ 5 &n=0 R (181"0+9) T 5 \rgtry+ratrstry
. V10+2v5 5-1
Ty = — cos(18°) + isen(18°) = _J10+2V8
0 4 4

77'[) _ _\/10—2«/§+ l.\/§+1

rl—cos( )+l en(
10 4 4

. (45
5T 451 .
T, = ¢™(33) = cos ( m ) + isen (1—) =i

1 4

63
(83 63\ | . 631 \/10 25 | 5+
Ty = ¢™(0) = cos (—10 ) + isen (—)

81

= e™ (10) = cos (81 ) + isen (Bln) 10+2V5 + l—
10 10 4 4
. . n(\/5-1)
Adding these expressions we have 1, + 1 + 1, + 13+ 1, = e

Group 2: f g(x) cos(kx)dx, or f g(x)sen(kx)dxwhere g(x) = pE ; is as in the first case. Either of the two

integrals is calculated by considering the integral f_oo g(x)e**dx, and equating the respective real and imaginary
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parts. We have [, g(x)e™*dx = 27i imzys0 Res(g(2)e™, 2), as g (e = llg@lle™* < llg@)|l. for y >
0 ( k > 0 without loss of generality). The proof is similar.

o cos(kx)dx
x24+q2 °

Application 4. Analyze the problem f k>0anda > 0.

fwfﬁﬁ—mnhﬂ( - +ai)]| = 2milim(z - ai) e

—00 x24q2 24q2’ z—ai (z—ai)(z+ai)’

foo cos(kx)dx — Re (foo eilxdx) _ l and foo sen(kx)dx = Im (foo eilxdx) _

-0 x24q2 -0 x24+q2 2a x2+qa? —00 x24q2

cos(x)dx
o (x24+a2)(x2+b2)"

Application 5. Analyze the problem f

_ f cos(x)dx . m (i _ i) a>0
T J-oo (x2+a2)(x2+b2) ~ a2-b2\ b al)’
e*dx , eikz .
I'=Re [f—oo (x2+a2)(x2+b2)] = 2mi [Res ((x2+a2)(x2+b2)’+al)]

—-a e

P S Py
(-a2+b2)(2ai) = (-b2+a?)(2bi)] ~ a2-b2\ b al

1=2m[

Group 3: Analyze the problem fozn R(sen(0), cos(0))d6. This integral is equal to the integral of a certain complex
function ¢(z) over the circle.

e’ = cos(0) + isen(8) = z,e™® = cos(6) — isen(6) = -

cos(0) = %(z + ) sen(0) = (Z - 1),

z

By replacing in R, we obtain || ¢ (z)dz, this integral can be calculated by the residue theorem.

llzll=1
ao

Application 6. Analyze the problem f 3125en(0)"

f27t dae

I _ _ 21
“Jo 3+2sen(@) ~ VB’

z = cos(0) + isen(8) = e ,dz = izdz

—31\/3) [ 79 = 3+\/—

zz+3iz—1=05isélosiz=( i € Int(¥)

. 1 2
I'="2mi (3i+(—3+\/§i) NG

2m cos(36)de

Application 7. Analyze the problem | = f 5_asen(8)’

cos(0) = l(z + l), cos(30) == (23 + z73),dz = izdf
2 z 2
1
_ 3@3+27%) razy _ 1 (z6+1)dz
I'= fIIZII=1 5-2(z+z~1) (iz) - 2if||Z||=1 z3(5z-1)(z-2)"
Inside 6: z = 0, pole of order 3, z = %pole of order 1
_ .1 d? z6+1 (Z—l)(z 1 | _nm
[=-m {lz%z_iﬁ(zmz—n(z—z))} {hm 173(2z-1)(z- z)} 12
2
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-k

Group 4: Integration around branch points. Evaluate fooo x1+dx

exp(—kLn(z)) *

1+z

simple pole z=—1 and the branching line y=0,x >0 (i.e. 6 =0). When 6 =0, r=x,z=x, f(2) =
exp(—kLn(x)) _ x~k

1+x =T i integrating f around the closed contour £, which consists of two circular arcs: ¢ ||z|]| =7,

£1:]1z =R (0 <r <1,R=1)and two segments L, and L, of the rays 8 = € and 8 = —e ( € > 0) respectively,
£ =4,U¥, ULy U L,, as £ contains within itself the singularity z = —1,

lef(z)dz + felf(z)dz + sz f(z)dz + fLof(z)dz = 2mi[Res(f (z), —1)]

,k € (0,1) (for convergence). In this case f(z) =

, 1s a multivalued function; its principal value is taken. The function f(z) is analytic in all C but the

= 2mi exp[—k(Ln(1) + mi)] = 2mie ™, (13)
about L,: z = te® = z7% = t*e~ke¢ ¢t € [r,R],

about L,: z = te!?™=8) = z7k = t~k=ki@m=¢) ¢ € [R, 1],

—ke—ikeeiedt fr t—ke—ik(zn—s)ei(zn—a)dt
R 1+tei(@m=8)

[, f@dz + [, f(@dz = [

1+tele

-k -k
= plli-k) (REAE _ pia-ip@n-e) 4 (R_L _d°
T 1+tels T 1+tel(2m—8)

. ~ka
lim [, f(2)dz + [, f(@)dz] = (1 — ™[5t (a4
About £y: z = Re'?0 € [¢,2m — €],

about £,:z = re'®9 € [2m — ¢, €]

fo, F 2z + J, f2dz = [ et — [T
I'=lim|f, f@)dz+ [, f(2)dz| = RO~ e e -

(=0 [T < B omy 4T (2m), as0 < 1 -k < 1

lim i1l = 0= liml =0, (15)
R—- R—-

. -k .
from (13), (14) and (15) it follows that lim (1 — e~2k™) [*—dt + 0 = 2mie™*™,
R—>

[ Py

0 1+t 1-mie=2kml — ekmi_mie—kmi T sen(km)’

2mi ™

Whenever there are branch points, circles around them should be avoided.

V. Conclusion

It was necessary to use the result of Goursat 's lemma, and that Cauchy's theorem is fulfilled for multiply
connected regions, that is, f: C — C an analytic function in {2 € C a domain and is R € 2 a multiply connected set
whose boundary Fr(R) = £ U £, U...U ¥, where ¢}, € Int(¥) and ¢;,¢,k = 1,2,...,n are piecewise regular and
disjoint Jordan curves oriented counterclockwise, [  f(2)dz = ) ” f(z)dz.
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It is evident that it satisfies the Cauchy integral formula, f: C — C analytical in a domain 2 € C, with £ a
LI gy vz € Int(f);
2mi Yt w—z

furthermore, for the definition of residue, f analytical £2 except at singularities, z,, Zy, ...,z of 2 and £ a Jordan

curve in £2 which encloses z;, z,, ..., Z,, therefore, L,f(z)dz = 2mi Y p=, Res(f,z).

counterclockwise rectifiable Jordan curve such that £ U Int(£) C £2, that is f(z) =

)
q(x)
of q is at least two more than the degree of p and g has no real zeros ( p/q must be even), we used that

R PO G _p@
Lim f_R@dx = 27i ¥ im (>0 Res(f, z), where f(z) = s

Finally, to evaluate the integral f_oom dx, where p and are g mutually prime polynomials and the degree
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