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Abstract:

We explores the warious techmiques of numerical
integration . focusing on methods denved from
interpolation. Initially, piecewise quadratic interpolation 1is
examined, highlighting that while higher-order splines may
provide accuracy, they often incur increased computational
cost without proportional benefit. Simpson’s 1/3 rule,
derived via quadratic interpolation. is introduced and
shown to offer an error of order O(h*), making 1t efficient
for equidistant data points. The method integrates third-
degree polynomials exactly and 1s even exact for cubic due
to vanishing higher derivatives.

Building on this, the use of finite difference formulas
further refines the estimation, again arriving at Simpson’s
rule through error correction applied to the trapezoidal
rule. The method of undetermined coefficients confirms
this by deriving weights that make the integration exact for
quadratic functions.

Richardson’s extrapolation and Romberg integration are
introduced as techniques for enhancing accuracy by
combining estimates with different step sizes. Romberg’s
method recursively improves the integral's accuracy,
reaching O(h®) precision using only the trapezoidal rule,
making it highly efficient and suitable for automation.

The Newton-Cotes method, particularly the Simpson’s 3/8
rule, iz discussed next. Though it uses a higher-order
polynomial (cubic), it surprisingly offers the same order of
accuracy as the 1/3 rule (O(h*)). However, when applied to
the same number of gnid points, Simpson’s 1/3 rule
generally performs better in accuracy.

The Adams method 15 analyzed, which integrates over a
single part using a polynomial derived from multiple
points. Although appealing for evolving datasets due to its
incremental nature, it typically produces higher errors and
15 less suitable for numerical integration compared to
Newton-Cotes methods. Instead, Adams methods are more
commonly used in solving differential equations.

Kayword: Simpson’s rule; Trapezoidal rule; Pricewise
quadrafic interpolation; finite difference; Rechardsons.
extrapolation; Romberg integration; Newton-cotes
method; Adams method

1.Interpolation followed by integration:

As seen in with the increase in the number of data
points, 1t may not be a good 1dea to use a higher-order
interpolating polynomial passing through all data
points. The quadratic, cubic, or higher-order splines
may be used

but would typically require more computational time
without a commensurate gain in accuracy.

Therefore, we assume to use piecewise quadratic
interpolation,
we may write
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Here 115 even.

If n 1s odd, a linear interpolation may be used in the
first or last part.

However, it would lead to lower accuracy in the
estimate of the integral. A better option would be to
use a cubic for the three or last three parts.

But, it is difficult to apply the mean value theorem for
integrals directly to equation (2)_ since

x(x+ A, Xx—h,) does not have a constant sign in the
integration domain. For equidistant points, however,
we use integration by parts to get

E = I_\'{_\'+ Rlx—h)fTx, %y, Xy, x;]dx
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It divide the integral into two parts (—7,.0) and

(0.7 )such that the term x{x+/,, x—% ) has the

same sign over each of these intervals. The second
mean value theorem for integrals could be apphed to
these individual parts. However, 1t 15 seen that the
presence of opposite signs over these parts would
umply that the error cannot be expressed in a usable
form. Also the limits on the mntegral mvolving
wdx+hNx—#). While the upper limit of this integral

must be x, we could have used any constant lower
limit of integration in this ferm

The value —% 15 used for convemence as it makes the
mtegral 0 for x = —h as well as x = h. The denvative
of the fimite divide difference 1s obtamned as

= ii_on]f[-"f"'g;-‘-} T -T.-'] :f[-"f; A TR -T.-']

Now using the relation between the finite divided
difference and the function derivative, it 1s applicable
even when some of the points coincide and get
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and J[.-T—I?:]-Y[.-T‘”? }d"- is non-negative for all
xe(—h k) thus enabling us to use the second mean
value theorem for integrals. Therefore, have
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total error are given by [equations (1) and (2)]
h

E-3 Zlo)+4rtn)+ 10

=¥|:f[x..]+-|- Y ilx)e2 3 flx )+ fl, ]i|
)
and
; (&)
E= ¥ gl _ lb—aj -lzf ~
2 A, & a0 18{]‘14 ni2
_ _[b—ﬂ']‘_}h j_
C 180" ©)
Where " represents the mean value of the fourth

dertvative of the function over the interval (a &). If
we assume that this mean value does not change
significantly with change in &, we observe that the
total error 1s O(4*). Sometimes, we say that the degree
of precision of the quadrature scheme 1s 3 to indicate
that all third degree polynomials would be exactly
integrated but there are some fourth degree
polynomial which cannot be exactly integrated. Also
seen that, although we derived the formula with a
quadratic interpolation, the integral would be exact
even if fx) 15 a cubic polynomial since the fourth
derrvative will be identically zero. This implies that
once we perform a quadratic interpolation through 3
equidistant points, and then draw the cubic
interpolating polynomial utilizing an additional
(equidistant) point, the net area between these two
curves would be zero, no matter what the function. If
we choose the constant value at the mud-point of the
interval, any straight line passing through this point
will result in the same area since the difference
area before and after the mid-point cancel out each
other. Equation (4) is commonly called Simpson’s
one-third rule.

2.Using the finite difference formula:

Combining the trapezoidal rule, we estimate over two
consecutive parts and using the finite difference
approximation of the second derivative in the error
(Eq. (3))_improved estimate of the integral over

the interval (x;, x;), 1.e. we assume that the points are
equidistant. For unequal spacing, the finite difference
approximation of the second derivative becomes
complicated.
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In equation (6) the first two terms on the night-hand
side are the trapezoidal rule estimates and the third
term in the sum of errors in hoth parts_ It 13 seen that
this again results in the Simpson’s 1/3 rule.

DOI: 10.9790/5728-2105013842

www.iosrjournals.org

39 | Page



Estimation Of Numerical Integration To Improve Accuracy In Case Of Interpolation

Method of undetermined coefficients Assuming an
expression of the form

I =y flxy )+ e flxg )+ elx) (N
in which the ¢’s are undetermined coefficients, we
require that the integral be exact for all polynomials
of second degree Taking the function as flx) = 1, x,
and x7, respectively, we obtain three linear equations
which can be solved to obtain the coefficients:

f[\] =1 = Ciq +.f‘|_._1 -|—(-I__ = hr'—l + h.-

—i2 +i
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)
which results in the same equation as equation (4) for
equidistant points. In fact, if the points are
equidismnt it may be betler'to write equation (7) as

[f S ) e flx -1)+fff[-".-']]

3.Richardson’s extrapolation:

From equation __ the error in estimate of integral using
the trapezoidal rule 1s equal to — hb —a)f"h? I 12.

If we use a step size of 24, and assume that the mean
value of second derrvative 1s more or less same, the
error term should be four times that for the step size
of h. As before, a new, and probably more accurate,
value 15 obtained as
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in which the first term on the right-hand side
represents the trapezoidal rule estimate for the left-
hand side using step size 5. and the second term
represents the same with step size of 2A.

It 15 easy to see that we again get the Simpson’s rule
and the error, as shown earlier, 1s O(4"). One may
then combine two estimates of O(h*) (e.g., one using
step sizes of h and 24, and the other using 2/ and 4h)
to obtain an O(%°) estimate and so on. Romberg

proposed a general recursive form for this
extrapolation well-suited for computer
implementation which may be written as
= . 2" fq _}JJ;;,.;-
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(General expressions for the error in even and odd
degree polynomial interpolation.

For an even (say, 2m) degree polynomial

interpolation using (2m + 1) equidistant points located
at 0, h.x 2k .......mh, the error in estimation of
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For an odd (sav.2m + 1) degree polynomial using
{2m+2) equidistant points located at
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. the error is expressed as
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the error in the use of the degree polynomial with
m 0 (linear interpolation, trapezoidal rule) is
obtained as
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and that i even degree polynomial with m =1
(quadratic interpolation, Simpson’s rule) 1s obtained
as

2CFE) a2y B
C vt =1 - — >
i £ X [.1 .]d\
in which f,-!'_-i represents the estimate of [ of accuracy

O(}E) with step size of /.

Thus, starting from trapezoidal rule estimates. O/,
for step size of h, 2k, 451, and 8h, successive estimates
could be obtained from
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with the final result of O{(A%) accuracy! This algorithm
as the Romberg integration is thus a very powerful
technique for performing numerical integration with
very high accuracy using only a few lower accuracy
estimates. Therefore, one really does not need to
remember the higher accuracy formulae, only the
trapezoidal rule will do! However, for unevenly
spaced data it i3 not directly applicable.

Other techniques for obtaining a more accurate
formula use higher-order interpolation and them
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perform the necessary integration. Two different

technione could be applied at this time:

* Aswe did in above, we use more points to perform
the higher-order interpolation and then integrate
this polynomial over the domain covered by all
these points.

* We use more points to obtain the higher-order
interpolating polynomial and then integrate it over
a single part.

The first procedure iz commonly known as the

Newton-Cores method (1. the trapezoidal rule and the

Simpson’s rule) while the second 1s similar to Adams

method. We describe below these techniques using

the third-order interpolating polynomial.

4. Approximation in case Newton-Cotes Method:

We assume that » 1s a multiple of 3. If it is not, we

could be evaluated using the guadratic interpolation.

We again use the fact that the integral is not affected

bv a translation and consider. for simplicity, the

points to be equally spaced with

X ="l x,=-0 x,;, =" x,=2h.

Then have
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which 1s the Simpson’s three-eighths rule (proposed
much earlier by Newton), with the error given by
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A comparison and it seen that Simpson’s 1/3 and 3/8
rules have the same order of accuracy (7*) but the 1/3
rule is more accurate even though it 1s based on a
lower degree polynomial! Thus a better interpolating
polynomial may dividing (b-a) into two parts for the
1/3 rule and three parts for the 3/8 rule, the 3/8 rule
will be found to be more accurate. However, we feel
that a true comparison should be based on the same
set of grid points. If we have, say. 6 parts and we use
3 applications of 1/3 rule or 2 applications of 3/8 rule,
the 1/3 rule will have smaller error but assuming, that
the fourth derivative does not change much.

S.Approximation in case of Adams Method:

An interpolating_polynomial over multiple parts and
then integrate it over all those part__in case of the
Newton-Cotes method. We know from our discussion
on interpolation, the error of interpolation 1s likely to
be small in the center of the interval and large near
the ends. Earlier we would discussed the three-part
case, the interpolation would be much better over the
middle part and not-so-good over the corner parts. It
would thus appear that a better accuracy may be
obtained if we perform the integration only over the
middle part. As we will see, it does not lead to a more
accurate integral. The reason. as before, is that a
better interpolate does not necessarily mean a more
accurate integral.

In case of evolving data as new measurements
become available, we would like to have updated
estimates of the integral. However, if want to apply
the three-part Newton- Cotes method, we have to wait
for further measurements to get all three parts before
we could apply the 3/8 rule.

Tt may be desirable to develop a techmque in which as
we add more points, the incremental integral could be
easily obtained. It becomes even more desirable if the
function value at any point depends on the value of
integral at the previous times.

In Adams method. we write the integral as the sum of
integrals over each part, expressed as

(takex, , =T x, =0 x, =l x, =2h)
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and the error over a part 1s given by
A
E = J- [+ Bbdx—Hlx— 2h]f[.\'= X Xg. X X ]dr
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Thus, while the grid points x,_,.x.,.x,, and x,., are

used to generate the third desree interpolating
polvnormal, the integration i1s performed only over
one part. We may perform the integral over the first,
middle, or the last part. Here we over the central
portion of the data points used. For an evolving data,
we would typically perform the integral over the last
part. Also, note that for the first and the last parts of
the entire data set the central inregral formula will not
be directly applicable since there 1s no data
corresponding to x; and X, The resulting
expression for the integral and the error over a part
are
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I, = oo Sl #1340 ) #1305 - flra ]

g ()
' 720
(10)
The second mean value theorem for integrals 15 used
to evaluate the error since (x+hldx—hlx—Fk) 18
non-negative throughout the interval (0, h) and, as
before,
Disregarding the fact that equation (10) i1s not
applicable for i = 1 and », we may estimate the error
in the value of the integral as
111? i} 11[5—::]3,?“'
7204 Z"f & 720m*
A comparison with equation (9) shows that the error
1z larger (and of opposite sign) than that in the
Simpson’s 3/8 rule. Adams methods are, therefore,
generally not used for numerical integration. They are
quite useful, though, for numerical solution of
differential equations.
Newton Cotes method uses a parabola through
iz Xip1 2 Xip -

Adams method vses a parabola through x, . x,. %, .

Conclusion:

Using higher-order interpolating polynomials (beyvond
quadratic) can introduce computational complexity
without significant gain 1n accuracy. Piecewise
quadratic interpolation leads to Simpson’s 1/3 rule,
which integrates cubic polynomials exactly and has an
error order of O(h¥). Combining the trapezoidal mle
with fimite difference approximations of second
derivatives leads again to Simpson’s 1/3 mule. Method
of undetermined coefficients confirms this derivation
and generalizes the approach. By using multiple step
sizes and extrapolating the results, we can improve
integration accuracy sighificantly. This recursive
refinement, known as Romberg integration, can
achieve accuracies as high as O(hf) using just the
trapezoidal rule. However, accuracy comparisons
depend on how the interval 1s subdivided. In contrast
to Newton-Cotes. Adams method integrates the
polvnomial only over a single subinterval  Although 1t
allows for easier updates with new data (useful in
time-evolving systems), it tends to have larger errors
and 1s less accurate than Newton-Cotes methods for
definite integrals.
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