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Proof Of Continuum Hypothesis 
 

Michael Oser Rabin And Duggirala Ravi 
 

Abstract:   
Background: The continuum hypothesis was originally proposed by Georg Cantor. The continuum hypothesis 

has remained a prominent conjecture, mainly because the mathematical tools of truth and provability have been 

developed much later.  The continuum hypothesis has been shown to be independent of the axiom of choice. 

Materials and Methods: The continuum hypothesis asserts that there is no set of cardinality strictly between the 

cardinalities of the set of natural numbers ℕ and its power set 2ℕ. In this paper, a set 𝑋 of cardinality at most t 

2ℕ is assumed to consist of binary sequences with index set ℕ. The set can be described by means of an infinite 

binary tree. 

Results: It is shown that if a set 𝑋 ⊆ 2ℕ is uncountable, then the binary tree encoding it includes a subtree 

isomorphic to the complete binary tree encoding 2ℕ. 

Conclusion: Well-founded recursion and inductive constructability are prerequisites for a mathematical theory 

to become free from paradoxes. 
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I. Introduction  
The continuum hypothesis was originally formulated by Georg Cantor. It asserts that there is no set of 

cardinality strictly between the cardinalities of the set of natural numbers ℕ and its power set 2ℕ. 
In this paper, a given set 𝑋 ⊆ 2ℕ =  {0, 1}ℕ consists of binary sequences, with indexes in ℕ. Any 

subset 𝑋 of 2ℕ can be described by means of a binary tree, 𝑇𝑋, such that for every binary sequence (𝑥1, 𝑥2, 𝑥3,
. . . ) ∈ 𝑋, and positive integer 𝑘 ∈ ℕ, there is a path from the root of the binary tree to a node in the binary tree 

with path label (𝑥1,   . ..  , 𝑥𝑘), and conversely, if there is a node in the binary tree 𝑇𝑋, with its path label from the 

root to the given node is (𝑥1,   . ..  , 𝑥𝑘), for some 𝑘 ∈ ℕ, then there are binary digits 𝑦𝑘+𝑖 ∈  {0, 1}, 𝑖 ∈ ℕ such 

that the infinite sequence (𝑥1, … , 𝑥𝑘 , 𝑦𝑘+1,    𝑦𝑘+2,   𝑦𝑘+3, … ) belongs to 𝑋. Thus, the binary tree 𝑇𝑋 encodes 

the finite length prefixes of sequences in 𝑋. 

As the set of finite length prefixes of 2ℕ is countable, the binary tree is 𝑇𝑋 countable. Nevertheless, it 

encodes every element of 𝑋, as an infinite sequence. For the purpose of reconciliation, it may be useful to refer 

to arithmetic coding. 

The arcs in the binary tree 𝑇𝑋 are doubly labelled : one label describes the binary digit in the finite 

length prefix at the current location of an infinite sequence in 𝑋, and the second label indicates whether the 

subtree rooted at the node to which the arc points encodes a countable or an uncountable subset of 𝑋. If a node 

corresponds to the path prefix (𝑥1,   . ..  , 𝑥𝑘), for some 𝑘 ∈ ℕ, then the inward arc to the given node has label 

countable or uncountable depending on whether the set { (𝑥1, … , 𝑥𝑘 , 𝑦𝑘+1,    𝑦𝑘+2,   𝑦𝑘+3, … ) ∈ 𝑋 ∶
 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦𝑘+𝑖 ∈  {0, 1}, 𝑖 ∈ ℕ }  is a countable or an uncountable subset of 𝑋. It is shown that if 𝑋 is 

uncountable, then the binary tree 𝑇𝑋 encoding 𝑋 includes a subtree isomorphic to the complete binary tree 𝑊𝑋 

encoding the full set 2ℕ. Thus, if 𝑋 is uncountable, then there is a one-to-one correspondence between 𝑋 and 

{0, 1}ℕ. 

 

II. Material And Methods  
Let ℕ be the set of positive integers, and let ℝ the set of real numbers. Any reference to recursion must 

be understood to be well-founded. For constructible sets, the following set operations are defined:  

(1)     Union  ⋃  : for an inductively or recursively constructible index set  𝐼 , and  inductively or recursively 

constructible sets,  𝐴𝑖 ,   𝑖 ∈ 𝐼 , the set union is  ⋃ 𝐴𝑖𝑖 ∈ 𝐼   , 
(2)     Intersection  ⋂  : for an inductively or recursively constructible index set  𝐼 , and  inductively or 

recursively constructible sets,  𝐴𝑖 ,   𝑖 ∈ 𝐼 , the set intersection is  ⋂ 𝐴𝑖𝑖 ∈ 𝐼   , 
(3)     Cartesian Product  ×  or  Π  : for an inductively or recursively constructible index set  𝐼 , and  inductively 

or recursively constructible sets,  𝐴𝑖  ,   𝑖 ∈ 𝐼 , the set intersection is  ∏ 𝐴𝑖𝑖 ∈ 𝐼    ,  
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(4)     Power Set  𝒫  : for an inductively or recursively constructible set  𝐴 , the set of all its subsets, denoted  

by 𝒫(𝐴) , is the power set of 𝐴,    and     

(5)     Set Difference 𝐴 − 𝐵  and Symmetric Difference  𝐴 Δ 𝐵   : for two inductively or recursively defined 

sets 𝐴 and 𝐵,  𝐴 − 𝐵  is the collection of elements in 𝐴  that are not in 𝐵, and 𝐴 Δ 𝐵 is the union of the two 

sets 𝐴 − 𝐵 and 𝐵 − 𝐴  ,  i.e.,  𝐴 Δ 𝐵 = 𝐴 − 𝐵 ∪ 𝐵 − 𝐴  . 

 
The set complementation by itself is undefined. In item (4), the subsets of a set are not attempted to be 

defined further.  If a single subset is required, it may have to be constructible appropriately. But, since the power 

set is taken as a whole, when referring to the subsets of a set,   no further constructability conditions are implied 

in (4).  The power set 𝒫(𝐴) is also written as 2𝐴 , as a subset can be identified with its binary valued 

indicator function defined on the set 𝐴.  
The complementation of a set is undefined, unless a constructible superset is explicitly or implicitly 

specified, owing to the discovery of paradoxes originating from the notion of the set of all sets. Instead, for two 

inductively or recursively defined sets 𝐴 and 𝐵 , the set differences,  𝐴 − 𝐵  and  𝐵 − 𝐴  , as well as the 

symmetric difference,  𝐴  Δ  𝐵 = 𝐵  Δ  𝐴 ,   are defined.   

In view of the fact that unbounded recursion is mainly responsible for the unreasonableness of the 

paradoxes discovered, recursive or inductive constructability is specifically included as a prerequisite. In this 

paper, whenever a reference to a set is made, it is implicitly assumed that the set is inductively or recursively 

constructible. From the standpoint of formal logic, except for some few sets that are taken to be basic and 

subject to no further definability conditions,  each set may need to be definable recursively or inductively, by 

means of functions, that are recursively or inductively constructible.  

Two sets 𝐴 and 𝐵 may be compared with respect to a partial order ≼ , defined as follows:  if there 

exists a one-to-one mapping from 𝐴 into 𝐵 or there exists a surjective mapping from 𝐵 onto 𝐴 , then  𝐴 ≼ 𝐵 . 
If  𝐴 ≼ 𝐵, then the cardinality of 𝐴 is no larger than the cardinality of 𝐵 . 

 

Proposition 1 There is no surjective mapping from a finite set 𝐴 onto the set of natural numbers  ℕ , and 

there is no one-to-one mapping from the set of natural numbers  ℕ into a finite set 𝐴 , i.e., the partial 

relation  ℕ ≼ 𝐴 never holds, for a finite set 𝐴. 
Proof Both statements can be proved by induction the number of elements of 𝐴.                        

▢ 

 

For an infinite set 𝐴 , for some strictly proper subset 𝐵 ⊆ 𝐴, it may hold that  𝐴 ≼ 𝐵. 

 

Proposition 2 (Cantor) For any set 𝐴 , there is no surjective mapping from 𝐴 onto its power set 𝒫 (𝐴) , and 

there is no one-to-one mapping from the power set  𝒫 (𝐴)  into  𝐴 , i.e., the partial relation 𝒫 (𝐴)   ≼ 𝐴 never 

holds, for any set 𝐴. 
Proof Cantor introduced the diagonal argument in the proof this proposition.                       ▢ 

  

Assumption 1  There is no set 𝐵 of cardinality strictly larger than that of every finite set, but strictly smaller 

than that of the set of natural numbers  ℕ , i.e., if the partial relation 𝐴 ≼ 𝐵 holds, for every finite set 𝐴, 

then the partial relation ℕ ≼ 𝐵 holds, too. 

 

Proposition 2  ℝ ≼ 𝒫 (ℕ) = 2ℕ  ≼ ℝ and ℕ𝑘 ≼ ℕ,   for every  𝑘 ∈ ℕ . 
Proof Known to be standard results.                      ▢ 

 

III. Result  
The binary sequences in 𝑋 can be encoded using an infinite binary tree 𝑇𝑋, as follows: The descending 

arcs of  𝑇𝑋  are labeled with a binary entry in {0, 1}, as, for example,  if the arc points to a left child of the node 

from where the arc begins, then the label is 0, and 1 otherwise (i.e., if the arc points to the right child of its 

predecessor). For each node of the tree, the arc to the left child and the arc to the right child are labeled with 

distinct binary digits.  A finite length path starting from the root of 𝑇𝑋 to an interior node (not the root itself) in 

the tree corresponds to a finite length sequence, (𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘), for some 𝑘 ∈ ℕ,  such that, by traversing the 

path from the root to the interior node and concatenating the labels on the arcs, the sequence (𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘) 

of length  𝑘  is formed. The label of the node is the finite length path from the root to the given node. The finite 

length path from the root to itself is the null sequence  ( ), of length zero, with 𝑘 = 0, in the path 

(𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘). 
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The subset 𝐴(𝑥1 ,𝑥2,𝑥3…,𝑥𝑘) of 𝑋 encoded by the subtree rooted at a node, corresponding to the path with 

label  (𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘)  is the set of all infinite binary sequences (𝑦1 , 𝑦2, 𝑦3 … ), with 𝑦𝑖 ∈ {0, 1}, for 𝑖 ∈ ℕ, 

such that 𝑦𝑗 = 𝑥𝑗, for 1 ≤ 𝑗 ≤ 𝑘, where 𝑘 ∈ {0} ∪ ℕ. 

The arcs are further labeled as countable or uncountable, depending on whether the subset encoded by 

the subtree rooted at the node to which the arc points is of the cardinality same as the label on the arc. The arcs 

now have two labels: one for the binary digit for the element in the sequence, and another for the cardinality of 

the subset encoded by the subtree which it points to. The label for the binary digit can be detected by checking 

whether a node is the left or right child of its parent. It is still convenient to label the arcs using the two 

components, as just described. 

As an uncountable set must include at least two elements (infinite sequences), if a node corresponding 

to the finite length path (𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘), with 𝑘 ∈ {0} ∪ ℕ, is the root of a subtree that encodes an 

uncountable subset of 𝑋, there is an index 𝑙 ∈ ℕ, such that both the finite length paths 
(𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑘+𝑙−1, 0) and (𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑘+𝑙−1, 1) are the prefixes of length 

(𝑘 + 𝑙) of some elements (infinite sequences) in 𝑋. To begin with, there are two sequences in 𝑋 with their 

prefixes of length 𝑘 equal to (𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘), and for definiteness, let 𝑙 ≥ 1, be the least positive integer such 

that the (𝑘 + 𝑙)-th bits in the sequences differ. Let 𝐴(𝑥1 ,𝑥2,𝑥3…,𝑥𝑘) be uncountable. For every 𝑙 ∈ ℕ, let 

𝐴(𝑥1 ,𝑥2,𝑥3…,𝑥𝑘,1−𝑦𝑘+1,…,1−,𝑦𝑘+𝑙−1,1− 𝑦𝑘+𝑙) be uncountable. If the subset encoded by the other child 

𝐴(𝑥1 ,𝑥2,𝑥3…,𝑥𝑘,1−𝑦𝑘+1,…,1−,𝑦𝑘+𝑙−1,    𝑦𝑘+𝑙)is countable, then 𝐴(𝑥1 ,𝑥2,𝑥3…,𝑥𝑘) can be expressed as the countable union of 

countable sets ⋃ 𝐴(𝑥1 ,𝑥2,𝑥3…,𝑥𝑘,1−𝑦𝑘+1,…,1−,𝑦𝑘+𝑙−1,    𝑦𝑘+𝑙)𝑙∈ℕ  ⋃{ (𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘 , 1 − 𝑦𝑘+1, … , 1−, 𝑦𝑘+𝑙−1, 1 −

 𝑦𝑘+𝑙 , … . ) }, and becomes countable. Hence, there is an index 𝑙 ∈ ℕ, such that both the finite length paths 

(𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑘+𝑙−1, 0) and (𝑥1 , 𝑥2, 𝑥3 … , 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑘+𝑙−1, 1) are the prefixes of length 
(𝑘 + 𝑙) of some elements (infinite sequences) in 𝑋, such that the subsets encoded by the subtrees rooted at these 

nodes are both uncountable. 

Let 𝑊𝑋 be the subtree of 𝑇𝑋, consisting of the arcs with label pair (𝑝𝑎𝑡ℎ, 𝑐𝑎𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒), 

where the 𝑝𝑎𝑡ℎ component corresponds to the path from a node in 𝑇𝑋 , which is the root of a subtree encoding 

an uncountable subtree,  to the child nodes of the nearest descendent of the node, with both left and right arcs 

labeled uncountable in  𝑇𝑋. If the node in 𝑇𝑋 itself has two children, the arcs to both child nodes bearing 

cardinality label uncountable, then 𝑝𝑎𝑡ℎ component coincides with the binary digit label of the corresponding 

arc in 𝑇𝑋. It is easy to show that if  𝑇𝑋 is uncountable, then the binary tree  𝑊𝑋 is the complete binary tree, 

encoding 2ℕ exactly. The proof depends on the inductive construction of  𝑊𝑋, and must be more carefully 

described. 

1. The root of  𝑊𝑋 corresponds to the least descendent (𝑙. 𝑑. ) of the root 𝑟𝑇 of 𝑇𝑋, such that the least 

descendent (which may also be the root of 𝑇𝑋) has both left and right child nodes in 𝑇𝑋, with both arcs to the 

child nodes bearing the cardinality label uncountable. The path label of the root of 𝑊𝑋 corresponds to that 

of the least descendent of the root of 𝑇𝑋, that has both arcs to the child nodes bearing cardinality label 

uncountable. 

2. For a node 𝑛𝑊 of the binary tree 𝑊𝑋, corresponding to a node 𝑛𝑇 of the binary tree𝑇𝑋 , the left and right 

child nodes of  𝑛𝑊 are defined as follows: by the construction, in the previous step, as the induction 

hypothesis, the node 𝑛𝑇 of the binary tree  𝑇𝑋 has both child nodes, and the arcs pointing to the child nodes 

are both labeled cardinality uncountable. The left child of  𝑛𝑊 in 𝑊𝑋 corresponds to the closest descendent 

of the left child of  𝑛𝑇 in 𝑇𝑋 (also called closest left descendent of 𝑛𝑇)  that has arcs to both of its child 

nodes labeled with cardinality uncountable. The right child of  𝑛𝑊 in 𝑊𝑋 corresponds to the closest 

descendent of the right child of  𝑛𝑇 in 𝑇𝑋 (also called closest right descendent of 𝑛𝑇)  that has arcs to both of 

its child nodes labeled with cardinality uncountable.  

3. (continued from the previous step) Now, the node  𝑛𝑊 in 𝑊𝑋 has two child nodes in 𝑊𝑋, as found in the 

previous step. The binary subsequence labels on the arcs to the child nodes of 𝑛𝑊 are the paths from 𝑛𝑇 to 

the corresponding descendent nodes of 𝑛𝑇 in 𝑊𝑋.  The path labels on the child nodes of 𝑛𝑊 are the path 

labels of the descendants of 𝑛𝑇 in 𝑇𝑋 corresponding to the child nodes of 𝑛𝑊 in 𝑊𝑋. 

Let 𝑇𝑋,𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒   be the binary tree obtained by collecting the arcs in 𝑇𝑋 with cardinality label 

uncountable. Then the paths obtained by descending the arcs in 𝑇𝑋,𝑢𝑛𝑐𝑜𝑢𝑛𝑡𝑎𝑏𝑙𝑒   , traversing the nodes that have 

only one child node each, are compressed into single arcs to get 𝑊𝑋, to make  𝑊𝑋 a complete binary tree. In 

summary, if a subset 𝑋 ⊆ 2ℕ is uncountable, then there is a one-to-one correspondence between 𝑋 and 2ℕ. For 

an infinite set, the full set can be in one-to-one a subset of itself. 
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IV. Discussion 

  Well-foundedness of recursion is an indispensable prerequisite for constructability. Well-founded 

recursion can be shown to be some form of induction.  For inductive constructability, the number of basic 

operations starting from basic sets is required to be finite. a given set 𝑋 ⊆ 2ℕ =  {0, 1}ℕ consists of binary 

sequences, with indexes in ℕ. Any subset 𝑋 of 2ℕ can be described by means of a binary tree, 𝑇𝑋, 

 

V. Conclusion 
It is shown that if a subset 𝑋 ⊆ 2ℕ is uncountable, then there is a one-to-one correspondence between 𝑋 

and 2ℕ, establishing the continuum hypothesis.       
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