On Riemannian Banach Submanifolds

Elsaid R. Lashin
College of science, Mathematical Department, Umm Al-Qura University, P.O. Box 44444, Makkah, Saudi Arabia, Minoufia University, College of science, Department of Mathematics

Abstract

In this paper for a Banach space F and $\forall x \in F$, we prove that all orthogonal topological complement F_{x}^{\perp} to F are isomorphic to a unique Banach space G. Also, the derivative equations of a Riemannian Banach submanifold N of a Riemannian Banach manifold M are established.

I. Introduction

Let M be a Banach manifold of class $C^{r}(r \geq 2, \infty)$ modeled on a Banach space E and $N \subset M$ is a submanifold of M of the same class C^{r} modeled on a Banach space $F \subset E$ [1]. Also, let $\bar{i}: \bar{x} \in N \rightarrow$ $\bar{i}(\bar{x})=\bar{x} \in M$ be the inclusion map. If $c=(U, \phi, E)$ is a chart on M at a point $\bar{x} \in M$ and $d=(V, \psi, F)$ is a chart on N at $\bar{x} \in N \subset M$. Furthermore, if $\psi(\bar{x})=x$ and $Z=\phi(\bar{x})$ are the models of \bar{x} with respect to the charts d and c respectively. Also, if i is the local representation of the mapping \bar{i} with respect to the charts c and d, then we have :
$i: x \in \psi(V) \subset F \rightarrow i(x)=Z \in \phi(U) \subset E$.
Equation (1.1) is called the local equation of the submanifold N with respect to the charts c and d.
Let $\left(M, \bar{g}^{1}\right)$ be a Riemannian manifold and $N \subset M$ be its Riemannian submanifold with a metric \bar{g}^{2}. This means that \bar{g}^{2} is induced on N by \bar{g}^{1} according to the rule:

$$
\begin{equation*}
\forall \bar{x} \in N, \forall \bar{X}_{1}, \bar{X}_{2} \in T_{\bar{x}} N \tag{1.2}
\end{equation*}
$$

$\bar{g}_{\bar{x}}^{2}\left(\bar{X}_{1}, \bar{X}_{2}\right)=\bar{g}_{\bar{i}(\bar{x})=\bar{x}}^{1}\left(T_{\bar{x}} \bar{i}\left(\bar{X}_{1}\right), T_{\bar{x}} \bar{i}\left(\bar{X}_{2}\right)\right)$,
where $T_{\bar{x}} \bar{i}: T_{\bar{x}} N \rightarrow T_{\bar{x}} M$ is the tangent mapping to the mapping \bar{i} at the point \bar{x}. Furthermore $T_{\bar{x}} N$ and $T_{\bar{x}} M$ are the spaces of all tangent vectors of N and M respectively. We assume that \bar{g}^{1} and \bar{g}^{2} are strong non-singular [3]. Now, if $X_{1}, X_{2} \in F$ are the models of the vectors $\bar{X}_{1}, \bar{X}_{2} \in T_{\bar{x}} N$ with respect to the chart d, then the models of these vectors in the chart c take the form:

$$
Y_{1}=D i_{x}\left(X_{1}\right) \quad, \quad Y_{2}=D i_{x}\left(X_{2}\right),
$$

where $D i_{x}$ is the Frechet derivative of the mapping i [1]. In this case the local representation of (1.2) has the form:

$$
\begin{equation*}
g_{x}^{2}\left(X_{1}, X_{2}\right)=g_{z}^{1}\left(D i_{x}\left(X_{1}\right), D i_{x}\left(X_{2}\right)\right) \tag{1.3}
\end{equation*}
$$

where g^{1} and g^{2} are the models of \bar{g}^{1} and \bar{g}^{2} with respect to the charts c and d respectively.
Since M and N are Riemannian manifolds, then there exists unique torsion-free connections $\bar{\Gamma}^{1}$ and $\bar{\Gamma}^{2}$ [3], such that $\bar{\nabla}^{1} \bar{g}^{1} \equiv 0$ and $\bar{\nabla}^{2} \bar{g}^{2} \equiv 0$, on M and N respectively, where $\bar{\nabla}^{1}$ and $\bar{\nabla}^{2}$ are the operators of the covariant differentiation on M and N respectively [3]. Also, we assume Γ^{1} and Γ^{2} are the models of the connections $\bar{\Gamma}^{1}$ and $\bar{\Gamma}^{2}$ with respect to the charts c and d respectively.

Assuming that at every point $\bar{x} \in N$, the tangent space $T_{\bar{x}} N$ to the submanifold $N \subset M$ has a topological orthogonal complement $\left(T_{\bar{x}} N\right)^{\perp}$ where,

$$
\left(T_{\bar{x}} N\right)^{\perp}=\left\{\bar{Y} \in T_{\bar{x}} M: \bar{g}_{\bar{x}}^{1}(\bar{Y}, \bar{X})=0 \forall \bar{X} \in T_{\bar{x}} N\right\}
$$

such that $T_{\bar{x}} N \oplus\left(T_{\bar{x}} N\right)^{\perp}=T_{\bar{x}} M$, also the Banach spaces $T_{\bar{x}} N \times\left(T_{\bar{x}} N\right)^{\perp}$ and $T_{\bar{x}} M$ are isomorphic (Here \oplus is the operation of the direct sum of mutually orthogonal subspaces $T_{\bar{x}} N$ and $\left.\left(T_{x} N\right)^{\perp}\right)$ [3].

From the definition of the submanifold [1], there exist charts $c=(U, \phi, E)$ on M at the point $\bar{x} \in M$ and $d=\left(V=U \cap N, \psi=\left.\phi\right|_{N}, F \subset E\right)$ on N at the point $\bar{x} \in N$ such that $\phi(V) \subset F$.

Now, assume that the chart c is fixed at $\bar{x} \in M$ and define a mapping $w_{c, \bar{x}}: T_{\bar{x}} M \rightarrow E$ as follows:
Let $\bar{h} \in T_{\bar{x}} M$. From all equivalence pairs which define the vector \bar{h}, we take the pair (c, h) whose first component is our fixed chart c, then the second component h can be taken as the image of $w_{c, x}$ at \bar{h}.

Then, we define:

$$
w_{c, \bar{x}}\left(T_{\bar{x}} N\right)^{\perp}=F_{x}^{\perp} \subset E,
$$

to be the orthogonal topological complement of $F \subset E$ with respect to $g_{i(x)}^{1}$. This means that $\forall \bar{x} \in$ $N, \forall \bar{X} \in T_{\bar{x}} N, X=w_{d, \bar{x}}(\bar{X}) \in F$ and for all $S \in F_{x=\psi(\bar{x})}^{\perp}$, we have
$g_{i(x)}^{1}\left(S, D i_{x}(X)\right)=0$,
where $w_{c, \bar{x}}: T_{\bar{x}} M \rightarrow E$ is an isomorphism between the normed spaces with respect to the chart c [7]. Similarly $w_{d, \bar{x}}: T_{\bar{x}} N \rightarrow F$ is an isomorphism with respect to the chart d.

Now, we shall prove that all these orthogonal topological complements F_{x}^{\perp} to the Banach space F are isomorphic to a unique Banach space G.

Proof: We assume that the Banach subspaces $G_{1}, G_{2} \subset E$ are orthogonal complement to F, This means that $F \oplus G_{1}=E=F \oplus G_{2}$ and we will prove that G_{1} and G_{2} are isomorphic.

Denoting $f_{i}: F \times G_{i} \rightarrow F \oplus G_{i}=E, i=\overline{1,2}$ are isomorphisms between the Banach spaces. We define the mappings:

$$
h=\operatorname{proj}_{2} \circ f_{2}^{-1}: G_{1} \rightarrow G_{2}
$$

by the rule: $h: X_{1}=Y+X_{2} \in G_{1} \subset E=F \oplus G_{2} \xrightarrow{f_{2}^{-1}}\left(Y, X_{2}\right) \xrightarrow{\text { pro }_{2}} X_{2} \in G_{2}, \quad$ and $\quad h^{-1}=\operatorname{proj}_{2} 。$ $f_{1}^{-1}: G_{2} \rightarrow G_{1}$ by the rule $h^{-1}: X_{2}=-Y+X_{1} \in G_{2} \subset E=F+G_{1} \xrightarrow{f_{1}^{-1}}(-Y, X) \in F \times G_{1} \xrightarrow{\text { proj}} X_{1} \in G_{1}$.

It is clear that h is an isomorphism of the Banach spaces G_{1} and G_{2}. Hence all the topological orthogonal complements of F are isomorphic. Thus, they are isomorphic to a unique Banach space G.
Now, we shall prove the following theorem:
Theorem (1.1): For all $\bar{x} \in N \subset M$, there exists an isomorphism of the Banach spaces $\bar{n}_{\bar{x}_{0}}: G \rightarrow\left(T_{x} N\right)^{\perp} \subset$ $T_{\bar{x}} N$ satisfies the following property:
$\forall \bar{x}_{0} \in N$, there exists a chart $d=(V, \psi, F)$ at the point \bar{x}_{0} on and $c=(U, \phi, E)$ at the point $\bar{i}\left(\bar{x}_{0}\right)=\bar{x}_{0}$ on M such that the mapping:
$n: x=\psi(\bar{x}) \in \psi(V) \subset F \rightarrow n_{x}=w_{c, \bar{x}} \circ \bar{n}_{\bar{x}} \in L(G ; E)$ is differentiable of class c^{r-1}.
Proof: Let $\bar{x}_{0} \in N$ be a fixed point and $c=(U, \phi, E), d=\left(V=U \cap N, \psi=\left.\phi\right|_{V}, F \subset E\right)$ are charts at \bar{x}_{0} on M and N respectively.
Now, for all $\bar{x} \in V \subset N$, we have $G_{x}=w_{c, \bar{x}}\left(\left(T_{\bar{x}} N\right)^{\perp}\right)$ orthogonal complement to F with respect to $g_{i(x)}^{1}$. We take $G=G_{x_{0}}=w_{c, \bar{x}_{0}}\left(\left(T_{\bar{x}_{0}} N\right)^{\perp}\right)$.
Now, for all $\bar{x} \in V \subset N$, we define a linear continuous operator $n_{x} \in L(E ; E)$ and its inverse $\tilde{n}_{x}=n^{-1}{ }_{x} \in$ $L(E ; E)$ as a solution of the equations:
$g_{x}^{1}\left(n_{x}\left(Y_{1}\right), Y_{2}\right)=g_{x_{0}}^{1}\left(Y_{1}, Y_{2}\right)$,
$g_{x_{0}}^{1}\left(\tilde{n}_{x}\left(Y_{1}\right), Y_{2}\right)=g_{x}^{1}\left(Y_{1}, Y_{2}\right)$.
In this case, it is clear that
$n_{x}(G)=G_{x}$,
$\tilde{n}_{x}\left(G_{x}\right)=G$.
Furthermore, if we denote:

$$
\begin{equation*}
g_{x}^{1 *}: L_{2}(E ; R) \longrightarrow L(E ; E) \tag{1.8}
\end{equation*}
$$

as an isomorphism of Banach spaces, and taking into account that $g^{1}{ }_{x}$ is strong non-singular [3], then from (1.5), (1.6) we have that:
$n_{x}=g_{x}^{1 *}\left(g_{x_{0}}^{1}\right)$,
$\tilde{n}_{x}=g_{x_{0}}^{1 *}\left(g_{x}^{1}\right)$.
Therefore taking into account that g^{1} is differentiable, we deduce that:

$$
\tilde{n}: x \rightarrow \tilde{n}_{x} \in \operatorname{Lis}(E ; E) \subset L(E ; E)
$$

is differentiable of class C^{r-1} (Here, $\operatorname{Lis}(E ; E)$ is open subset of $L(E ; E)$ and it is the set of all automorphisms on the Banach space E).
Now, from the fact that

$$
f \in \operatorname{Lis}(E ; E) \subset L(E ; E) \rightarrow f^{-1} \in \operatorname{Lis}(E ; E)
$$

is differentiable [4], we deduce that $n: x \rightarrow n_{x}=\left(\tilde{n}_{x}\right)^{-1} \in \operatorname{Lis}(E ; E) \subset L(E ; E)$ is also differentiable of class C^{r-1}.
Now, for all $\bar{x} \in V \subset N$, we define:
$\bar{n}_{\bar{x}}=\left.w_{c, \bar{x}}^{-1} \circ n_{x}\right|_{G}: G \rightarrow\left(T_{\bar{x}} N\right)^{\perp} \subset T_{\bar{x}} M$,
where $x=\psi(\bar{x})$.
Therefore, differentiability of the mapping $\bar{n}: \bar{x} \longrightarrow \operatorname{Lis}\left(G ;\left(T_{\bar{x}} N\right)^{\perp}\right)$ of class C^{r-1} exists at least locally.
Remark 1.1: Let $c^{\prime}=\left(U^{\prime}, \phi^{\prime}, E\right)$ and $d^{\prime}=\left(V^{\prime}=U^{\prime} \cap N, \psi^{\prime}=\left.\phi^{\prime}\right|_{V^{\prime},}, F_{1} \subset E\right)$ are charts on M and N at the point $\bar{x} \in V^{\prime} \subset N$ respectively.

Hence, if $\bar{A}: \bar{x} \in V^{\prime} \rightarrow \bar{A}_{\bar{x}} \in\left(T_{\bar{x}} N\right)^{\perp}$ is a differentiable vector field of class C^{r-1} on $V^{\prime} \subset N$, then we define the mapping:

$$
\tilde{A}: \bar{x} \in V^{\prime} \rightarrow \tilde{A}_{\bar{x}}=\bar{n}_{\bar{x}}^{-1}\left(\bar{A}_{\bar{x}}\right) \in G
$$

which is also differentiable of class C^{r-1}.
Proof: Using (1.11) with respect to the chart d^{\prime} on $V^{\prime} \subset N$, we get:
$\widetilde{\mathrm{A}}_{\overline{\mathrm{x}}}:\left(\left(n_{\left.x\right|_{G_{x}}}\right)^{-1} \circ w_{c^{\prime}, \bar{x}}\right)\left(\bar{A}_{\bar{x}}\right)=\left(\left(n_{x}^{-1}\right)_{\mid G_{x}} \circ w_{c^{\prime}, \bar{x}}\right)\left(\bar{A}_{\bar{x}}\right)=\left(n_{x}^{-1} \circ w_{c^{\prime}, \bar{x}}\right)\left(\bar{A}_{\bar{x}}\right)$, this means that the mapping:
$\widetilde{A}: \bar{x} \rightarrow \tilde{A}_{\bar{x}}$ can be represented as composition of the mappings:
$\bar{x} \xrightarrow{\bar{A} \times i d_{V^{\prime}}}\left(\bar{A}_{\bar{x}}, \bar{x}\right) \xrightarrow{\psi \times i d_{V^{\prime}}}\left(w_{c^{\prime}, \bar{x}}\left(\bar{A}_{\bar{x}}, \bar{x}\right)\right) \xrightarrow{\alpha_{1}=i d_{E} \times \tilde{n}}\left(w_{c^{\prime}, \bar{x}}\left(\bar{A}_{\bar{x}}\right), \tilde{n}_{x} \xrightarrow{\text { def }} n_{x}^{-1}\right) \xrightarrow{\alpha_{2}} \tilde{A}_{\bar{x}}$, where $x=\phi^{\prime}(\bar{x})$ such that:
(1) $\bar{A}: \bar{x} \longrightarrow \bar{A}_{\bar{x}}$ is differentiable of class C^{r-1} by condition,
(2) $\quad \psi: y \in\left(T V^{\prime}\right)^{\perp} \subset(T N)^{\perp} \subset T E \rightarrow w_{c^{\prime}, \pi(y)=z \in V^{\prime}}(y) \in E$, is of class C^{r-1}, since the mapping ψ; locally, can be written as:

$$
\hat{\psi}:\left(\phi^{\prime}(Z), w_{c^{\prime}, Z}(y)\right)=\xrightarrow{\operatorname{proj}_{2}} w_{c^{\prime}, Z}(y),
$$

this means:
$\hat{\psi}=\operatorname{proj}_{2}: \phi^{\prime}\left(V^{\prime}\right) \times E \rightarrow E$ is of class C^{∞},
(3) The mapping $\alpha_{1}:(X, \bar{x}) \in E \times V^{\prime} \rightarrow\left(X, \tilde{n}_{\bar{x}}\right) \in E \times L(E ; E)$ is of class C^{r-1},
(4) The mapping $\alpha_{2}:(X, B) \in E \times L(E ; E) \rightarrow B(X) \in E$ is of class C^{∞}.

Therefore, we have that the mapping $\alpha_{2} \circ \alpha_{2} \circ\left(\psi \times i d_{V^{\prime}}\right) \circ\left(\bar{A} \times i d_{V^{\prime}}\right): \bar{x} \rightarrow\left(\bar{A}_{\bar{x}}, \bar{X}\right) \rightarrow\left(\psi\left(\bar{A}_{\bar{x}}\right), \bar{X}\right)=$ $\left(w_{c^{\prime}, \bar{x}}\left(\bar{A}_{\bar{x}}\right), \bar{X}\right) \rightarrow\left(w_{c^{\prime}, \bar{x}}\left(\bar{A}_{\bar{x}}\right), \tilde{n}_{x}\right) \rightarrow \tilde{n}_{x}\left(w_{c^{\prime}, \bar{x}}\left(\bar{A}_{\bar{x}}\right)\right)=\tilde{A}_{\bar{x}} \quad$ is \quad differentiable of class $\quad C^{r-1} \quad$ (Here $T V^{\prime}, T N, T E$ are tangent spaces of the manifolds V^{\prime}, N and E respectively [5], furthermore the mapping $\bar{x} \rightarrow x=\phi^{\prime}(\bar{x}) \xrightarrow{\tilde{n}} \tilde{n}_{x}$ is differentiable of class C^{r-1} by condition).
Also, since $\forall Z \in G, n_{x}(Z) \in F_{x}^{\perp}$, then similarly (1.4) we get
$g_{i(x)}^{1}\left(n_{x}(Z), D i_{x}(X)\right)=0, \forall \bar{X} \in T_{\bar{x}} N$. (1.12)
Now, mixed covariant differentiation of equality (1.3) with respect to the mixed covariant differentiation $\nabla^{1,2}$ taking into account that $\bar{g}^{1} \in T_{0+2}^{0+0}(N), \bar{g}_{{ }^{2}} \in T_{2+0}^{0+0}(N)$ and $T \bar{i} \in T_{0+1}^{1+0}(N)$ [6], we get:
$g_{i(x)}^{1}\left(\nabla^{1,2} D i_{x}\left(X_{1} ; X_{3}\right), D i_{x}\left(X_{2}\right)\right)+g_{i(x)}^{1}\left(D i_{x}\left(X_{3}\right), \nabla^{1,2} D i_{x}\left(X_{1} ; X_{2}\right)\right)+g_{i(x)}^{1}\left(\nabla^{1,2} D i_{x}\left(X_{2} ; X_{1}\right), D i_{x}\left(X_{3}\right)\right)+$ $g_{i(x)}^{1}\left(D i_{x}\left(X_{1}\right), \nabla^{1,2} D i_{x}\left(X_{2} ; X_{3}\right)\right)-g_{i(x)}^{1}\left(\nabla^{1,2} D i_{x}\left(X_{3} ; X_{1}\right), D i_{x}\left(X_{2}\right)\right)-g_{i(x)}^{1}\left(D i_{x}\left(X_{1}\right), \nabla^{1,2} D i_{x}\left(X_{3} ; X_{2}\right)\right)=$ 0 . (1.13)
But, for a mixed tensor $S \in T_{0+1}^{1+0}(N)$, we have [6].

$$
\nabla^{1,2} S(\underline{X}, \underline{Y})=\nabla^{1,2} S(X ; Y)-\nabla^{1,2} S(Y ; X)=\Gamma^{1}\left(S(\underline{Y}), D i_{x}(\underline{X})\right)-S\left(\Gamma^{2}(\underline{Y}, \underline{X})\right)+\Gamma^{2}\left(S(\underline{Y}), D i_{x}(\underline{X})\right) .
$$

Also, we take $S(Y)=D i_{x}(Y)$, therefore $\nabla^{1,2} D i_{x}(\underline{X}, \underline{Y})=0$ and from (1.13) we get:
$2 g_{i(x)}^{1}\left(D i_{x}\left(X_{3}\right), \nabla^{1,2} D i_{x}\left(X_{1} ; X_{2}\right)\right)=0$.
Now, from (1.14) we obtain:

$$
\nabla^{1,2} D i_{x}\left(X_{1} ; X_{2}\right) \in F_{x}^{\perp}
$$

But, since $n_{x}: G \rightarrow F_{x}^{\perp}$ is an isomorphism, then there exists α vector $A_{x}\left(X_{1}, X_{2}\right) \in G$ such that:
$\nabla^{1,2} D i_{x}\left(X_{1} ; X_{2}\right)=n_{x}\left(A_{x}\left(X_{1}, X_{2}\right)\right)$.
Lemma 1.1: $\forall x=\psi(\bar{x}) \in \psi(V) \subset F, A_{x} \in L_{2}(F ; G)$, this means: $\quad A_{x}$ is bilinear continuous mapping.
Proof: From theorem (1.1), we have $n_{x} \in L(G ; E)$, furthermore $\forall x=\psi(\bar{x}) \in \psi(V) \subset F, n_{x}(G)$ is a closed vector subspace of E.
Then $n_{x}: G \rightarrow n_{x}(G)$ is a linear isomorphism of the two Banach spaces. Therefore by Banach theorem of inverse mapping [7], we have that the mapping $n_{x}^{-1}: n_{x}(G) \longrightarrow G$ is, also linear and continuous.
This means $n_{x}^{-1} \in \operatorname{Lis}\left(n_{x}(G) ; G\right)$.
Now, from (1.13) we get:
$A_{x}\left(X_{1}, X_{2}\right)=n_{x}^{-1}\left(\nabla^{1,2} D i_{x}\left(X_{1} ; X_{2}\right)\right)$, where $\nabla^{1,2} D i_{x} \in L_{2}(F ; E)$ [2].
Thus, we obtain:

$$
A_{x} \in L_{2}(F ; G) .
$$

Also, we consider the first derivative $D n_{x}(X ; Z)$ at the point $x \in \psi(V) \subset F$, where $x \in F$ and $Z \in G$. Then we can get:
$D n_{x}(X ; Z)=D i_{x}\left(H_{x}(X, Z)\right)+n_{x}\left(S_{x}(X, Z)\right)$.
Now, we give the following Lemma:

Lemma 1.2:

1- $H_{x}(X, Z) \in L(F, G ; F)$, this means H_{x} is bilinear and continuous;

2- $S_{x} \in L(F, G ; G)$ and this, also means that S_{x} is bilinear and continuous

Proof:

1- Scalar multiplication (1.16) by $D i_{x}(Y)$ with respect to $g_{i(x)}^{1}$ where $Y \in F$, taking into account (1.3) and (1.12) we get:

$$
g_{i(x)}^{1}\left(D i_{x}(Y), D n_{x}(X, Z)\right)=g_{x}^{2}\left(Y, H_{x}(X, Z)\right),
$$

or denoting the left hand side of the last equality as following:
$\beta_{x}(Y, X, Z)=g_{x}^{2}\left(Y, H_{x}(X, Z)\right)$,
where $\beta: x \in \psi(V) \subset F \longrightarrow \beta_{x} \in L(F, F, G ; R)$.
Thus equality (1.17), can rewrites in the from:
$H_{x}(X, Z)=\left(g_{x}^{2 *}\right)^{-1}\left(\beta_{x}(., X, Z)\right)=\left(g_{x}^{2 *}\right)^{-1}\left(\tilde{\beta}_{x}(X, Z)\right)$,
where $\tilde{\beta}_{x}:(X, Z) \in F \times G \rightarrow \tilde{\beta}_{x}(X, Z)=\beta_{x}(., X, Z) \in L(F ; R)=F^{*}$ and $g_{x}^{2 *}: F \rightarrow F^{*}$ is an isomorphism between the Banach spaces F and its dual F^{*}, taking into account that $g_{x}^{2} \in L_{2}(F ; R)$ is strong non-singular [3]. Hence, from (1.18) we get:
$H_{x}=\left(g_{x}^{2 *}\right)^{-1} \circ \tilde{\beta}_{x}$,
where $\widetilde{\beta}_{x} \in L\left(F, G ; F^{*}\right)$ and we deduce that: $H_{x} \in L(F, G ; F)$;
2- From (1.14) we have:
$\gamma_{x}=n_{x} \circ S_{x}$,
where $\gamma_{x} \xlongequal{\text { def }} D n_{x}-D i_{x} \circ H_{x}$. Hence we obtain: $\gamma_{x} \in L(F, G ; E)$, furthermore from theorem (1.1) we get: $n_{x}^{-1} \in L\left(n_{x}(G) ; G\right)$. Finally, it is clear that: $S_{x}=n_{x}^{-1} \circ \gamma_{x} \in L(F, G ; G)$.

Lemma 1.3:

1- The mapping:
$H: x \in F \longrightarrow H_{x} \in L(F, G ; F)$, is differentiable of class C^{r-1}.
2- The mapping:
$S: x \in F \rightarrow S_{x} \in L(F, G ; G)$, is differentiable of class C^{r-2}.

Proof:

1- At first we prove that the mapping $g^{2 *}: x \in F \rightarrow g_{x}^{2 *} \in L\left(F ; F^{*}\right)$ is differentiable and its inverse $\left(g^{2 *}\right)^{-1}$: $x \in F \rightarrow\left(g_{x}^{2 *}\right)^{-1} \in L\left(F^{*} ; F\right)$ is also differentiable of class C^{r-1}. For this aim, we have that the Banach spaces $L\left(F ; F^{*}\right)$ and $L_{2}(F ; R)$ are isomorphic [2]. Then, $g_{x}^{2 *}=K\left(g_{x}^{2}\right)$, where $K: L_{2}(F ; R) \longrightarrow L\left(F ; F^{*}\right)$ is an isomorphism of the Banach spaces. But the mapping $g^{1}: x \rightarrow g_{x}^{1} \in L_{2}(F ; R)$ is differentiable of class C^{r-1} by condition, and hence the mapping: $g^{2 *}: x \in F \rightarrow g_{x}^{2 *} \in L\left(F ; F^{*}\right)$ is differentiable of class C^{r-1}.
Now, $\left(g^{2 *}\right)^{-1}: x \in F \rightarrow g_{x}^{2 *} \rightarrow\left(g_{x}^{2 *}\right)^{-1} \quad$ is differentiable, since the mapping $u \in L\left(F ; F^{*}\right) \rightarrow u^{-1} \in$ $L\left(F^{*} ; F\right)$ is differentiable [4].
Furthermore, from (1.19) we get $H_{x}=\left(g_{x}^{2 *}\right)^{-1} \circ \tilde{\gamma}_{x}$, such that $\tilde{\gamma}_{x}$ is differentiable of class C^{r-2} (see Lemma (1.1)). Therefore, it is clear that the mapping $x \rightarrow H_{x}$ is differentiable of class C^{r-2};

2- From (1.19) we have:
$S_{x}=n_{x}^{-1} \circ \beta_{x}$, furthermore the mapping β_{x} is differentiable of class C^{r-2}. Also, from remark (1.1) it follows that the mapping n_{x}^{-1} is differentiable of class $C^{r-1}, \forall x^{\prime} \in \psi^{\prime}(\bar{x}) \in \psi^{\prime}\left(V^{\prime}\right) \subset F_{1} \subset E$.
Hence, we deduce that the mapping S_{x} is differentiable of class C^{r-2}.
Equations (1.15) and (1.16) are called the first and the second derivative equations of the Riemannian submanifold N of the Banach Riemannian manifold M.

References

[1]. S. Lang, Introduction To Differentiable Manifolds, Wiley, New York, (1962).
[2]. V. E., Fomin, Differential Geometry Of Banach Manifolds, Kazan Univ., Kazan, U. S. S. R., 1983.
[3]. V. E., Fomin, Methods And Indications To Special Course In Differential Geometry Of Banach Manifolds, Kazan Univ., Kazan, U. S. S. R., 1986.
[4]. J. Diodone, Essentials Of Modern Analysis, M. Mir, 1964.
[5]. H. Borbaki, Differentiable And Analytic Manifolds, M.Mir, 1964.
[6]. E. R. Lashin, Mixed Covariant Differentiation On Banach Manifolds, Kazan Univ., Kazan, 120., No 2796 V. 90,1990
[7]. A. H. Kolmogorof, S. V. Fomin, Element Of Theory Of Functions And Functional Analysis, M. Science, 1972.

