Generalized $\boldsymbol{\beta}$-Conformal Change Of Finsler Metric By An \boldsymbol{h}-Vector

Raj Kumar Srivastava
Department Of Mathematics
Sri Jai Narain P.G. College, Lucknow

Abstract

Let M^{n} be an n-dimensional differentiable manifold and $F^{n}=\left(M^{n}, L\right)$ be a Finsler space with a fundamental function $L(x, y)$. We consider a change of this metric by $L \rightarrow \bar{L}=f\left\{e^{\phi} L(x, y), \beta(x, y)\right\}$, where $\beta(x, y)=$ $v_{i}(x, y) y^{i}, v_{i}$ is an h-vector in $F^{n}=\left(M^{n}, L\right)$. We call this change a generalized β-conformal change by an h vector. In this paper, we have determined the relations between the v-curvature tensor, v-Ricci tensor and v scalar curvature with respect to the Cartan connection of Finsler spaces $F^{n}=\left(M^{n}, L\right)$ and $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$. We have also determined the conditions under which C-reducible, quasi C-reducible, semi C-reducible and S3-like Finsler spaces remains a Finsler space of the same kind under a transformed Finsler metric.

Keywords:-Finsler space, (α, β) metric, Cartan connection, β-change , conformal change,,h-vector, generalized β-conformal change

Date of Submission: 25-12-2023
Date of Acceptance: 05-01-2024

I. INTRODUCTION

Let M^{n} be an n-dimensional C^{∞}-differentiable manifold and $F^{n}=\left(M^{n}, L\right)$ be a Finsler space equipped with a fundamental function $\mathrm{L}(x, y)\left(y^{i}=\dot{x}^{i}\right)$ on M^{n}.Matsumoto [10] determined the properties of the Finsler space equipped with the metric.
$' L(x, y)=L(x, y)+\beta(x, y)$
Where $\beta(x, y)=v_{i}(x) y^{i}$ is a differentiable one form on M^{n}. If $L(x, y)$ is a Riemannian metric then (1.1) is called a Rander's metric.Rander'smetric was introduced by G. Rander's ([16]) during the study of General Theory of Relativity and applied to the theory of Election microscope by R.S. Ingarden ([5]). The properties of Finsler spaces with Rander's metric have been studied by C. Shibata, H-Shimada, M.Azuma and H Yasuda ([17]) in detail. The geometrical properties of Finsler space with Rander's metric have also been studied by various authors ([10], [19]). If $L(x, y)$ is a Finsler metric, then ${ }^{* *} \mathrm{~L}(x, y)=f(L, \beta)$ will be called a β-change and the properties of Finsler space with a β-change has been studied by C. Shibata ([20]) in detail. S.H. Abed ([1]) has introduced the Finsler space with the metric $L(x, y)=e^{\phi(x)} L(x, y)+v_{j}(x) y^{j}$ and named it a β conformal change. Nabil L. Youseff, S.H. Abed \& S.G. Elgend([26]) have introduced a change of Finsler metric called a generalized β-conformal change given by
$L(x, y) \rightarrow \overline{\bar{L}}(x, y)=f\left[e^{\phi(x)} L(x, y), \beta(x, y)\right]$ andstudied the properties of Finsler spaces equipped with this metric. In all the above mentioned words, the function $v_{i}(x)$ are assumed to be a function of coordinates only. Izumi ([6]) introduced the concept of an h-vector defined by $v_{i} \mid j=0$ and satisfies $L C_{i j}^{h} v_{h}=K h_{i j}$, where $\mid j$ denotes the v-covariant derivative with respect to Cartan connection in $F^{n}=\left(M^{n}, L\right), C_{i j}^{h}$ is Cartan' C-tensor, $h_{i j}$ is the angular metric tensor, $\mathrm{K}=\frac{L C^{i} v_{i}}{n-1}, C^{i}=g^{j h} C_{j h}^{i}$. Prasad ([15]) has obtained the relation between the Cartan's connection of Finsler spaces $F^{n}=\left(M^{n}, L\right)$ and $" F^{n}=\left(M^{n}, " L\right)$ where " $L(x, y)=L(x, y)+$ $v_{i}(x, y) y^{i}$ and $v_{i}(x, y)$ is an h-vector in $F^{n}=\left(M^{n}, L\right)$. Here $v_{i}(x, y)$ is a function of coordinates and directional arguments both satisfying. $L \dot{\partial}_{j} v_{i}=K h_{i j}, \dot{\partial}_{j}=\partial / \partial y^{j}, \mathrm{~K}=\frac{L c^{i} v_{i}}{n-1}$ is a scalar function. Singh and Srivastava [21] has also studied the properties of Finsler space with this metric. Singh and Srivastava ([22]) and the present author ([25]) has studied the properties of Finsler space with the metric ${ }^{\prime} L=f(L, \beta)$, where $\beta(x, y)=$ $v_{i}(x, y) y^{i}$ is a differentiable one form and $v_{i}(x, y)$ is anh-vector in $F^{n}=\left(M^{n}, L\right)$. Recently the present author ([23][24]) has introduced the change ${ }^{\prime \prime \prime} L(x, y)=e^{\phi(x)} L(x, y)+v_{i}(x, y) y^{i}$ where $v_{i}(x, y)$ is an h-vector in $F^{n}=\left(M^{n}, L\right)$ and studied properties of some special Finsler spaces equipped with this metric

In this paper we shall introduced a change $\bar{L}=f\left[{ }^{*} L(x, y), \beta(x, y)\right]$ where ${ }^{*} L=e^{\phi} L$ which we call a generalized β-conformal change by an h-vector. Here $\beta(x, y)=v_{i}(x, y) y^{i}, \quad v_{i}(x, y)$ is an h-vector in $F^{n}=$
$\left(M^{n}, L\right)$ and $f(* \mathrm{~L}, \beta)$ is a positively homogenous function of degree $1 \mathrm{in} * \mathrm{~L}$ and β. This change is a generalization of all the changes which were introduced earlier.

The purpose of the present paper is to determine the conditions under which C-reducible, quasiCreducible, semi C-reducible and S3-like Finsler spaces remains a Finsler space of the same kind under a transformed Finsler metric. We have also determined the relations between the v-curvature tensor,w.r.tCartan connection of Finsler spaces $F^{n}=\left(M^{n}, L\right) \operatorname{and} \bar{F}^{n}=\left(M^{n}, \bar{L}\right)$
The terminology and notations are referred to well-known Matsumoto's book ([14]) unless otherwise stated.

II. THE FINSLER SPACE $\overline{\boldsymbol{F}}^{\boldsymbol{n}}=\left(\boldsymbol{M}^{\boldsymbol{n}}, \overline{\boldsymbol{L}}\right)$

Let M^{n} be an n-dimensional differentiable manifold and $F^{n}=\left(M^{n}, L\right)$ be a Finsler space equipped with the fundamental function $L(x, y)$. We consider the change of Finsler structure defined by
$L(x, y) \rightarrow \bar{L}(x, y)=f\left\{e^{\phi(x)} L(x, y), \beta(x, y)\right\}=f(* L, \beta)$
and have another Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$, where $\bar{L}=f(* \mathrm{~L}, \beta),{ }^{*} \mathrm{~L}=e^{\phi} L, \beta=v_{i}(x, y) y^{i}, v_{i}(x, y)$ is an h-vector in $F^{n}=\left(M^{n}, L\right)$ and f is a positively homogeneous function of degree one in L and β. Throughout the paper the entities of the Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ will be denoted by putting bar (-) on the top of the corresponding entities of the Finsler space F^{n}. We define
$f_{1}=\partial f / \partial * \mathrm{~L}, f_{2}=\partial f / \partial \beta, f_{12}=\partial^{2} f / \partial * \mathrm{~L} \partial \beta$ etc.
$\partial_{i}=\partial / \partial x^{i}, \dot{\partial}_{i}=\partial / \partial y^{i}$
Since $\bar{L}=f(* \mathrm{~L}, \beta)$ is a positively homogeneous function of degree one in ${ }^{*} \mathrm{~L}$ and β, hence we have $f=e^{\phi} L f_{1}+\beta f_{2}, e^{\phi} L f_{12}+\beta f_{22}=0, e^{\phi} L f_{11}+\beta f_{12}=0$
Differentiating $\bar{L}=f(* \mathrm{~L}, \beta)$ with respect to y^{j} and using identities (2.1), we have
$\bar{l}_{j}=\frac{\partial \bar{L}}{\partial y^{j}}=e^{\phi} f_{1} l_{j}+f_{2} v_{j}$
Differentiating (2.2) with respect to y^{k} and using identities (2.1), we have the angular metric tensor
$\bar{h}_{j k}=\bar{L} \dot{\partial}_{k} \bar{l}_{j}=\bar{g}_{j k}-\bar{l}_{j} \bar{l}_{k}$ given by
$\bar{h}_{j k}=e^{\phi}\left(\frac{f f_{1}}{L}\right) h_{j k}+f f_{22}\left[v_{j} v_{k}-(\beta / L)\left(l_{j} v_{k}+l_{k} v_{j}\right)+\left(\beta^{2} / L^{2}\right) y_{j} y_{k}\right]+\frac{f f_{2}}{L} K h_{j k}$
or $\quad \bar{h}_{j k}=q^{\prime} h_{j k}+r_{0} m_{j} m_{k}$,
where $q^{\prime}=\left(e^{\phi} q+K r / L\right), q=f f_{1} / L, \quad m_{j}=v_{j}-(\beta / L) l_{j}, r_{0}=f f_{22}, r=f f_{2}$
Equation (2.3) can be written as

$$
\bar{g}_{j k}-\bar{l}_{j} \bar{l}_{k}=\left(e^{\phi} f f_{1} / L+K f f_{2} / L\right)\left(g_{j k}-l_{j} l_{k}\right)+f f_{22}\left[v_{j} v_{k}-(\beta / L)\left(l_{j} v_{k}+l_{k} v_{j}\right)+\left(\beta^{2} / L^{2}\right) y_{j} y_{k}\right]
$$

or $\bar{g}_{j k}=q^{\prime} g_{j k}+q_{0} v_{j} v_{k}+e^{\phi} q_{-1}\left(v_{j} y_{k}+v_{k} y_{j}\right)+\left(e^{\phi} q_{-2}-K r / L^{3}\right) y_{j} y_{k}$
or $\bar{g}_{j k}=q^{\prime} g_{j k}+q_{0} v_{j} v_{k}+e^{\phi} q_{-1}\left(v_{j} y_{k}+v_{k} y_{j}\right)+q_{-2}^{\prime} y_{j} y_{k}$
where $q_{0}=f_{2}^{2}+f f_{22}, q_{-1}=\frac{f_{1} f_{2}}{L}+\frac{f f_{12}}{L}=q \frac{f_{2}}{f}+r_{-1}, q_{-2}=r_{-2}+e^{\phi} q^{2} / f^{2}$,
$q_{-2}^{\prime}=e^{\phi} q_{-2}-K r / L^{3}, r_{-1}=f f_{12} / L, q_{0}=r_{0}+f_{2}^{2}, r_{-2}=f\left(e^{\phi} f_{11}-f_{1} / L\right) / L^{2}$
The reciprocal tensor $\bar{g}^{j k}$ of $\bar{g}_{j k}$ can be written as
$\bar{g}^{j k}=\left(1 / q^{\prime}\right) g^{j k}-s_{0}^{\prime} v^{k} v^{j}-s_{-1}^{\prime}\left(v^{j} y^{k}+v^{k} y^{j}\right)-s_{-2}^{\prime} y^{j} y^{k}$
Where $v^{j}=g^{j k} v_{k}, v^{2}=g^{j k} v_{j} v_{k}, v=\left\{v^{2}-\left(\beta^{2} / L^{2}\right)\right\}$
$\tau^{\prime}=f^{2} / L^{2}\left(q^{\prime}+v r_{0}\right), s_{0}^{\prime}=\left(f^{2} r_{0}\right) / q^{\prime} \tau^{\prime} L^{2}, s_{-1}^{\prime}=\left(f^{2} / q^{\prime} \tau^{\prime} L^{2}\right)\left(e^{\phi} q_{-1}+K f_{2}^{2} / L\right)$
$s_{-2}^{\prime}=q_{-2}^{\prime} / e^{\phi} q q^{\prime}-\left(s_{-1}^{\prime} / e^{\phi} q\right)\left(v e^{\phi} q_{-1}-r K \beta / L^{3}\right)$
From the homogeneity, it follows that.
$r_{0} \beta+e^{\phi} r_{-1} L^{2}=0, \quad r_{-1} \beta+r_{-2} L^{2}=-q, \quad q_{0} \beta+e^{\phi} q_{-1} L^{2}=r$,
$r \beta+e^{\phi} q L^{2}=f^{2}, \quad q_{-1} \beta+q_{-2} L^{2}=0$
From the definition of m_{i}, it is evident that
(a) $m_{i} l^{i}=0$
(b) $m_{i} v^{i}=m_{i} m^{i}=v^{2}-\beta^{2} \mid L^{2}=v$ where $m^{i}=g^{i j} m_{j}$,
(c) $h_{i j} m^{i}=h_{i j} v^{i}=m_{j}$
(d) $C_{i j}^{h} m_{h}=\frac{K}{L} h_{i j}$

We have the following identities
(a) $\dot{\partial}_{j} r=q_{0} m_{j}+(r / L) l_{j}$
(b) $\dot{\partial}_{j} q=q_{-1} m_{j}$
(c) $\dot{\partial}_{j} q^{\prime}=q_{-1}^{\prime} m_{j}$, where $q_{-1}^{\prime}=e^{\phi} q_{-1}+K / L q_{0}$
(d) $\dot{\partial}_{j} q_{0}=q_{02} m_{j}$, where $q_{02}=\partial q_{0} / \partial \beta$
(e) $\dot{\partial}_{j} q_{-1}=-e^{-\phi}\left(\beta / L^{2}\right) q_{02} m_{j}-\left(q_{-1} / L\right) l_{j}$
(f) $\dot{\partial}_{j} q_{-2}=\left[e^{-\phi}\left(\beta^{2} / L^{4}\right) q_{02}-\left(q_{-1} / L^{2}\right)\right] m_{j}+q_{-1}\left(2 \beta / L^{3}\right) l_{j}$
(g) $\dot{\partial}_{j} q_{-2}^{\prime}=\left[\left(\beta^{2} / L^{4}\right) q_{02}-q_{-1}^{\prime} / L^{2}\right] m_{j}+e^{\phi} q_{-1}\left(2 \beta / L^{3}\right) l_{j}+\left(2 K r / L^{4}\right) l_{j}$

Differentiating (2.4) with respect to y^{l} and using (2.5), (2.8), (2.9) and (2.10) the (h)hv torsion tensor of \bar{F}^{n} is given by
$\frac{\partial \bar{g}_{j k}}{\partial y^{l}}=2 \bar{C}_{j k l}=2 q^{\prime} C_{j k l}+q_{02} m_{l} v_{j} v_{k}+\left(q_{0} K\right) / L\left(h_{j l} v_{k}+h_{k l} v_{j}\right)+e^{\phi} q_{-1}\left(v_{j} g_{k l}+v_{k} g_{j l}\right)$
$+\left(K e^{\phi} q_{-1} / L\right)\left(h_{j l} y_{k}+h_{k l} y_{j}\right)$
$-e^{\phi}\left(v_{j} y_{k}+v_{k} y_{j}\right)\left[-e^{-\phi}\left(\beta / L^{2}\right) q_{02} m_{l}-\left(q_{-1} / L\right) l_{l}\right]$
$\left.+q_{-2}^{\prime}\left(g_{j l} y_{k}+g_{k l} y_{j}\right)+y_{j} y_{k}\left[\left\{\left(\beta^{2} / L^{4}\right) q_{02}-\left(q_{-1}^{\prime} / L^{2}\right)\right\} m_{l}+e^{\phi} q_{-1}\left(2 \beta / L^{3}\right) l_{l}+\left(2 K q / L^{4}\right) l_{l}\right\}\right]$
$=2 q^{\prime} C_{j k l}+q_{-1}^{\prime} h_{j k} m_{l}+e^{\phi} q_{-1}\left(h_{k l} v_{j}+h_{j l} v_{k}\right)+q_{02} m_{j} m_{k} m_{l}$
$-e^{\phi} q_{-1}(\beta / L)\left(h_{j l} l_{k}+h_{k l} l_{j}+2 l_{j} l_{k} l_{l}\right)+2 e^{\phi}(\beta / L) q_{-1} l_{j} l_{k} l_{l}$
$+\left(K q_{0} / L\right)\left(h_{j l} v_{k}+h_{k l} v_{j}\right)+\left(e^{\phi} q_{-1} K / L\right)\left(h_{j l} y_{k}+h_{k l} y_{j}\right)$
$-\left(K r / L^{3}\right)\left(h_{k l} y_{j}+h_{j l} y_{k}\right)$
$=2 q^{\prime} C_{j k l}+q_{-1}^{\prime}\left(h_{j k} m_{l}+h_{k l} m_{j}+h_{l j} m_{k}\right)+q_{02} m_{j} m_{k} m_{l}$
or $\quad \bar{C}_{j k l}=q^{\prime} C_{j k l}+q_{-1}^{\prime}\left(h_{j k} m_{l}+h_{k l} m_{j}+h_{l j} m_{k}\right) / 2+q_{02} m_{j} m_{k} m_{l} / 2$
or $\quad \bar{C}_{j k l}=q C_{j k l}+V_{j k l}$
(2.12)
where $V_{j k l}=q_{-1}^{\prime}\left(h_{j k} m_{l}+h_{k l} m_{j}+h_{l j} m_{k}\right) / 2+q_{02} m_{j} m_{k} m_{l} / 2$
$q_{-1}^{\prime}=e^{\phi} q_{-1}+(K / L) q_{0}$
Contracting (2.11) by $\bar{g}^{l p}$ and using (2.9) we have
$\bar{C}_{j k}^{p}=C_{j k}^{p}+M_{j k}^{p}$,
where
$M_{j k}^{p}=\frac{1}{2}\left[\frac{m^{p}}{q^{\prime}}-v\left(s_{0}^{\prime} v^{p}+s_{-1}^{\prime} y^{p}\right)\right]\left[q_{02} m_{j} m_{k}+q_{-1}^{\prime} h_{j k}\right]+\left(\frac{q_{-1}^{\prime}}{2 q^{\prime}}\right)\left(h_{j}^{p} m_{k}+h_{k}^{p} m_{j}\right)-\left(s_{0}^{\prime} v^{p}+s_{-1}^{\prime} y^{p}\right)$
$\left(q^{\prime} C_{j k \beta}+q_{-1}^{\prime} m_{j} m_{k}\right)$
Putting $k=p$ in $M_{j k}^{p}$ we have
$M_{j k}^{p}=\frac{1}{2} \frac{q_{02}}{q^{\prime}} m_{j} v-\frac{v^{2}}{2} s_{0}^{\prime} m_{i} q_{02}-\frac{v}{2} s_{0}^{\prime} q_{-1}^{\prime} m_{j}+\frac{q_{-1}^{\prime}}{2 q^{\prime}}\left[m_{j}+(n-1) m_{j}\right]-q^{\prime} s_{0}^{\prime} C_{j \beta \beta}-s_{0}^{\prime} q_{-1}^{\prime} v m_{j}$
$=\left[\frac{(n+1) q_{-1}^{\prime}}{2 q^{\prime}}-\frac{3}{2} s_{0}^{\prime} q_{-1}^{\prime} v+\frac{q_{02} v}{2\left(q^{\prime}+v r_{0}\right)}\right] m_{j}-q^{\prime} s_{0}^{\prime} C_{j \beta \beta}$
Where and in the following the subscript β denotes contraction with respect to the h-vector v^{k}
$\therefore \bar{C}_{j}=C_{j}-q^{\prime} s_{0}^{\prime} C_{j \beta \beta}+\mu m_{j}$,
Where $\mu=\frac{(n+1) q_{-1}^{\prime}}{2 q^{\prime}}-\frac{3}{2} s_{0}^{\prime} q_{-1}^{\prime} v+\frac{q_{02} v}{2\left(q^{\prime}+v r_{0}\right)}$
$\bar{C}^{j}=\bar{g}^{i j} \bar{C}_{i}=\left[\frac{1}{q^{\prime}} g^{i j}-s_{0}^{\prime} v^{i} v^{j}-s_{-1}^{\prime}\left(v^{i} y^{j}+v^{j} y^{i}\right)-s_{-2}^{\prime} y^{i} y^{j}\right]\left(C_{i}-q^{\prime} s_{0}^{\prime} C_{i \beta \beta}+\mu m_{i}\right)$
$=\frac{\mu}{q^{\prime}} m^{j}-s_{0}^{\prime} C_{\beta \beta}^{j}+\frac{1}{q^{\prime}} C^{j}-\left(s_{0}^{\prime} v^{j}+s_{-1}^{\prime} y^{j}\right)\left(C_{\beta}-q^{\prime} s_{0}^{\prime} C_{\beta \beta \beta}+\mu v\right)$
or $\quad \bar{C}^{j}=\frac{1}{q^{\prime}} C^{j}+N^{j}$
Where $N^{j}=\frac{\mu}{q^{\prime}} m^{j}-s_{0}^{\prime} C_{\beta \beta}^{j}-\left(C_{\beta}+\mu \nu-q^{\prime} s_{0}^{\prime} C_{\beta \beta \beta}\right)\left(s_{0}^{\prime} v^{j}+s_{-1}^{\prime} y^{j}\right)$
$\bar{C}^{2}=\bar{C}^{j} \bar{C}_{j}=\frac{1}{q^{\prime}} C^{2}+\psi$
$\psi=\mu^{2} v\left(\frac{1}{q^{\prime}}-s_{0}^{\prime} v\right)+C_{\beta}\left[\frac{2 \mu}{q^{\prime}}-s_{0}^{\prime}\left(C_{\beta}+2 \mu v\right)\right]$
$+s_{0}^{\prime} C_{\beta \beta \beta}\left(-2 \mu+2 q^{\prime} s_{0}^{\prime} C_{\beta}\right)$
$+s_{0}^{\prime} C_{\beta \beta \beta}\left(-2 C^{j}+q^{\prime} s_{0}^{\prime 2} C_{\beta \beta \beta} v^{j}-2 \mu s_{0}^{\prime} v q^{\prime} v^{j}-q^{\prime} s_{0}^{\prime} C_{\beta \beta}^{j}\right)$
From equations (2.9),(2.11) and (2.15), the v-curvature tensor of \bar{F}^{n} with respect to Cartan connection is written as ([8])

$$
\bar{S}_{i j k l}=\bar{C}_{i l p} \bar{C}_{j k}^{p}-\bar{C}_{i k p} \bar{C}_{j l}^{p}
$$

$$
\begin{equation*}
\text { or } \quad \bar{S}_{i j k l}=q^{\prime} S_{i j k l}+A_{(k l)}\left\{h_{i l} K_{j k}+h_{j k} K_{i l}\right\} \tag{2.22}
\end{equation*}
$$

where $K_{j k}=K_{1} m_{j} m_{k}+K_{2} h_{j k}$
$A_{k l}\{\ldots$.$\} denotes the interchange of indices \mathrm{k}, l$ and subtraction,
$K_{1}=\frac{q_{-1}^{2}}{4 q^{\prime}}\left(1-2 s_{0}^{\prime} v q^{\prime}\right)+\frac{v q_{02} q_{-1}^{\prime}}{4\left(q^{\prime}+r_{0} v\right)}+\frac{K}{L}\left\{\frac{q^{\prime} q_{02}}{2\left(q^{\prime}+v r_{0}\right)}-q^{\prime} q_{-1}^{\prime} s_{0}^{\prime}\right\}$
$K_{2}=\frac{q_{-1}^{\prime} v}{8\left(q^{\prime}+v r_{0}\right)}+\frac{K q_{-1}^{\prime}}{2 L}\left(1-s_{0}^{\prime} q^{\prime} v\right)-\frac{K^{2}}{2 L^{2}} q^{\prime 2} s_{0}^{\prime}$

From equations (2.6), (2.22) and (2.23), the v-Ricci tensor of \bar{F}^{n} is given by-

$$
\begin{equation*}
\bar{S}_{j l}=\bar{g}^{i k} \bar{S}_{i j k l}=S_{j l}-q^{\prime} s_{0}^{\prime} S_{i j k l} v^{i} v^{k}+\left[\frac{(3-n) K_{1}}{q^{\prime}}-s_{0}^{\prime}\left(v K_{1}+2 K_{2}\right)\right] m_{j} m_{l} \tag{2.26}
\end{equation*}
$$

$+\left[\left\{(4-2 n) K_{2}-K_{1} v\right\} / q^{\prime}+s_{0}^{\prime} v\left(K_{1} v+2 K_{2}\right)\right] h_{j l}$
$=S_{j l}-q^{\prime} s_{0}^{\prime} S_{i j k l} v^{i} v^{k}+\lambda_{1} h_{j l}+\lambda_{2} m_{j} m_{l}$
where
$\lambda_{1}=\left\{(4-2 n) K_{2}-K_{1} v\right\} / q^{\prime}+s_{0}^{\prime} v\left(K_{1} v+2 K_{2}\right)$
$\lambda_{2}=\frac{(3-n) K_{1}}{q^{\prime}}-s_{0}^{\prime}\left(v K_{1}+2 K_{2}\right)$
From equations (2.6) and (2.26), the v-scalar curvature of \bar{F}^{n} is given by-
$\bar{S}=\bar{g}^{i l} \bar{S}_{j l}=\frac{1}{q^{\prime}} S-2 s_{0}^{\prime} S_{i k} v^{i} v^{k}+q^{\prime} s_{0}^{\prime 2} S_{i j k l} v^{i} v^{j} v^{k} v^{l}+\left\{\lambda_{1}(n-1)+\lambda_{2} v\right\} / q^{\prime}-s_{0}^{\prime} v\left(\lambda_{1}+\lambda_{2} v\right)$
Definition (2.1):- A Finsler space $\left(M^{n}, L\right)$ with dimension $n \geq 3$ is said to be a quasi-C-reducible if the Cartan tensor $C_{i j k}$ satisfies ([14])
$C_{i j k}=B_{i j} C_{k}+B_{j k} C_{i}+B_{k i} C_{j}$,
where $B_{i j}$ is a symmetric and indicatory tensor
We know that the (h) $h v$-torsion tensor of \bar{F}^{n} is written as

$$
\bar{C}_{i j k}=q^{\prime} C_{i j k}+\frac{q_{-1}}{2}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\frac{q_{02}}{2} m_{i} m_{j} m_{k}
$$

From the above equations and equation (2.17), we have
$\bar{C}_{i j k}=q^{\prime} C_{i j k}+\frac{1}{6 \mu} A_{(i j k)}\left[\left(3 q_{-1}^{\prime} h_{i j}+q_{02} m_{i} m_{j}\right)\left(\bar{C}_{k}-C_{k}+q^{\prime} s_{0}^{\prime} C_{k \beta \beta}\right)\right]$
$=q^{\prime} C_{i j k}+\frac{1}{6 \mu} A_{(i j k)}\left\{\left(3 q_{-1}^{\prime} h_{i j}+q_{02} m_{i} m_{j}\right) \bar{C}_{k}\right\}+\frac{1}{6 \mu} A_{(i j k)}\left\{\left(3 q_{-1}^{\prime} h_{i j}+q_{02} m_{i} m_{j}\right)\left(q^{\prime} s_{0}^{\prime} C_{k \beta \beta}-C_{k}\right)\right\}$
Where $A_{(i j k)}(\ldots \ldots$.$) denotes the cyclic interchange of indices i, j, k$ and summation.
Hence we have the following
LEMMA (2.1) :- The Cartan tensor $\bar{C}_{i j k}$ of the generalized β-conformal change by an h-vector can be written in the form
$\bar{C}_{i j k}=A_{(i j k)}\left(\bar{B}_{i j} \bar{C}_{k}\right)+q_{i j k}$,
where $\bar{B}_{i j}=\frac{1}{6 \mu}\left(3 q_{-1}^{\prime} h_{i j}+q_{02} m_{i} m_{j}\right)$,

$$
q_{i j k}=\frac{1}{6 \mu} A_{(i j k)}\left\{2 \mu q^{\prime} C_{i j k}+\left(3 q_{-1}^{\prime} h_{i j}+q_{02} m_{i} m_{j}\right)\left(q^{\prime} s_{0}^{\prime} C_{k \beta \beta}-C_{k}\right)\right\}
$$

Since the tensor $\bar{B}_{i j}$ is symmetric and indicatory, using the above lemma, we have the following.
THEOREM (2.1) :- Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ is quasi C-reducible if $q_{i j k}=0$
COROLLARY (2.1) :- A Riemannian space $\left(M^{n}, L\right)$ is transformed to a quasi C-reducible Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ under a generalized β-conformal change by an h-vector.

Definition (2.2):- A Finsler space F^{n} of dimension $(n \geq 3)$ is called semi C-reducible, if the $(h) h v$ torsion tensor $C_{i j k}$ is written in the form([14])

$$
C_{i j k}=\frac{p}{n+1}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right)+\frac{t}{C^{2}} C_{i} C_{j} C_{k},
$$

where p and t are scalar function such that $p+t=1$
THEOREM (2.2) :- A Riemannian space is transformed to a semi C-reducible Finsler space by a generalized β-conformal change by an h-vector.
Proof :-The (h)hv torsion tensor of \bar{F}^{n} is written as

$$
\bar{C}_{i j k}=\frac{1}{2} q_{-1}^{\prime}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right)+\frac{1}{2} q_{02} m_{i} m_{j} m_{k}
$$

From the above equation and equation (2.17), we have
$\bar{C}_{i j k}=\frac{q_{-1}^{\prime}}{2 q^{\prime} \mu}\left(\bar{h}_{i j} \bar{C}_{k}+\bar{h}_{j k} \bar{C}_{i}+\bar{h}_{k i} \bar{C}_{j}\right)+\frac{v\left(q^{\prime} q_{02}-3 q_{-1}^{\prime} r_{0}\right)}{2 q^{\prime} \mu\left(q^{\prime}+v r_{0}\right) \bar{C}^{2}} \bar{C}_{i} \bar{C}_{j} \bar{C}_{k}$
$=\frac{p}{n+1}\left(\bar{h}_{i j} \bar{C}_{k}+\bar{h}_{j k} \bar{C}_{i}+\bar{h}_{k i} \bar{C}_{j}\right)+\frac{t}{\bar{C}^{2}} \bar{C}_{i} \bar{C}_{j} \bar{C}_{k}$
where $p=\frac{q_{-1}^{\prime}(n+1)}{2 q^{\prime} \mu}, \quad t=\frac{v\left(q^{\prime} q_{02}-3 q_{-1}^{\prime} r_{0}\right)}{2 q^{\prime} \mu\left(q^{\prime}+v r_{0}\right)}$
Here $p+t=1$

Hence \bar{F}^{n} is a semi-C-reducible.
Definition (2.3):- A Finsler space $F^{n}=\left(M^{n}, L\right)$ of dimension $(n \geq 3)$ is called C-reducible if the (h) $h v$ - torsion tensor $C_{i j k}$ is of the form ([14])

$$
C_{i j k}=\frac{1}{n+1}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right)
$$

Let $W_{i j k}=C_{i j k}-\frac{1}{(n+1)}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right)$
$W_{i j k}$ is symmetric and indicatory tensor. Also $W_{i j k}=0$ iff the Finsler space $F^{n}=\left(M^{n}, L\right)$ is C-reducible
The (h) $h v$ - torsion tensor of \bar{F}^{n} can be written as
$\bar{C}_{i j k}=q^{\prime} C_{i j k}+q_{-1}^{\prime}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right) / 2+q_{02} m_{i} m_{j} m_{k} / 2$
From the above equation and equations (2.3) and (2.17), we have

$$
\bar{C}_{i j k}-\frac{1}{n+1}\left(\bar{h}_{i j} \bar{C}_{k}+\bar{h}_{j k} \bar{C}_{i}+\bar{h}_{k i} \bar{C}_{j}\right)
$$

$=q^{\prime} C_{i j k}-q^{\prime}\left[\frac{1}{n+1}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right)\right]+a_{i j k}$
$\operatorname{or} \bar{W}_{i j k}=q^{\prime} W_{i j k}+a_{i j k}$
where $a_{i j k}=\frac{1}{(n+1)} A_{(i j k)}\left\{\left(\beta_{1} h_{i j}+\beta_{2} m_{i} m_{j}\right) m_{k}-r_{0} m_{i} m_{j} C_{k}+\left(s_{0}^{\prime} q^{\prime} r_{0} m_{i} m_{j}+q^{\prime 2} s_{0}^{\prime} h_{i j}\right) C_{k \beta \beta}\right\}$,
$\beta_{1}=\frac{q_{-1}^{\prime}}{2}-\frac{q^{\prime} \mu}{n+1}, \quad \beta_{2}=\frac{q_{02}}{6}-\frac{\mu r_{0}}{n+1}$
Hence we have the following theorem
THEOREM (2.3) :- The following statements are equivalent
(a) F^{n} is a C-reducible Finsler space
(b) \bar{F}^{n} is a C-reducible Finsler space
iff the tensor $a_{i j k}$ vanishes.
Definition (2.4):- A Finsler space $F^{n}=\left(M^{n}, L\right)$ with $n>3$ is called an S3-like Finsler space if the v curvature tensor $S_{i j k l}$ satisfies. ([14])

$$
S_{i j k l}=\frac{\mathrm{S}}{(n-1)(n-2)}\left\{h_{i k} h_{j l}-h_{i l} h_{j k}\right\}
$$

Where S is the vertical scalar curvature
Let

$$
\eta_{i j k l}=S_{i j k l}-\frac{\mathrm{S}}{(n-1)(n-2)}\left\{h_{i k} h_{j l}-h_{i l} h_{j k}\right\}
$$

$\eta_{i j k l}=0$ iff the space F^{n} is S3-like.
From equations (2.3), (2.22) and (2.29), we have

$$
\begin{aligned}
& \bar{\eta}_{i j k l}=\bar{S}_{i j k l}-\frac{\bar{S}}{(n-1)(n-2)}\left\{\bar{h}_{i k} \bar{h}_{j l}-\bar{h}_{i l} \bar{h}_{j k}\right\} \\
&=q^{\prime} \eta_{i j k l}+\xi_{i j k l}
\end{aligned}
$$

where $\xi_{i j k l}=A_{(k l)}\left[h_{i l} K_{j k}+h_{j k} K_{i l}-\frac{q^{\prime 2} \mathrm{H}}{(n-1)(n-2)} h_{i k} h_{j l}-\frac{r_{0}}{(n-1)(n-2)}\left(S+q^{\prime} \mathrm{H}\right)\left(h_{j l} m_{i} m_{k}+h_{i k} m_{l} m_{j}\right)\right]$

$$
\mathrm{H}=q^{\prime} s_{0}^{\prime 2} S_{i j k l} v^{i} v^{j} v^{k} v^{l}+(n-1) \lambda_{1} / q^{\prime}+\lambda_{2} v / q^{\prime}-2 S_{j l} s_{0}^{\prime} v^{j} v^{l}-s_{0}^{\prime} v\left(\lambda_{1}+\lambda_{2} v\right)
$$

Hence we have the following theorem
THEOREM (2.4) :- The following statements
(a) $F^{n}=\left(M^{n}, L\right)$ is an S3-like Finsler space.
(b) $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ is an S3-like Finsler space
are equivalent iff the tensor $\xi_{i j k l}$ vanishes.

REFERENCES

[1]. Abed, S.H. Conformal β-Change In Finsler Space Proc. Math, Phys. Soc. Egypt 86 (2008), 79-89 Ar Xiv No : Math D G' $/ 0602404$.
[2]. Abed, S.H. :Cartan Connection Associated With A β-Conformal Change In Finsler Geometry. Tensor, N.S. 70 (2008)
[3]. Hashiguchi, M., Hojo, S. And Matsumoto, M. : On Landsberg Spaces Of Two Dimensions With (α, β) - Metric. J Korean Math. Soc. 10(1973), 17-26.
[4]. Hashiguchi, M. : On Conformal Transformation Of Finsler Metric. J. Math. Kyoto University 16 (1976) Pp 25-50.
[5]. Ingarden, R.S. : On The Geometrically Absolute Representation In The Electron Microscope. Trav. Soc. Sci. Lett. Wroclaw, B 45 (1957), 60 Pp .
[6]. Izumi, H. Conformal Transformation Of Finsler Spaces I \& Ii, Tensor, N.S. 31 And 33 (1977 And 1980) Pp 33-41 And 337-359.
[7]. Knebelman. M.S. : Conformal Geometry Of Generalized Metric Spaces. Proc. Nat. Acad, Sci. Usa. 15 (1929) Pp And 376-379.
[8]. Matsumoto, M : On Finsler Spaces With Curvature Tensors Of Some Special Forms. Tensor, N.S. 22 (1971), 201-204.
[9]. Matsumoto, M : On C-Reducible Finsler Spaces, Tensor N.S. 24 (1972) Pp 29-37.
[10]. Masumoto, M : On Finsler spaces with Rander's metric and special forms of important tensors, J Math, Kyoto. University 14(1974) pp 477-498.
[11]. Mastumoto M. and Shimada, H : On Finsler spaces with the curvature tensors $P_{h j i k}$ and $S_{h j i k}$ satisfying special conditions, Rep. on Math, Physics 12 (1977) pp 77-87.
[12]. Matsumoto, M. and Shibata, C : On semi C-reducibility, T-tensor $=0$ and S4-likeness of Finsler spaces, J. Math. Kyoto University 19(1979) pp 301-314.
[13]. Matsumoto, M. and Numata, S : On semi C-reducible Finsler spaces with constant coefficients and C2-like Finsler spaces, Tensor, N.S. 34(1980), 218-222.
[14]. Matsumoto, M. : Foundations of Finsler Geometry and special Finsler spaces. Kaiseisha Press, Otsee, Japan, 1986.
[15]. Prasad, B.N. On the torsion tensors $R_{h j k}$ and $P_{h j k}$ of Finsler space with a metric $\mathrm{ds}=\left\{g_{i j}(d x) d x^{i} d x^{j}\right\}^{1 / 2}+b_{i}(x, y) d x^{i}$. Indian J. pure appl. Math 21 (1990) pp 27-39.
[16]. Rander's, G. : On the asymmetrical metric in the four-space of general relativity, Physics. Rev. 2 (1941) 59 pp 195-199.
[17]. Shibata, C., Shimada, H., azuma, M. and Yasuda, H. : On Finsler spaces with Rander's metric Tensor, N.S. 31(1977), pp 219-226.
[18]. Shibata, C. : On Finisher spaces with Kropina metric. Rep. on Math, Phys. 13(1978) pp 117-128.
[19]. Shibata, C. : On Finisher spaces with an (α, β) - metric. Journal of Hokkaido University of Education Vol 35(1984) pp 1-16.
[20]. Shibata, C. : On invariant tensors of β-changes of Finsler metrics. J. Math. Kyoto Univ (1984) pp 163-188.
[21]. Singh, U.P. and Srivastava, R.K. : On h-transformation of some special Finsler spaces. Indian J. Pure appl. Math 23(1992) pp 555559.
[22]. Singh, U.P. and Srivastava, R.K. : On a transformation associated with stes of n-Fundamental forms of Finsler hyper surface Indian J. Pure appl. Math 23(5), 325-332 May 1992.
[23]. Srivastava, R.K. Transformation of some special Finsler spaces by an h-vector Sri J.N.P.G. College, Volumn 7 No 1 (2022).
[24]. Srivastava, R.K. : Cartan connection associated to a β-conformal change by an h-vector in Finsler Geometry International Journal of Current Science Vol 13 March 2023.
[25]. Srivastava, R.K. : Projective changes of Finsler metrics by an h-vector. International Journal of Creative Research Thoughts Vol 11, Issue 3, March 2023.
[26]. Youssef, Nobil, L., Abed. S.H. and Elgendi, S.G. Generalized β-conformal change and special Finsler spaces Int. J. Geom. Methods Mod. Phys. 9(3) (2012), 125001625 pages, Do I : 10, 1142/S0219887812500168 or XiV : 1004.5478 [math. DG].

