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Abstract 
The purpose of this paper is to explore an Ordinary Differential Equation (ODE) model of cancer 

immunotherapy. Initially, we provide an overview of cancer immunotherapy treatment method, as well as key 

mathematical concepts. Subsequently, we conduct a comprehensive analysis of the model proposed by De Pillis 

et al., which describes tumor growth in the absence of treatment. 

Without treatment, (as we restricted our study here in this paper) tumor development (cancer cell growth) 

occurs rapidly, leading to a high rate of immune cell death, which is highly undesirable. However, when a drug 

is introduced, it stimulates the immune system to defend itself against cancer cells with the help of the drug. 

Finally, we perform numerical simulations to gain deeper insights into the theoretical findings. 

However, numerical simulation are calculated by Matlab and compared with the results by numerical fourth 

order Runge-Kutta (RK4)  and Nonstandard Finite Difference Scheme (NSFD). 
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I. INTRODUCTION 
Immunotherapy is a treatment aimed at boosting the body's immune defenses against cancerous cells 

[9]. Immunotherapy now ranks as one of the leading cancer treatments after successfully curing Jimmy Carter. It 

has proven effective in treating skin cancer, lung cancer, and even brain cancer. Cancer can be prevented by 

avoiding obesity, smoking, and viruses [1,5,7]. 

Doctors aim to make patients' effector cells more effective at killing tumor cells. Immunotherapy is a 

treatment that utilizes a patient's immune system to combat diseases. Although immunotherapy is a promising 

field of study, many issues still need to be addressed before it becomes a viable option for everyone. 

Immunotherapy is still a subject of active research and is mathematically intriguing [3,10]. 

 

II. MODEL FORMULATION 
In the early 2000s, De Pillis et al. developed a more advanced SIR model than that of Stepanova et al., 

which takes into account interactions between normal, tumor, and immune cells [14,15]. While there have been 

some extensions and validations of this model [15,13,17], they remain close to the original formulation by De 

Pillis et al [14,15,16]. Tumor growth is described by the following system of ordinary differential equations 

(ODEs) [7,9,14]: 

 

III. THE MODEL 
The differential equations governing the model are as follows [9,14]: 

 

 
  
 

  
 
𝒅𝑵

𝒅𝒕
= 𝒓𝟐𝑵 𝒕  𝟏 − 𝒃𝟐𝑵 𝒕  −  𝒌𝟒𝑪 𝒕 𝑵 𝒕 ,                                                                                   

𝒅𝑪

𝒅𝒕
= 𝒓𝟏𝑪 𝒕  𝟏 −  𝒃𝟏𝑪 𝒕 ) − 𝒌𝟐𝑰 𝒕 𝑪 𝒕 − 𝒌𝟑𝑪 𝒕 𝑵 𝒕 ,                                      (𝟏)            

𝒅𝑰

𝒅𝒕
=  𝒔 +

𝝆 𝑰(𝒕)𝑪(𝒕)

𝜶 + 𝑪(𝒕)
− 𝒌𝟏𝑰 𝒕  𝑪 𝒕 − 𝒅𝟏𝑰 𝒕 .

  

 

Where: 

𝑁(𝑡) is the population of normal cells. 

𝐶(𝑡) is the population of tumor cells. 

𝐼(𝑡) is the population of immune cells. 

𝑑1 corresponds to cell mortality rates. 
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𝑟1is the growth rate of tumor cells) and𝑟2the growth rate of  normal cells. 

𝑏1 and 𝑏2 are carrying capacities. 

𝑘1, 𝑘2 ,𝑘3and𝑘4are rates of destruction for the various cell types. 

 

The presence of tumor cells stimulates the immune response, represented by the growth term for 

immune cells: 
𝜌𝐼 𝑡 𝐶(𝑡)

𝛼+𝐶(𝑡)
, where ρ and α are positive constants. The interactions between immune and tumor cells 

can result in either tumor cell death or the inactivation of immune cells, represented by competition terms 

associated with the parameters 𝑘𝑖 .[9] 

For their tumor growth model, De Pillis et al. proposed the parameter set listed in Table 1 [9,14]. 

Figures (1), (2), (3) and (4) illustrate the evolution of these populations: Normal cells, immune cells 

and tumor ones. 

 

IV. NUMERICAL RESULTS AND ANALYSIS 
Note:De Pillis et al.  use cell count (cell) as the unit, so that one unit represents the carrying capacity of 

normal cells in the tumor region. In general he assumed that there are 3. 104  cells per 𝑚𝑚3.[9,14]. 
Parameter Value Unit 

𝑁0 0.23 mm 

𝐶0 0.13 mm 

𝐼0 0.1 mm 

𝑏1 1 1/cell 

𝑏2 1 1/cell 

𝑘1 1 1/(cell.day) 

𝑘2 0.5 1/(cell.day) 

𝑘3 1 1/(cell.day) 

𝑘4 1 1/(cell.day) 

𝑟1 1.5 1/day 

𝑟2 1 1/day 

𝑑1 0.2 1/day 

𝑠 0.33 cell/day 

𝛼 0.3 cell 

𝛽 0.01 1/day 

Table 1: Parameters of the De Pillis et al. Model [9,14]. 

 

When the system of nonlinear ordinary differential equations (ODEs) is initialized with the following 

dimensions: 𝑁0 = 0.23 mm, 𝐶0= 0.13 mm, and 𝐼0 = 0.1 mm, beyond 30 days, the system converges to a stable 

state where the normal cells reach a normalized population of 𝑁1 = 0.44 cell from day no. 60. Specifically, the 

normal cells initially grow rapidly in the first few days and attained 𝑁 𝑚𝑎𝑥  = 0.52 cell. As a result, the 

population of immune cells is strongly stimulated and reaches a maximum value of Imax = 0.49 cell. The 

concurrent presence of the tumor and the cell mortality rate 𝑑1 leads to a decrease to 𝐼1 = 0.44 cell. Thus, the 

tumor can tend toward an equilibrium value of 𝐶1 = 0.54 cell after increasing rapidly from the beginning. 

This set of differential equations describes how the populations of susceptible, infectious, and 

recovered individuals change over time in response to interactions and transitions between these compartments. 

The model considers births, deaths, disease transmission, recovery, and natural mortality rates [9,11]. 

To analyze and solve this system, you would typically use mathematical techniques such as numerical 

methods or computer simulations. The specific parameter values and initial conditions would need to be 

determined based on the characteristics of the disease you are modeling. 

Solving this system of differential equations analytically can be challenging, especially for nonlinear 

systems like the one you've presented. Typically, such systems are solved numerically using software tools like 

MATLAB [4,12]. 

The initial values and the parameters used to solve the system are summarized in the following table. 

They were taken from[9,14]. 

 

 

 

 

V. APPLICATION OF ODE MATLAB METHOD 
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We have performed calculations using Ode 45  with h =1. Here are the results: 

 

 
Figure 1: The evolution of the population of normal cells, immune cells, and tumor cells. 

 
Figure 2: The evolution of the population of normal cells of the considered model using Matlab 

 

 
Figure 3: The evolution of the population of tumor cells of the considered model using Matlab 
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Figure 4: The evolution of the population of immune cells of the considered model using Matlab 

 

The choice of method depends on the specific characteristics of your problem, including the nature of 

the nonlinearities, boundary conditions, geometry, and desired level of accuracy. It's essential to carefully 

analyze your problem and consider the strengths and weaknesses of different methods before selecting the most 

suitable one for your application. Additionally, computer software and numerical libraries are often available to 

implement these methods efficiently [19]. 

 

VI. RUNGE KUTTA 4
TH

 ORDER (RK4) 
The Fourth-Order Runge-Kutta method, often abbreviated as RK4, is a numerical technique used for 

solving ordinary differential equations (ODEs). It's a popular and widely used method because of its accuracy 

and reliability. RK4 is particularly effective for solving initial value problems, where you have an ODE and an 

initial condition specifying the value of the function at a particular point [6]. 

 

The 4th-order Runge-Kutta method is a numerical technique used to solve ordinary differential equations of the 

form: 

 

𝑑𝑦

𝑑𝑥
= 𝑓 𝑥, 𝑦 ,

𝑦 0 = 𝑦0 .    
 (2) 

 

The 4th-order Runge-Kutta method is based on the following elements: 

𝑦𝑖+1 = 𝑦𝑖 +  𝑎1𝐾1 + 𝑎2𝐾2 + 𝑎3𝐾3 + 𝑎4𝐾4 ℎ, 
 

where knowing the value of  𝑦 = 𝑦𝑖at𝑥𝑖 ,  we can find the value of  𝑦 = 𝑦𝑖+1 𝑎𝑡 𝑥𝑖+1, and ℎ = 𝑥𝑖+1 −
𝑥𝑖 . Equation (1) is approximated using the first five terms of the Taylor series [8]: 

 

𝑦𝑖+1 = 𝑦𝑖 +
𝑑𝑦

𝑑𝑥
|𝑥𝑖 ,𝑦𝑖 𝑥𝑖+1 − 𝑥𝑖 +

1

2!

𝑑2𝑦

𝑑𝑥2
|𝑥𝑖 ,𝑦𝑖 𝑥𝑖+1 − 𝑥𝑖 

2 +  
1

3!

𝑑3𝑦

𝑑𝑥3
|𝑥𝑖 ,𝑦𝑖 𝑥𝑖+1 − 𝑥𝑖 

3 

1

4!

𝑑4𝑦

𝑑𝑥4 |𝑥𝑖 ,𝑦𝑖 𝑥𝑖+1 − 𝑥𝑖 
4.                                                                   (3) 

 

Given that 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) and 𝑥𝑖+1 − 𝑥𝑖 = ℎ: 

 

𝑦𝑖+1 = 𝑦𝑖 + ℎ𝑓 𝑥𝑖 , 𝑦𝑖 +
ℎ2

2!
𝑓′(𝑥𝑖 , 𝑦𝑖)| +  

ℎ3

3!
𝑓 ′′  𝑥𝑖 , 𝑦𝑖 +  

ℎ4

4!
𝑓 ′′′  𝑥𝑖 , 𝑦𝑖 .             (4) 

 

 

One of the most popular solutions used is: 

 

𝑦𝑖+1 = 𝑦𝑖 + 
1

6
 𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4 ℎ, 

such that: 
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𝐾1 = 𝑓 𝑥𝑖 , 𝑦𝑖 , 

𝐾2 = 𝑓  𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝐾1ℎ , 

𝐾3 = 𝑓  𝑥𝑖 +
1

2
ℎ, 𝑦𝑖 +

1

2
𝐾2ℎ , 

𝐾4 = 𝑓 𝑥𝑖 + ℎ,𝑦𝑖 + 𝐾3ℎ . 
 

VII. APPLICATION OF THE FOURTH ORDER RUNGE KUTTA METHOD 
We have performed calculations using RK4 with h =1. Here are the results: 

 

 
Figure 8: Approximate Solution Using RK4 for all cells (N, C and I) and h = 1 

 

 
Figure 9: Approximate Solution Using RK4 for normal cells (N) and h = 1 
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Figure 10: Approximate Solution Using RK4 for tumor cells (C) and h = 1 

 

 
Figure 11: Approximate Solution Using RK4 for immune cells (I) and h = 1 

 

VIII. NONSTANDARD FINITE DIFFERENCE METHOD (NSFD) 
The Nonstandard Finite Difference (NSFD) method is a numerical technique used for solving 

differential equations, particularly partial differential equations (PDEs). It belongs to the class of finite 

difference methods, which are used to approximate solutions to differential equations by discretizing the spatial 

and/or temporal domains. What sets NSFD apart from standard finite difference methods is its use of 

nonstandard discretization schemes, which can provide advantages in certain situations [10]. 

The nonstandard finite difference method (NSFD) is applied to a small system of three nonlinear 

equations of the form: 

 
𝑑𝑈

𝑑𝑡
= 𝐴𝑈 + 𝐺 𝑈 , 

 

where A is a constant matrix, U is a vector, and G(U) contains nonlinear terms, provided that there is a 

repeated eigenvalue of A. NSFD is unique in that the effect of nonlinearity can be added or removed without the 

need to interrupt calculations and use a separate linear method. 

Mickens developed a set of modeling rules to guide the incorporation of essential physical properties of 

differential equations into NSFD numerical schemes. 

 

Mickens has developed a set of modeling rules to guide the incorporation of essential physical 

properties of differential equations into NSFD (Non-Standard finite difference schemes).[10,13] 
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 ED Mikens 

ED1 𝑑𝑢

𝑑𝑡
= −𝜆 𝑢 

𝑢𝑘+1 − 𝑢𝑘

ℎ
= −𝜆 𝑢𝑘  

ED2 𝑑𝑢

𝑑𝑡
= −𝑢2 

𝑢𝑘+1 − 𝑢𝑘

ℎ
= −𝑢𝑘𝑢𝑘+1 

ED3 𝑑𝑢

𝑑𝑡
= −𝑢3 

𝑢𝑘+1 − 𝑢𝑘

ℎ
= −

2𝑢𝑘+1 
2 𝑢𝑘

2

𝑢𝑘+1 + 𝑢𝑘

 

Table 4: NSFD Mickens 

 

These equations represent different orders of derivatives with respect to time (t) using the NSFD 

approach. They involve various terms at consecutive time steps and constants such as λ and ℎ . 

 

In the application of the NSFD method to the system (1), the following difference equations are obtained: 

 
𝑁𝑗+1 − 𝑁𝑗

ℎ
= r2Nj 1 − b2Nj − k4Cj𝑁𝑗 , 

 
Cj+1 − 𝐶𝑗

ℎ
 =  (r1Cj(1 − b1Cj) − k2IjCj − k3CjNj , 

 
Ij+1 − 𝐼𝑗

ℎ
 =  s +

𝜌𝐼𝑗𝐶𝑗

𝛼 + 𝐶𝑗
− k1IjCj − d1Ij . 

 

 

In the application of the nonstandard finite difference method to the system (1), calculations were 

performed using Matlab for the following case: 

 

 
Figure 10: Approximate Solution Using NSFD for all cells and h = 1 
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Figure 11: Approximate Solution Using NSFD for normal cells and h = 1 

 

 
Figure 12: Approximate Solution Using NSFD for tumor cells and h = 1 

 

 
Figure 13: Approximate Solution Using NSFD for immune cells and h = 1 
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Figure 14: Approximate Solution Using Matlab, RK4 and NSFD for immune cells and h = 1 

 

 
Figure 15: Approximate Solution Using Matlab, RK4 and NSFD for tumor cells and h = 1 

 

 
Figure 16: Approximate Solution Using Matlab, RK4 and NSFD for normal cells and h = 1 
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IX. Discussion 
The analysis of the drug-free system (1) provides an overview of the system's behavior in the presence 

of the actively administered drug . In particular, we are interested in the behavior of the drug system after the 

drug is no longer actively administered. 

Figures (14), (15),  and (16) "NFSD" represent the solutions for N, C, and I obtained through numerical 

methods. As observed, Normal, Tumor and Immune cells increased during the first days. However, after that 

period, the normal and immunity rates  slowed down, while the tumor rate was faster. It showed also that the 

system became stable after 60 days.. 

From these simulations, it is evident that immunity will increase faster with treatment and drugs and 

this will  play a significant role in controlling the spread of tumor. Figure 14, 14 and 16 show that the applied 

numerical methods  coincident  beyond the first 5 days and convergent after that until the day no 60 the normal 

and immune cells coincident again while the tumor cells diverges away from both of them. 

 

X. CONCLUSION 
This paper is part of the broader study of a model of ordinary differential equations for cancer 

immunotherapy. Mathematical models of immune-tumor interactions provide an analytical framework for 

addressing specific questions about tumor immune dynamics. 

The model we have investigated in this paper is the De Pillis et al. cancer immunotherapy model. 

Analyzing the untreated system provides an insight into the behavior of the system with treatment. 

In other words, mathematical models can help us answer questions that directly impact human health. 

This significantly affects the health of each individual because mathematical modeling will be the key to 

personalized medicine [10]. 

 

References 
[1]. Abbal, M., And Pr Henri Roche, "Immunité Et Cancer," DFGSM3 2012/2013. 
[2]. Altrock, P., M., Lin L. Liu, And Franziska Michor, "The Mathematics Of Cancer: Integrating Quantitative Models," Page 730. 

[3]. Costes,V.,  F.P. Chatelet, "La Cellule Cancéreuse Et Le Tissu Cancéreux (Chapitre 8)," Mai 2005, Page 01. 

[4]. Goel, N. S., Maitra, S. C., Montroll, E. W. (1971). On The Volterra And Other Nonlinear Models Of Interacting Populations. 
Reviews Of Modern Physics, 43(2), P 231. 

[5]. Hahnfeldt,P.,  D. Panigrahy, J. Folkman, And L. Hlatky, "Tumor Development Under Angiogenic Signaling: A Dynamical Theory 

Of Tumor Growth, Treatment Response, And Postvascular Dormancy," Cancer Research, Vol. 59, No. 19, Pp. 4770-4775, 1999. 
[6]. Kaw, A. (2010). General Engineering, Runge-Kutta 4th Order Method. October 13, 2010. 

[7]. Lakomy,.  "La Structure Générale Du Système Immunitaire, Laboratoire d'Immunologie Chu Dijon," 26.09.2014 

[8]. Martcheva, M. (2010). An Introduction To Mathematical Epidemiology. University Of Florida, Gainesville, FL. 
[9]. Mellal, L., (2016).  "Modélisation Et Commande De Microrobots Magnétiques Pour Le Traitement Ciblé Du Cancer," 07 Décembre 

2016, Pages 52-54 

[10]. Mickens, R. (2007):  (Calculation Of Denominator Functions For Nonstandard Finite Difference Schemes For Differential 
Equations Satisfying A Positivity Condition.) Numerical Methods For Partial Differential Equations. 

[11]. Mishkin, A., (2013).  "Modeling Cancer Growth Using Lotka-Volterra Predator-Prey Model In Conjunction With Bifurcation 

Analysis,"  Pages 13, 17, 19 
[12]. Nechadi, E. (Système Non Lineaires.), Lecture Notes. Université Ferhat Abas De Setif 1. 

[13]. Peter M. Manning And Gary F. Margrave. (2006). Introduction To Non-Standard Finite-Difference Modeling. CREWES Research 

Report, 18, 10 Pages. 
[14]. Pillis, L. G., Radunskaya, A. (2003). The Dynamics Of An Optimally Controlled Tumor Model: A Case Study. Mathematical And 

Computer Modelling, 37(11), 1221–1244, Modeling And Simulation Of Tumor Development, Treatment, And Control. 
[15]. De Pillis, L. G., Radunskaya, A., (2001). A Mathematical Tumor Model With Immune Resistance And Drug Therapy: An Optimal 

Control Approach. Computational And Mathematical Methods In Medicine, 3(2), 79–100. 

[16]. De Pillis, L. G., Radunskaya, A., &Wiseman, C. L. (2005). A Validated Mathematical Model Of Cell-Mediated Immune Response 
To Tumor Growth. Cancer Research, 65(17), 7950–7958. 

[17]. De Pillis, L. G., Gu, W., &Radunskaya, A. E. (2006). Mixed Immunotherapy And Chemotherapy Of Tumors: Modeling, 

Applications And Biological Interpretations. Journal Of Theoretical Biology, 238(4), 841–862. 

 

 


