On Fuzzy C-Almost P-Spaces

G. Thangaraj

Department of Mathematics Thiruvalluvar University Vellore-- 632 115, Tamilnadu, India.

L. Vikraman

Department of Mathematics Government Thirumagal Mills College, Gudiyattam - 632 602, Tamilnadu, India.

Abstract

In this paper, the concept of fuzzy C-almost P-Space is introduced and studied. The conditions under which fuzzy P-spaces and fuzzy almost P-spaces become fuzzy C-almost P-spaces are obtained. It is established that fuzzy C-almost P-spaces are neither fuzzy hyperconnected spaces nor fuzzy open hereditarily irresolvable spaces. Fuzzy regular Oz-spaces are fuzzy C-almost P-spaces and fuzzy Oz and fuzzy P-spaces, are fuzzy C-almost P-spaces.

Keywords : Fuzzy G_{δ} -set, fuzzy σ -nowhere dense set, fuzzy σ -boundary set, fuzzy hyperconnected space, fuzzy Oz-space, fuzzy P-space, fuzzy almost P-space, fuzzy open hereditarily irresolvable space.

Date of Submission: 20-09-2023

Date of Acceptance: 30-09-2023

I. Introduction

The concept of fuzzy sets as a new approach for modelling uncertainties was introduced by L.A. Zadeh [22] in the year 1965. The potential of fuzzy notion was realized by the researchers and has successfully been applied in all branches of Mathematics. In 1968, C.L. Chang [3] introduced the concept of fuzzy topological space. The paper of Chang paved the way for the subsequent tremendous growth of the numerous fuzzy topological concepts. A. K. Mishra [8] introduced the concept of P-spaces as a generalization of ω_{μ} -additive spaces of R. Sikorski [10]. Almost P-spaces in classical topology was introduced by A.I.Veksler [21] as P'-spaces and was also studied further by R. Levy [6] and C.L. Kim [5].

The concept of P-spaces in fuzzy setting was introduced by **G.Balasubramanian** [12]. Fuzzy almost P-spaces was introduced and studied by **G.Thangaraj** and **C.Anbazhagan** in [17]. In the recent years, there has been a growing trend to introduce and study various types of fuzzy topological spaces. In this paper, the concept of fuzzy C-almost P-Space is introduced and studied. It is obtained that fuzzy σ -nowhere dense sets, fuzzy σ boundary sets are fuzzy somewhere dense sets in fuzzy C-almost P-spaces. A condition under which a fuzzy almost P-space becomes a fuzzy C-almost P-space, is obtained. It is established that fuzzy C-almost P-spaces, are neither fuzzy hyperconnected spaces nor fuzzy open hereditarily irresolvable spaces. Fuzzy regular Oz-spaces are fuzzy C-almost P-spaces and fuzzy Oz and fuzzy P-spaces, are fuzzy C-almost Pspaces.

II. Preliminaries

Some basic notions and results used in the sequel, are given in order to make the exposition self-contained. In this work by (X,T) or simply by X, we will denote a fuzzy topological space due to Chang (1968). Let X be a non-empty set and I the unit interval [0,1]. A fuzzy set λ in X is a mapping from X into I. The fuzzy set 0_X is defined as $0_X(x) = 0$, for all $x \in X$ and the fuzzy set 1_X is defined as $1_X(x) = 1$, for all $x \in X$. **Definition 2.1** [**3**]: A fuzzy topology is a family T of fuzzy sets in X which satisfies the following conditions :

- (a). $0_X \in T$ and $1_X \in T$
- (b). If A, $B \in T$, then $A \wedge B \in T$,
- (c). If $A_i \in T$ for each $i \in J$, then $\bigvee_i A_i \in T$.

T is called a fuzzy topology for X, and the pair (X,T) is a fuzzy topological space, or fts for short. Members of T are called fuzzy open sets of X and their complements fuzzy closed sets.

Definition 2.2 [3]: Let (X,T) be a fuzzy topological space and λ be any fuzzy set in (X,T). The interior, the closure and the complement of λ are defined respectively as follows:

(i). int $(\lambda) = \vee \{ \mu / \mu \leq \lambda, \mu \in T \};$ (ii). cl (λ) = \wedge { $\mu / \lambda \leq \mu$, 1 $-\mu \in T$ }. (iii). $\lambda'(x) = 1 - \lambda(x)$, for all $x \in X$. For a family $\{\lambda_i / i \in J\}$ of fuzzy sets in (X, T), the union $\psi = V_i(\lambda_i)$ and intersection $\delta =$ $\Lambda_i(\lambda_i)$, are defined respectively as (iv). $\psi(x) = \sup_{i} \{ \lambda_i(x) | x \in X \}$ (v). $\delta(x) = \inf_i \{ \lambda_i(x) / x \in X \}.$ **Lemma 2.1** [1] : For a fuzzy set λ of a fuzzy topological space X, (i). $1 - int(\lambda) = cl(1-\lambda)$ and (ii). $1 - cl(\lambda) = int(1-\lambda)$. **Definition 2.3**: A fuzzy set λ in a fuzzy topological space (X,T) is called a (i). fuzzy regular-open set in (X, T) if $\lambda = int cl (\lambda)$; fuzzy regular – closed set in (X, T) if $\lambda = cl int (\lambda) [1]$. (ii). fuzzy G_{δ} -set in (X, T) if $\lambda = \bigwedge_{i=1}^{\infty} (\lambda_i)$, where $\lambda_i \in T$ for $i \in I$; fuzzy F_{σ} -set in (X, T) if $\lambda = \bigvee_{i=1}^{\infty} (\lambda_i)$, where $1 - \lambda_i \in T$ for $i \in I$ [2]. (iii). fuzzy dense set if there exists no fuzzy closed set μ in (X,T) such that $\lambda < \mu < 1$. That is, $cl(\lambda) = 1$, in (X,T) [13]. (iv). fuzzy nowhere dense set if there exists no non-zero fuzzy open set μ in (X,T) such that $\mu < cl(\lambda)$. That is, int $cl(\lambda) = 0$, in (X,T) [13]. (v). fuzzy somewhere dense set if there exists a non-zero fuzzy open set μ in (X,T) such that $\mu < cl(\lambda)$. That is, int $cl(\lambda) \neq 0$, in (X,T) [14] and $1 - \lambda$ is called a fuzzy complement of fuzzy somewhere dense set in (X, T) and is denoted as fuzzy cs dense set in (X, T) [18]. (vi). fuzzy first category set if $\lambda = \bigvee_{i=1}^{\infty} (\lambda_i)$, where (λ_i) 's are fuzzy nowhere dense sets in (X,T). Any other fuzzy set in (X,T) is said to be of fuzzy second category [13]. (vii) fuzzy residual set if $1 - \lambda$ is a fuzzy first category set in (X,T) [16]. (viii). fuzzy σ -boundary set if $\lambda = \bigvee_{i=1}^{\infty} (\mu_i)$, where $\mu_i = cl (\lambda_i) \wedge (1 - \lambda_i)$ and (λ_i) 's are fuzzy regular open sets in (X,T) [9]. (ix). fuzzy regular G_{δ} -set in (X,T) if $\lambda = \bigwedge_{i=1}^{\infty} \operatorname{int}(\lambda_i)$, where $1 - \lambda_i \in T$; fuzzy regular F_{σ} -set in (X,T) if $\lambda = \bigvee_{i=1}^{\infty} \operatorname{cl}(\mu_i)$, where $\mu_i \in T$ [11]. **Definition 2.4 :** A fuzzy topological space (X,T) is called a (i). fuzzy P-space if each fuzzy G_{δ} -set in (X,T) is fuzzy open in (X,T) [12]. (ii). fuzzy almost P-space if for each non-zero fuzzy G_{δ} -set λ in (X,T), int $(\lambda) \neq 0$ in (X,T) [17]. (iii). fuzzy open hereditarily irresolvable space if int cl (λ) \neq 0, then int $(\lambda) \neq 0$, for any non-zero fuzzy set λ in (X,T) [15]. (iv). fuzzy Oz-space if each fuzzy regular closed set is a fuzzy G_{δ} -set in (X,T) [19]. (v). fuzzy regular Oz-space if each fuzzy regular closed set λ in (X,T) is a fuzzy regular G_{δ} -set in (X,T) [20]. (vi). fuzzy hyperconnected space if every non-null fuzzy open subset of (X,T)

is fuzzy dense in (X,T) [7]. (vii). fuzzy extremally disconnected space if the closure of every fuzzy open set of (X,T) is fuzzy open in (X,T) [4]. **Theorem 2.1** [9]: If λ is a fuzzy residual set in a fuzzy topological space (X,T), then there exists a fuzzy G_{δ} -set μ in (X,T) such that $\mu \leq \lambda$. **Theorem 2.2** [18]: If λ is a fuzzy somewhere dense set fuzzy in а topological space (X,T), then there exists a fuzzy regular closed set η in (X,T) such that $\eta \leq cl(\lambda)$. **Theorem 2.3 [9]:** If λ is a fuzzy σ -boundary set in a fuzzy topological space (X,T), then λ is a fuzzy F_{σ} -set in (X,T). **Theorem 2.4 [1]:** In a fuzzy topological space, (a). The closure of a fuzzy open set is a fuzzy regular closed set. (b). The interior of a fuzzy closed set is a fuzzy regular open set. **Theorem 2.5 [17] :** A fuzzy topological space (X,T) is a fuzzy almost P-space, if and only if the only fuzzy F_{σ} -set λ such that $cl(\lambda) = 1$ in (X,T) is 1_X . Theorem 2.6 [19]: If a fuzzy topological space (X,T) is a fuzzy Oz and fuzzy P-space, then (X,T) is a fuzzy extremally disconnected space. **Theorem 2.7** [20] : If δ is a fuzzy G_{δ} -set in а fuzzy regular Oz – space (X,T), then cl int (δ) is a fuzzy G_{δ}-set in (X,T). FUZZY C-ALMOST P-SPACES III. Definition 3.1: A fuzzy topological space (X,T) is called a fuzzy C-almost P-Space if for each fuzzy G_{δ} -set λ in (X,T), clint (λ) is a fuzzy G_{δ} -set in (X,T). **Example 3.1:** Let $X = \{a, b, c\}$. Let I = [0, 1]. The fuzzy sets α , β and γ are defined on X as follows : $\alpha: X \rightarrow I$ is defined by $\alpha(a) = 0.5$; $\alpha(b) = 0.5$; $\alpha(c) = 0.6$, $\beta: X \rightarrow I$ is defined by $\beta(a) = 0.5$; β (b) = 0.6 ; β (c) = 0.5, is defined by $\gamma(a) = 0.6$; γ (b) = 0.4 ; γ (c) = 0.5, $\gamma: X \rightarrow I$ Then, T = { 0, α , β , γ , $\alpha \lor \beta$, $\alpha \lor \gamma$, $\beta \lor \gamma$, $\alpha \land \beta$, $\alpha \land \gamma$, $\gamma \lor [\alpha \land \beta]$, $\alpha \lor \beta \lor \gamma$, 1 } is а fuzzy topology on X. By computation, one can find that $cl(\alpha) = 1;$ int $(1 - \alpha) = 0$; $\operatorname{cl}(\beta) = 1 - (\alpha \wedge \gamma) = \beta;$ int $(1 - \beta) = \alpha \wedge \gamma$; $cl(\gamma) = 1$; int $(1 - \gamma) = 0$; $\operatorname{cl}(\alpha \lor \beta) = 1;$ int $(1 - [\alpha \lor \beta]) = 0$; $cl(\alpha \lor \gamma) = 1;$ int $(1 - [\alpha \lor \gamma]) = 0$; cl ($\beta \lor \gamma$) = 1; int $(1 - [\beta \lor \gamma]) = 0;$ int $(1 - [\alpha \land \beta]) = \alpha \land \beta$; $\operatorname{cl}(\alpha \land \beta) = 1 - (\alpha \land \beta) = \alpha \land \beta;$ $\operatorname{cl}(\alpha \wedge \gamma) = 1 - \beta = \alpha \wedge \gamma;$ int $(1 - [\alpha \land \gamma]) = \beta$; cl ($\alpha \lor \beta \lor \gamma$) = 1; int $(1 - [\alpha \lor \beta \lor \gamma]) = 0;$ Now $1 - \beta = \beta \wedge \gamma \wedge (\alpha \wedge \beta) = \alpha \wedge \gamma$; $1 - (\alpha \land \beta) = \alpha \land (\alpha \lor \gamma) \land [\gamma \lor (\alpha \land \beta)] = \alpha \land \beta;$ $1 - (\alpha \land \gamma) = (\alpha \lor \beta) \land (\beta \lor \gamma) \land (\alpha \lor \beta \lor \gamma) = \beta.$ Then, $1 - \beta$, $1 - (\alpha \land \beta)$ and $1 - (\alpha \land \gamma)$ are fuzzy G_{δ} -sets in (X,T). On computation, cl int (1 - β) = cl ($\alpha \land \gamma$) = 1 - β , cl int $(1 - [1 - (\alpha \land \beta)]) = cl(\alpha \land \beta) = 1 - (\alpha \land \beta),$ cl int $(1 - [1 - (\alpha \land \gamma)]) = cl(\alpha \land \gamma) = 1 - \beta$. Hence for each fuzzy G_{δ} -set λ (= 1 - β , 1 - ($\alpha \land \beta$), 1 - ($\alpha \land \gamma$)) in (X,T), cl int (λ) is a fuzzy G_{δ} -set in (X,T) implies that (X,T) is called a fuzzy C-almost P-Space. **Proposition 3.1 :** If μ is a fuzzy F_{σ} -set in a fuzzy C-almost P-Space (X,T), then int cl (μ) is a fuzzy F_{σ} - set in (X,T). **Proof**: Let μ be a fuzzy F_{σ} -set in (X,T) and then $1-\mu$ is a fuzzy G_{δ} -set in (X,T). Since (X,T) is a fuzzy C-almost P-Space, clint $(1 - \mu)$ is a fuzzy G_{δ} -set in (X,T). By Lemma 2.1, cl int $(1-\mu) = 1 - int cl(\mu)$ and thus $int cl(\mu)$ is a fuzzy F_{σ} - set in (X,T). **Proposition 3.2 :** If μ is a fuzzy F_{σ} -set in a fuzzy C-almost P-space (X,T),

DOI: 10.9790/0661-1905015964

then μ is a fuzzy somewhere dense set in (X,T).

Proof: Let μ be a fuzzy F_{σ} -set in (X,T). Since (X,T) is a fuzzy C-almost P-Space, by Proposition 3.1, int cl (μ) is a fuzzy F_{σ} - set in (X,T) and this implies that int $cl(\mu) \neq 0$ and thus μ is a fuzzy somewhere dense set in (X,T).

Corollary 3.1: If λ is a fuzzy G_{δ} -set in a fuzzy C-almost P-Space (X,T), then cl int $(\lambda) \neq 1$, in (X,T).

Proof: Let λ be a fuzzy G_{δ} -set in (X,T). Then, $1 - \lambda$ is a fuzzy F_{σ} -set in (X,T). Since (X,T) is a fuzzy C-almost P-Space, by Proposition 3.2, $1 - \lambda$ is a fuzzy somewhere dense set in (X,T) and then int cl $(1 - \lambda) \neq 0$. This implies that $1 - \operatorname{clint}(\lambda) \neq 0$ and thus $\operatorname{clint}(\lambda) \neq 1$, in (X,T). **Remark :** In the above Corollary 3.1, int $cl(1 - \lambda) \neq 0$ in the fuzzy C-almost P-Space (X,T), implies that int cl $(1 - \lambda) = \theta$ and then θ is a fuzzy open set in (X,T) and $1 - \operatorname{cl} \operatorname{int} (\lambda) = \theta$, implies that $\operatorname{cl} \operatorname{int} (\lambda) = 1 - \theta$, in (X,T).

Proposition 3.3 : If μ is a fuzzy F_{σ} -set in a fuzzy C-almost P-Space (X,T), then there exists a fuzzy regular closed set η in (X,T) such that $\eta \leq cl(\mu)$.

Proof: Let μ be a fuzzy F_{σ} -set in (X,T). Since (X,T) is a fuzzy C-almost

P-Space, by Proposition 3.2, μ is a fuzzy somewhere dense set in (X,T).

Then, by Theorem 2.2, there exists a fuzzy regular closed set η in (X,T) such that $\eta \leq cl(\mu)$.

Corollary 3.2: If λ is a fuzzy G_{δ} -set in a fuzzy C-almost P-Space (X,T), then there exists a fuzzy regular open set δ in (X,T) such that int (λ) $\leq \delta$.

Proof: Let λ be a fuzzy G_{δ} -set in (X,T). Then, $1 - \lambda$ is a fuzzy F_{σ} -set

in (X,T). Since (X,T) is a fuzzy C-almost P-Space, by Proposition 3.3, there

exists a fuzzy regular closed set η in (X,T) such that $\eta \leq cl(1-\lambda)$.

Then, $\eta \leq 1 - int(\lambda)$. This implies that $int(\lambda) \leq 1 - \eta$. Let $\delta = 1 - \eta$.

Hence for the fuzzy G_{δ} -set λ , there exists a fuzzy regular open set δ

in (X,T) such that int (λ) $\leq \delta$.

Proposition 3.4 : If λ is a fuzzy residual set in a fuzzy C-almost P-space (X,T), then there exists a fuzzy G_{δ} -set η in (X,T) such that $\eta \leq cl$ int (λ).

Proof: Let λ be a fuzzy residual set in (X,T). By Theorem 2.1, there exists a fuzzy G_{δ} -set μ in (X,T) such that $\mu \leq \lambda$. This implies that cl int (μ) \leq cl int (λ). Since (X,T) is a fuzzy C-almost P-Space, cl int (μ) is a fuzzy G_{δ}-set in (X,T). Let η = cl int (μ). Thus, there exists a fuzzy G_{δ} -set η in (X,T) such that $\eta \leq cl$ int (λ). **Corollary 3.3 :** If δ is a fuzzy first category set in a fuzzy C-almost

Pspace (X,T), then there exists a fuzzy F_{σ} -set θ in (X,T) such that int cl (δ) $\leq \theta$.

Proof: Let δ be a fuzzy first category set in (X,T). Then, $1 - \delta$ is a fuzzy residual set in (X,T). Since (X,T) is a fuzzy C-almost P-Space, by Proposition **3.4,** there exists a fuzzy G_{δ} -set η in (X,T) such that $\eta \leq \text{ cl int} (1 - \delta)$. This implies that $\eta \leq 1 - \text{int } cl(\delta)$ and int $cl(\delta) \leq 1 - \eta$. Let $\theta = 1 - \eta$. Hence for the fuzzy first category set δ , there exists a fuzzy fuzzy F_{σ} -set θ in (X,T) such that int cl $(\delta) \leq \theta$.

Proposition 3.5 : If η is a fuzzy σ -nowhere dense set in fuzzy а C-almost P-space (X,T), then η is a fuzzy somewhere dense set in (X,T).

Proof: Let η be a fuzzy σ -nowhere dense set in (X,T). Then, η is a fuzzy F_{σ} -set in (X,T) with int $(\eta) = 0$. Since (X,T) is a fuzzy C-almost P-Space, by Proposition 3.2, the fuzzy F_{σ} - set η is a fuzzy somewhere dense set in (X,T).

Proposition 3.6 : If η is a fuzzy σ - boundary set in a fuzzy C-almost P-space (X,T), then η is a fuzzy somewhere dense set in (X,T).

Proof: Let η be a fuzzy σ -boundary set in (X,T). Then, by Theorem 2.3, η is a fuzzy F_{σ} - set in (X,T). Since (X,T) is a fuzzy C-almost P-Space, by Proposition 3.2, the fuzzy F_{σ} -set η is a fuzzy somewhere dense set in (X,T).

Remark : In view of the above Propositions 3.5 and 3.6, one will have the following result : " Fuzzy σ -nowhere dense sets, fuzzy σ - boundary sets are fuzzy somewhere dense sets in fuzzy C-almost P-spaces ."

Proposition 3.7: If λ is a fuzzy G_{δ} -set in a fuzzy C-almost P-Space (X,T), then int $(\lambda) \neq 0$, in (X,T).

Proof: Let λ be a fuzzy G_{δ} -set in (X,T). Since (X,T) is a fuzzy C-almost P-Space, by remarks of Corollary 3.1, $\operatorname{cl} \operatorname{int} (\lambda) = 1 - \theta$, where $1 - \theta$ is a fuzzy set in (X,T). This implies that int $(\lambda) \neq 0$, in (X,T). closed

IV. SOME RELATIONSHIPS BETWEEN FUZZY C-ALMOST P-SPACES AND OTHER TOPOLOGICAL SPACES

Proposition 4.1: If a fuzzy topological space (X,T) is a fuzzy C-almost Pthen (X,T) is not a fuzzy open hereditarily irresolvable space. space,

Proof: Let η be a fuzzy σ -nowhere dense set in (X,T). Then, η is a fuzzy F_{σ} - set in (X,T) with int $(\eta) = 0$. Since (X,T) is a fuzzy C-almost P-Space, by Proposition 3.5, η is a fuzzy somewhere dense set in (X,T) and thus int cl(η) \neq 0. But int (η) = 0 in (X,T), implies that (X,T) is not a fuzzy open hereditarily irresolvable space.

Proposition 4.2: If a fuzzy topological space (X,T) is a fuzzy C-almost P-space, then (X,T) is not a fuzzy hyperconnected space. **Proof**: Let λ be a fuzzy G_{δ} -set in (X,T). By Corollary 3.1, for the fuzzy G_{δ} -set

Proof: Let λ be a fuzzy G_δ-set in (X,1). By Colonary 3.1, for the fuzzy G_δ-set λ in the fuzzy C-almost P-Space (X,T), cl int (λ) ≠ 1, in (X,T). Hence for the fuzzy open set int (λ), cl [int (λ)] ≠ 1, in (X,T) implies that (X,T) is not a fuzzy hyperconnected space. **Proposition 4.3:** If each fuzzy regular closed set is a fuzzy G_δ-set in a fuzzy P-space (X,T), then (X,T) is a fuzzy C-almost P-space. **Proof**: Let λ be a fuzzy G_δ-set in (X,T). Since (X,T) is a fuzzy P-space, λ is a fuzzy fuzzy

a fuzzy open set in (X,T). Now cl int $(\lambda) = cl(\lambda)$ and by Theorem 2.4, $cl(\lambda)$ is a fuzzy regular closed set in (X,T). By hypothesis, the fuzzy regular closed set $cl(\lambda)$ is a fuzzy G_{δ} -set and thus cl int (λ) is a fuzzy G_{δ} -set in (X,T). Hence (X,T) is a fuzzy C-almost P-space.

Proposition 4.4: If a fuzzy topological space (X,T) is a fuzzy Oz and fuzzy Pspace, then (X,T) is a fuzzy C-almost P-space.

Proof: Let λ be a fuzzy G_{δ} -set in (X,T). Since (X,T) is a fuzzy P-space, λ is a fuzzy open set in (X,T). Now cl int $(\lambda) = cl(\lambda)$ and by Theorem 2.4, $cl(\lambda)$ is a fuzzy regular closed set in (X,T). Since (X,T) is a fuzzy Oz-space, the fuzzy regular closed set cl (λ) is a fuzzy G_{δ} -set and thus cl int (λ) is a fuzzy G_{δ} -set in (X,T). Hence (X,T) is a fuzzy C-almost P-space.

Remark : In view of Proposition 4.4 and Theorem 2.6, one will have the following relations:

Proposition 4.5: If a fuzzy topological space (X,T) is a fuzzy C-almost P-space, then (X,T) is a fuzzy almost P-space.

Proof: Let λ be a fuzzy G_{δ} -set in (X,T). Since (X,T) is a fuzzy C-almost P-Space, by Proposition 3.7, int $(\lambda) \neq 0$, in (X,T). Hence (X,T) is a fuzzy almost P-space.

Remark 4.1: The converse of the above proposition need not be true. That is, a fuzzy almost P-space need not be a fuzzy C-almost P-space.

The following proposition gives a condition under which fuzzy almost P-spaces become fuzzy C-almost P-spaces.

Proposition 4.6: If a fuzzy topological space (X,T) is a fuzzy Oz and fuzzy almost P-space, then (X,T) is a fuzzy C-almost P-space.

Proof: Let λ be a fuzzy G_{δ} -set in (X,T). Since (X,T) is a fuzzy almost P-space, int $(\lambda) \neq 0$, in (X,T). By Theorem 2.4, cl [int (λ)] is a fuzzy regular closed set in (X,T). Since (X,T) is a fuzzy Oz-space, the fuzzy regular closed set cl int (λ) is a fuzzy G_{δ}-set in (X,T). Hence (X,T) is a fuzzy C-almost P-space.

Remark 4.2 : It is observed from Propositions 4.1, 4.2 and 4.5 that fuzzy C-almost P-space are not fuzzy hyper-connected and not fuzzy open hereditarily irresolvable spaces even though they are fuzzy almost P-spaces.

Proposition 4.7 : If a fuzzy topological space (X,T) is а fuzzy regular Oz-space, then (X,T) is a fuzzy C-almost P-space.

Proof: Let λ be a fuzzy G_{δ} -set in (X,T). Since (X,T) is a fuzzy regular Oz -space, by Theorem 2.6, $\operatorname{clint}(\delta)$ is a fuzzy G_{δ} -set in (X,T). Hence (X,T) is a fuzzy Calmost P-space.

P-Proposition 4.8: : If a fuzzy topological space (X,T) is a fuzzy C-almost space, then the only fuzzy F_{σ} -set λ such that $cl(\lambda) = 1$ in (X,T) is 1_X .

Proof: The proof follows from Proposition 4.5 and Theorem 2.5.

V. Conclusion

In this paper the notion of fuzzy C-almost P-Space is introduced and studied. The conditions under which fuzzy P-spaces and fuzzy almost P-spaces become fuzzy C-almost Pspaces are obtained. It is obtained that fuzzy closures of fuzzy F_{σ} - sets contain fuzzy regular closed sets and fuzzy interiors of fuzzy G_{δ} -sets are contained in fuzzy regular open sets in fuzzy C-almost P-spaces. It is established that fuzzy C-almost P-spaces are neither fuzzy hyperconnected spaces nor fuzzy open hereditarily irresolvable spaces. Fuzzy regular Oz spaces are fuzzy C-almost P-spaces and fuzzy Oz and fuzzy P-spaces, are fuzzy Calmost P-spaces.

References

- [1]. K. K. Azad, On Fuzzy Semi Continuity, Fuzzy Almost Continuity And Fuzzy Weakly Contiunity, J. Math. Anal. Appl, 82 (1981), 14 – 32.
- G.Balasubramanian, Maximal Fuzzy Topologies, Kybernetika, 31(5) (1995), 459 464. [2].
- C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal., 24, (1968), 182 190. [3].
- [4]. B. Ghosh, Fuzzy Extremally Disconnected Spaces, Fuzzy Sets And Systems Vol.46, No. 2 (1992), 245 - 250.
- C. L. Kim, Almost P-Spaces, Commun. Korean Math. Soc., Vol. 18, No.4 (2003) ,695 701. [5].
- [6].
- R. Levy, Almost P-Spaces, Canad. J. Math., Xxix(2) (1977), 284 288. Miguel Caldas, Govindappa Navalagi, And Ratnesh Saraf, On Fuzzy Weakly Semi-Open Functions, Proyecciones, [7]. Vol.21, No.1, (2002), 51 - 63.
- [8].
- A. K. Mishra, A Topological View Of P-Spaces, Gen. Topology Appl., 2(4) (1972), 349 362. R. Palani, Contributions To The Study On Some Aspects Of Fuzzy Baire Spaces, Ph. D. Thesis, Thiruvalluvar [9]. University, Tamilnadu, India, 2017.
- [10]. R. Sikorski, Remarks On Spaces Of High Power, Fund. Math., 37(1950), 125-136.
- S. Soundara Rajan, A Study On Fuzzy Volterra Spaces, Ph.D. Thesis, Thiruvalluvaruniversity, Tamilnadu, India, [11]. 2015
- G. Thangaraj And G.Balasubramanian, On Fuzzy Basically Disconnected Spaces, J. Fuzzy Math., Vol. 9, No.1 (2001), 103 110. [12].
- [13]. G. Thangaraj And G.Balasubramanian, On Somewhat Fuzzy Continuous Functions, J. Fuzzy Math, Vol.11, No. 2 (2003), 725 - 736.
- G.Thangaraj, Resolvability And Irresolvability In Fuzzy Topological Spaces, News Bull. Cal. Math. Soc., Vol. 31, [14]. No.4 - 6 (2008),11 - 14.
- G.Thangaraj And G.Balasubramanian, On Fuzzy Resolvable And Fuzzy Irresolvable Spaces, Fuzzy Sets, Rough [15]. Sets And Multi Valued Operations And Appl., Vol.1, No.2 (2009), 173-180.