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Abstract:  
Local rough set (LRS) is one of the effective tool to enhance the limitations of classical rough set theory. In recent 

years many scholars interested to focused on LRS. At present there is no specific literature reviews of this LRS 

and applications. This review paper first explores a summary of current LRS from three basic aspects, such as 

basic models, local fuzzy rough sets and other applications. This review, lists about the distinct promising issues 

of LRS which are helpful to the future works. 
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I. Introduction 
 Pawlak [20] originated a new concept named as rough set theory (RST). The advantage of this concept 

is to solve uncertainty problems. Many researchers spent their interest to deal with RST. It is established with 

many fields like Fuzzy sets (FS), intuitionistic FS, Neutrosophic sets, similarity measure, decision making, 

multigranulation, soft set, covering etc. Yuhua Qian [17] reconstructed a classical rough set defined as LRS, which 

overcome the drawbacks of classical rough sets. LRS is helpful to control the limited labeled data, computational 

ineffective and overfitting in attribute reduction. 

As stated in the existing works of LRS can be segregated them in the following three classifications. 

1. LRS in terms of basic models: LRS model is combined with the concept of classical rough set and the decision 

theoretic RS introduced by Yuhua Qian [17]. In the LRS framework, two algorithms were introduced, first 

one is to calculate the target concept of a local lower approximation. The second algorithm is to find a local 

attribute reduction of a target concept. The LRS have some extension as local neighbourhood RS [7,9]. 

Double LRS by [4]. Local multigranulation RS [5, 10 ,11,12 ,14] and covering based LRS [21]. Consequently, 

the basic models are investigating through LRS. 

2. LRS in terms of fuzzy sets: Fuzzy sets, due to Xie L L, Lin G P [15] was proposed to handle indermination 

and inaccuracy in data analysis. Xie L L, Lin G P [6] initiated the attribute reduction to the LFRS model for 

two universes. It motivated the development of handling the complex data. 

3. LRS in terms of other applications: For the past few years LRS theory demonstrate its distinctive capabilities 

in many fields, like data analysis, disease diagnosis, decision making and classification [1,17]. The 

applications of the real-world problems are important research in LRS models. 

 

In recent years the concept of LRS is one of the emerging research areas. This paper aims to provide a systematic 

review of recent works in LRS and illustrate future research for better development of LRS. 

 

II Preliminaries 
Rough Set (RS) 

Before defining the concept of RS, the information system allows a framework to describe several objects 

corresponding to their attributes [20]. RST is computed with the equivalence relation. The equivalence relation is 

a fairly strict requirement in the practical application, which restricts the use of rough sets. For this consideration, 

the equivalence relation replaced with Fuzzy relation, similarity relation, covering and tolerance relation etc 

[2,8,18,19]. 

 

Definition 1:[20] 

Let 𝑄 be a non-zero set, 𝐶 be a equivalence relation on 𝑄. For some non-zero subset 𝑃 of 𝑄. 

 𝐶𝑃 = ⋃{𝑝: [𝑝]𝐶 ∩ 𝑃 ≠ ∅} 

 𝐶𝑃 = ⋃{𝑝: [𝑝]𝐶  ⊆ 𝑃}  
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       called the upper and lower approximations respectively on 𝑃. Here (𝑄, 𝐶) called an approximation space and 

𝐶 is an indiscernibility relation. The two (𝐶𝑃, 𝐶𝑃) called as RS on 𝑃. 

 

III LRS in terms of the basic models 
Definition 2:[17] 

Let (𝐶, 𝑄) be approximation space, 𝐷 be an including degree on 𝑆(𝐶) × 𝑆(𝐶). Any subset 𝑃 ⊆ 𝐶, 
𝛼- lower and 𝛽- upper approximations defined by, 

𝑄𝛼(𝑃) = {𝑝|𝐷 (𝑃  [𝑞]𝑝  ≥  𝛼 , 𝑝 𝜖 𝑃 },⁄  

𝑄𝛽
(𝑃) = {𝑝|𝐷 (𝑃  [𝑞]𝑝 >  𝛽 , 𝑝 𝜖 𝑃 }⁄ . 

This pair (𝑄𝛼(𝑃), 𝑄𝛽
(𝑃)) is defined as LRS. 

Apply 𝛼 = 1and 𝛽 = 0 to the above-mentioned definition, it will degenerate to the classical (Pawlak’s) 

rough set. Here Yuhua Qian [17] calculated target concept of information granules, it is possibly to    reduce the 

computation time for concept approximation. Also, Yuhua Qian provide four algorithms to calculate 

approximation and attribute reduction of a target concept by dividing it into two parts. The LLAC and LLAD 

algorithms is to calculate local lower approximation and LARC and LARD algorithms is to compute local attribute 

reduction of the target concept. Also, they discussed the similarity measure and accuracy of LRS. The authors 

provided a theoretical and experimental analysis in a brief way. 

 

Definition 3:[7] 

Let (𝑄, 𝑁) be a neighborhood approximation, 𝐷 be an inclusion degree in 𝑃(𝑄) × 𝑃(𝑄). For any 𝐺 ⊆
𝑄, 𝛼– lower, 𝛽- upper approximations are 

𝑁𝛼(𝐺) = {𝑔|𝐷 (𝐺  [𝑞]𝑄  ≥  𝛼 , 𝑔 𝜖 𝐺 } ,⁄  

𝑁𝛽(𝐺) = {𝑔|𝐷 (𝐺  [𝑞]𝑄 >  𝛽 , 𝑔 𝜖 𝐺 }⁄ . 

Where 𝛿(𝑔) = {𝑝 |∆(𝑔, 𝑝) ≤ 𝛿} , ∆ is an distance function. 𝐷(𝐺 𝛿(𝑔) =
| 𝐺∩𝛿(𝑔)|

| 𝛿(𝑔)|
⁄  defined by degree of 

inclusion. This pair (𝑁𝛼(𝐺), 𝑁𝛽(𝐺)) called as local neighborhood rough set. The boundary is defined by  

𝐵𝑁𝑁(𝐺) = (𝑆𝛼(𝐺) − 𝑆𝛽(𝐺). 

Yuhua Qian [7] introduced local neighbourhood rough sets (LNRS). He was the first to establish the 

depth of local neighbourhood rough set and to inspect its properties and measures. LNRS is able to solve local 

lower/upper approximation and attribute reduction of a target concept. Also, he verified the LNRS algorithm with 

experimental results. Zhang Y [9] introduced dynamic algorithms using LNRS. It is used to analyze the local 

approximation when the object set is decreased. given the dynamic algorithm to get the local approximation 

approximations. Also, it is used to verify the algorithm through experiments using datasets. 

In a classical RST the multigranularity decision theoretic RS model [MDTRS] proposed in the 

information system. Using fundamental function to compute the probability measure through dominance relation. 

Xiaoyan Z [5] introduced local multigranulation rough set in 2019. It is effective tool to overcome uncertain 

problems. Also apply this concept is applied in decision making problems for large scale dataset. MDTRS 

constructed the probability measure. Using lower & upper fusion function to calculate the multigranulation 

approximations. 

 

Definition 4[5] 

Let (𝑄, 𝐴𝑇, 𝐺) is ordered information system (OIS), 𝑅𝐾
≥(𝐾 = 1,2, … 𝑛) be dominance relation on OIS. 

[𝑧]𝑅𝐾
≥  be a dominance class on  𝑅𝐾

≥. For any 𝑍𝜖𝑄, the parameters 𝛼, 𝛽 satisfies the relation 0 ≤ 𝛽 < 𝛼 ≤ 1. The 

local optimistic multigranulation of  upper and lower approximations established on a dominance relation  𝑅𝐾
≥ 

defined as ∑  𝑅𝐾
≥𝑂𝑛

𝐾=1 (𝑍) = {𝑧 |  ⋁ (𝑃(𝑍 | ℎ ( [𝑧]
𝑅𝐾

≥ )) ≥ 𝛼, 𝑧𝜖𝑍𝑛
𝐾=1 }  

∑  𝑅𝐾
≥𝑂𝑛

𝐾=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑍) = ⋃ {𝑧 |  ⋀ (𝑃(𝑍 | ℎ ( [𝑧]

𝑅𝐾

≥ )) > 𝛽, 𝑧𝜖𝑍𝑛
𝐾=1 }𝑛

𝐾=1   

Here(𝑃(𝑍 | ℎ ( [𝑧]𝑅𝐾
≥ )) be a conditional probabilistic equivalence class 𝑙([𝑧]𝑅𝐾

≥ ) on 𝑍. 

Then, local optimistic multigranulation negative, positive and boundary on 𝑍.   

𝑃𝑜𝑠𝑂(𝑍) = ∑  𝑅𝐾
≥ 𝑂

𝑛

𝐾=1

(𝑍) 

𝑛𝑒𝑔𝑂(𝑍) = 𝑄 − ∑  𝑅𝐾
≥𝑂

𝑛

𝐾=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(𝑍) 
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𝑏𝑛𝑑𝑂(𝑍) = ∑  𝑅𝐾
≥𝑂𝑛

𝐾=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑍) − ∑  𝑅𝐾

≥𝑂𝑛
𝐾=1 (𝑍). 

 

Definition 5[5] 

Let (𝑄, 𝐴𝑇, 𝐺) is an OIS, 𝑅𝐾
≥(𝐾 = 1,2, … 𝑛) be dominance relation on OIS. [𝑧]𝑅𝐾

≥  be a dominance class 

on  𝑅𝐾
≥. For any 𝑍𝜖𝑄, the parameters 𝛼, 𝛽 satisfies the relation 0 ≤ 𝛽 < 𝛼 ≤ 1. The local pessimistic 

multigranulation of  upper and lower approximations established on a dominance relation  𝑅𝐾
≥ defined as 

∑  𝑅𝐾
≥𝑃𝑛

𝐾=1 (𝑍) = {𝑧 |  ⋀ (𝑃(𝑍 | ℎ ( [𝑧]
𝑅𝐾

≥ )) ≥ 𝛼, 𝑧𝜖𝑍𝑛
𝐾=1 }  

∑  𝑅𝐾
≥𝑃𝑛

𝐾=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑍) = ⋃ ℎ𝑝𝑟

𝑅𝐾

𝑛
𝐾=1   

Here(𝑃(𝑍 | ℎ ( [𝑧]𝑅𝐾
≥ )) be a conditional probabilistic equivalence class 𝑙([𝑧]𝑅𝐾

≥ ) on 𝑍. 

Then, local pessimistic multigranulation negative, positive and boundary on 𝑍.   

𝑃𝑜𝑠𝑃(𝑍) = ∑  𝑅𝐾
≥ 𝑃

𝑛

𝐾=1

(𝑍) 

𝑛𝑒𝑔𝑃(𝑍) = 𝑄 − ∑  𝑅𝐾
≥𝑃

𝑛

𝐾=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(𝑍) 

𝑏𝑛𝑑𝑃(𝑍) = ∑  𝑅𝐾
≥𝑃𝑛

𝐾=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑍) − ∑  𝑅𝐾

≥𝑃𝑛
𝐾=1 (𝑍). 

 

Definition 6[12] 

Let (𝑄, 𝐴𝑇, 𝐺) is an OIS, 𝑅𝐾
≥(𝐾 = 1,2, … 𝑛) be dominance relation, for every 𝑃𝜖𝑄. The upper and lower 

approximations established on 𝑄 by a dominance relation  𝑅𝐾
≥ defined as 

 ∑  𝑅𝐾
≥𝑂𝑛

𝐾=1 (𝑃) = {𝑝 |  ⋁  ([𝑝]
𝑅𝐾

≥ ⊆ 𝑃), 𝑝𝜖𝑃𝑛
𝐾=1 },  

∑  𝑅𝐾
≥𝑂

𝑛

𝐾=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(𝑃) = ⋂ 𝑅𝐾
≥

𝑛

𝐾=1

 

Here ∑  𝑅𝐾
≥𝑂𝑛

𝐾=1 (𝑃) denoted as intersection of upper approximation under granularity. 

𝑅𝐾
≥ = ⋃ {[[𝑝]

𝑅𝐾

≥  |  [𝑝]
𝑅𝐾

≥ ∩ 𝑃 ≠ ∅, 𝑝𝜖𝑃} .  

Define the positive, negative and boundary for optimistic local multigranulation in OIS.  

𝑃𝑜𝑠(𝑃) = ∑  𝑅𝐾
≥ 𝑂

𝑛

𝐾=1

(𝑃) = {𝑝 | ⋁([𝑝]𝑅𝐾
≥ ⊆ 𝑃),

𝑛

𝐾=1

 𝑝𝜖𝑃}, 

𝑛𝑒𝑔(𝑃) = ~ ∑  𝑅𝐾
≥ 𝑂

𝑛

𝐾=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑃) = 𝑈 − ⋂ 𝑅𝐾
≥

𝑛

𝐾=1

 

𝑏𝑛𝑑 (𝑃) = ∑  𝑅𝐾
≥𝑂𝑛

𝐾=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑃) − ∑  𝑅𝐾

≥𝑂𝑛
𝐾=1 (𝑃). 

 

Definition 7[12] 

Let (𝑄, 𝐴𝑇, 𝐺) is an OIS, 𝑅𝐾
≥(𝐾 = 1,2, … 𝑛) be dominance relation, for every 𝑍𝜖𝑄. The upper and lower 

approximations established on 𝑄 by a dominance relation  𝑅𝐾
≥ defined as 

 ∑  𝑅𝐾
≥𝑃𝑛

𝐾=1 (𝑍) = {𝑧 |  ⋀ ([𝑧]
𝑅𝐾

≥ ⊆ 𝑍), 𝑧𝜖𝑍𝑛
𝐾=1 },  

∑  𝑅𝐾
≥𝑃

𝑛

𝐾=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(𝑍) = ⋃ 𝑅𝐾
≥

𝑛

𝐾=1

 

Here 𝑅𝐾
≥ = ⋃ {[𝑧]

𝑅𝐾

≥  |  [𝑧]
𝑅𝐾

≥ ∩ 𝑍 ≠ ∅, 𝑧𝜖𝑍} , denoted as local upper approximation under granularity. 

Define the positive, negative and boundary for pessimistic local multigranulation in OIS.  

𝑃𝑜𝑠(𝑍) = ∑  𝑅𝐾
≥ 𝑃

𝑛

𝐾=1

(𝑍) = {𝑧 | ⋀([𝑧]𝑅𝐾
≥ ⊆ 𝑍)

𝑛

𝐾=1

 𝑧𝜖𝑍}, 
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𝑛𝑒𝑔(𝑍) = ~ ∑  𝑅𝐾
≥ 𝑃

𝑛

𝐾=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑍) = 𝑈 − ⋃ 𝑅𝐾
≥

𝑛

𝐾=1

 

𝑏𝑛𝑑 (𝑍) = ∑  𝑅𝐾
≥𝑃𝑛

𝐾=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑍) − ∑  𝑅𝐾

≥𝑃𝑛
𝐾=1 (𝑍). 

Weihua xu [10] initiated local generalized multigranularity based neighbourhood RS. Jirong Li [14] 

proposed multigranulation on interval valued hesitant fuzzy information system. 

Zhouming Ma [21] proposed variable precision covering RS on the boundary region. He was the first to 

initiate CVPRS model, it is evaluating the existing covering in the boundary region. Main work of this model 

describes the pair of boundary operators and pair of approximations operators with some threshold value. This 

theoretical model is verified by numerical experiments. 

 

Table no 1 provides literature papers in the field of basic models. 
S.No Authors Year Study Contribution 

  1 Yuhua Qian et al. [17] 2018 

 Developed four algorithms to solve local lower approximation and 

attribute reduction of a target concept and gave a brief experimental 

works. 

  2 Yuhua Qian et al. [7] 2018 
Established the depth of LNRS and inspected its properties and 

measures. 

  3 Jia Zhang et al. [5] 2019 
Developed a local multigranulation decision theoretic rough set 
model in IOS. This model is effective to handle large dataset & it 

minimize the computation time. 

4 Eric C.C. T [16] 2019 

Introduced local logical disjunction double quantitative RS 
(LLDDRS) method. This method is an efficient tool for decision 

making and discovering knowledge to a huge data set. Also studied 

its important properties, decision rules and optimal computation of 
RS. Also, presented an experimental works to verify this model. 

  5 X. Yang et al. [13] 2020 

Introduced S3WGrC by the prospect of temporal spatial 

multigranularity learning, which can be represented by dynamic data 

& parameter of temporality & spatiality of three-way decision. He 
also proposed local neighbourhood trisecting model for S3WGrC and 

presented local sequential model for three-way granular computing 
and comparative experimental work can be conducted.  

  6 Xiaoyan Zhang et al. [14] 2021 

Introduced a dynamic updating approximation to produce attribute 

variation of MG-IVHFIS. Studied four algorithms for updating 

approximations of optimism, pessimism in dynamic MG-IVHFIS. 

  7 Tianrui Li et al. [4] 2021 

Proposed local equivalence class & local membership functions. 

Using double LRS, a quick attribute reduction model is proposed and 

applied the model to the experimental analysis.  

  8 Wentao Li et al. [12] 2021 

Introduced two kinds of local multigranulation rough approximation 
on OIS, those are optimistic & pessimistic LMRS model in OIS. 

Discussed the comparison of classical and LMRS model in OIS with 

static & dynamic conditions. 

  9 Zhouming Ma et al. [21] 2022 

Developed CVPRS model in the boundary region is based on 

covering based RS model. Used CVPRS model to compute attribute 

reduction for covering based decision information system. 

  10 Weihua Xu et al. [10] 2022 
Constructed local generalized multigranulation neighbourhood RS 
model by using the definition of support & inclusion function. 

 11 ZHANG Yanlan et al. [9] 2023 

Initiated dynamic updating algorithm of LNRS model. It is effective 

tool to handle approximation operators of dynamic numerical data. 
This algorithm makes to avoid a repeated calculation and 

comparative experimental work can be conducted. 

 
As stated in the concept of LRS, it is simple to identify the significant contribution of LRS and it open a new 

direction of research. The future direction of this study is listed below. 

1. Extend LRS to several binary relations, rough classifiers and attribute reduction and its applications. 

2. Extend double DLRS with attribute significant measures, increment learning technique and etc. 

3. To overcome the change of optimal fusion on data and parameters. 

 

IV LRS in terms of local fuzzy rough sets (LFRS) 
Definition 8[15] 

Let (𝑄, 𝐶) is fuzzy information system, 𝑧𝜆 is fuzzy point, 𝑧𝜖𝑄, 𝜆𝜖[0,1] and 0 ≤ 𝛽 < 𝛼 ≤ 1, for some target 

concept 𝑍𝜖𝐹(𝑄), is 𝛼- local lower approximations and 𝛽 local upper approximation respectively. 

𝐿�̃�(𝛼,𝛽)(𝑍) = ⋃{ 𝑧𝜆| �̃�(𝑍/[𝑧𝜆]𝐶
𝑇 )}  ≥ 𝛼 , 𝑧𝜖𝑍} 
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𝐿�̃�(𝛼,𝛽)(𝑍) = ⋃{ [𝑧𝑍(𝑧)]𝐶
𝑇 | �̃�(𝑍/[𝑧𝜆]𝐶

𝑇 )}  > 𝛽 , 𝑧𝜖𝑍} 

Here the inclusion degree is �̃�, 

�̃�(𝑍/[𝑧𝜆]𝐶
𝑇) =  

∑ ([𝑧𝜆]𝐶
𝑇(𝑦) ⋀   𝑍(𝑦))𝑦𝜖𝑄

∑ ([𝑧𝜆]𝐶
𝑇(𝑦) 𝑦𝜖𝑄

 

The two (𝐿�̃�(𝛼,𝛽)(𝑍), 𝐿�̃�(𝛼,𝛽)(𝑍)) called the LFRS on 𝑍. 

 

Definition 9[6] 

Let (𝑄, 𝑉, �̃�) be an fuzzy approximation space in two universe, for some 𝜖[0,1] , 𝑧𝜖𝑄 and 0 ≤ 𝛽 < 𝛼 ≤
1, 𝑧𝜆 be a fuzzy unique point set, for some  𝑍𝜖𝐹(𝑄), the 𝜌- local fuzzy lower approximations and L- local fuzzy 

upper approximation operators on  𝑍 defined as  

�̃�𝛼𝜌(𝑍) = ⋃{ 𝑧𝜆| �̃�(𝑍/[𝑧𝜆]𝐶
𝐿  )}  ≥ 𝛼 , 𝜆 >∈, [𝑧𝜆]𝐶

𝐿 ≠ ∅} 

 

�̃�𝛽𝐿(𝑍) = ⋃{ 𝑧𝜆| �̃�(𝑍/[𝑧𝜆]𝐶
𝐿  )}  > 𝛽 , 𝜆 >∈, [𝑧𝜆]𝐶

𝐿 ≠ ∅} ⋃{𝑧𝜆 | [𝑧𝜆]𝐶
𝐿 = ∅} 

The two (�̃�𝛼𝜌(𝑍), �̃�𝛽𝐿(𝑍)) called LFRS on 𝑍. Particularly if �̃�𝛼𝜌(𝑍) = �̃�𝛽𝐿(𝑍), then 𝑍 called 

definable on 𝑉.  
 

Introducing the framework of LFRS by Xie LL [15] in 2021, LFRS theory motivates to handle complex data. 

Also, LFRS described in two universes [6] also analyzes its decision rules and properties.  

 

Table no 2 provides a literature paper in the field of LFRS. 
S.No. Authors Year Study Contribution 

1 Xie LL, Lin G petal et al. [15] 2021 Proposed to handle indetermination & inaccuracy in data analysis. 

2 Guoping Lin et al. [6] 2023 Initiated the attribute reduction to LFRS model for two universes. It is 

effective to handle the complex data and proposed experimental works to 

validate this model. 

3 Guoping Lin [3] 2023 Proposed local double quantitative fuzzy RS (FRS) model on two universes. 
Discussed its properties and decision rules of local double quantitative FRS 

model. Improved the applicability of this model with efficient reduction 

method & experimental works also conducted. 

 

In the information system, there are having numerous features and objects, but the need based on upper 

and lower approximation classification ability on the LFRS on two universes cannot be changed, and thus the new 

reduction model was proposed by Xie L L, Lin G P [6]. The future work of this study is given below. 

1. To combine the reduction algorithm with other models. 

2. Develop multigranularity LFRS model over two universes. 

 

V LRS in terms of other applications: 
In preceding sections, we revisited the idea of LRS, LRS in terms of the basic models, local fuzzy rough 

sets. Our aim in the present section is discussed other applications of LRS. i.e., Data analysis, disease diagnosis 

and some detailed information is listed below. 

1. Data Analysis: A Fatih Ozean A F [1] proposed a concept on classification of LRS. He also examined the 

students who addicted to the social media. The selected numerical data was compared with RS and LRS. LRS 

theory gives more real and exact information when compared with RST. Yuhua Qian [17] investigated 

mushroom data set with the use of LRS. For future extension of LRS to construct the algorithms for other 

data sets, risk analysis, decision making, etc. 

2. Disease Diagnosis: Guoping Lin [6] introduced the LLAC algorithm, its uses to diagnosis the patient’s 

illness. Tianrui Li [13] proposed a local neighborhood-based temporal-spatial S3WGRC model, applying this 

model to the data set of Wisconsin diagnosis breast cancer, diabetic retinopathy Debrecen and etc. 

 

VI Conclusion 
 LRS theory is a effective tool for handling limited labeled data, overfitting and computational problems. 

As a way to construct comprehensive overview of LRS theory, the work focus on three perspectives of existing 

works, i.e., Basic models, Local Fuzzy rough sets and other applications. In the presented conversation, LRS 

achieved a substantial development in distinct research areas. 

In the future direction, still there is a lot of work to be enhance the analysis of LRS in other considerable 

aspects of LRS models, such as uncertainty measure, decision making, etc. Furthermore, the growth of novel LRS 
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is a considerable attention, such as LRS in terms of various attribute reduction, LRS in terms of semi supervised 

rough classifiers, LRS with the extension of Fuzzy sets. It is significant to expand the realistic applications with 

the proposed models. 
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